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Abstract— In this paper we study a variation of the Dynamic
Traveling Repairperson Problem (DTRP) in which there are
two classes of demands; high priority, and low priority. In
the problem, demands arrive in the environment randomly
over time and assume a random location and on-site service
requirement. A service vehicle must travel to each demand
location and provide the required on-site service. The quality
of service provided to each class of demands is measured by
the expected delay between a demand’s arrival and its service
completion. The goal is to design policies for the service vehicle
which minimize a convex combination of the delays for each
class. We provide a lower bound on the achievable delay for this
problem, and propose a policy which performs within a known
constant factor of the optimal in heavy load (i.e., when the
fraction of time the service vehicle spends performing on-site
service approaches one). The problem studied in this paper
is analogous to the multi-class queuing problem in classical
queuing theory.

I. INTRODUCTION

A classical problem in queueing theory is that of priority
queues, [1]. In the simplest setup, customers arrive at a
single server sequentially over time. Each customer is a
member of either the high-priority, or the low-priority class.
High priority customers and low priority customers form
separate queues. The goal is to provide the best possible
quality of service to the high priority queue (Qα) while
maintaining stability of the low priority queue (Qβ). That is,
to minimize the expected delay for high-priority customers
while keeping the length of low-priority queue finite. When
both the customer inter-arrival times and the customer service
times are memory-less (i.e., distributed exponentially), the
preemptive priority policy is known to be optimal [1]:

When Qα is nonempty, serve high priority cus-
tomers; when Qα is empty, serve low-priority
customers; If a high priority customer arrives while
serving Qβ , preempt service and immediately be-
gin serving the high-priority customer.

A more general two-class queuing problem is to minimize
a convex combination of the service delays for high- and
low-priority customers

min(cDα + (1− c)Dβ) where c ∈ (0, 1).

In this case an optimal policy can be created by using a
mixed policy that spends fraction c of the time serving Qα
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as the high-priority queue, and fraction (1−c) serving Qβ as
the high-priority queue [2]. Lower bounds on the achievable
delays have also been studied for queuing networks [3].

In this paper we consider a spatial two-class queuing
problem. Customers (or demands for service) arrive in an
environment according to a stochastic process, and upon
arrival assume a location in the environment. A service
vehicle must travel to each demand location and provide the
required on-site service. The quality of service provided to
each class of demands is measured by the expected delay
between a demand’s arrival, and its service completion.

When there is only one class of demands, the problem
is known as the Dynamic Traveling Repairperson Problem
(DTRP), first introduced by Bertsimas and van Ryzin [4], [5],
[6]. The series of papers by Bertsimas and van Ryzin propose
policies within a constant factor of the optimal in both heavy
load (i.e., when the fraction of time the service vehicle
spends performing on-site service approaches one), and in
light load (i.e., when the fraction of time the service vehicle
spends performing on-site service approaches zero). They
also study the case of multiple service vehicles, vehicles with
finite service capacity, and extend their results to arbitrary
renewal arrival processes, and nonuniform demand location
distributions. In [7], and [8], decentralized policies are de-
veloped for the DTRP. Spatial queuing problems have also
been studied in the context of urban operations research [9],
where approximations are used in order to cast the problems
in the traditional queuing framework.

The main contribution of this paper is to introduce the
multi-class DTRP. This problem has applications in areas
such as UAV surveillance, where targets are given different
priority levels based on their urgency or potential importance.
We focus on the two-class problem for which we derive
a lower bound on the achievable values of the convex
combination of delays, and propose a simple policy. The
policy is characterized by a parameter p ∈ [0, 1], whose
optimal value is simply a function of the arrival rates of
the demands of each class, and the convex combination
coefficient c. We show that for all values of c, this policy is
within a constant factor of the optimal in heavy load.

The paper is organized as follows. In Section II we give
some asymptotic properties of the Traveling Salesperson
Tour. In Section II-B we formalize the problem and in
Section III we derive a lower bound, and in Section IV we in-
troduce and analyze the Randomized Priority Policy. Finally,
in Section IV-D we discuss an optimization procedure for p,
and present simulation results. Due to space constraints, all
proofs, with the exception of the proof of Theorem 3.1 have
been omitted, but can be found in the technical report [10].
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II. BACKGROUND AND PROBLEM STATEMENT

In this section we give some results on the asymptotic
properties of the traveling salesperson tour in the Euclidean
plane and we formalize the two-class dynamic traveling
repairperson problem.

A. The Euclidean Traveling Salesperson Problem

The Euclidean Traveling Salesperson Problem (TSP) is
formulated as follows: given a set Q of n points in Rd,
find the minimum-length tour (i.e., cycle that visits all nodes
exactly once) of Q; the length of a tour is the sum of all
Euclidean distances on the tour. Let TSP(Q) denote the
minimum length of a tour through all the points in Q; by
convention, TSP(∅) = 0. Assume that the locations of the
n points are random variables independently and identically
distributed in a compact set E ; in [11] it is shown that there
exists a constant βTSP,d such that, almost surely,

lim
n→+∞

TSP(D)
n1−1/d

= βTSP,d

∫
E
f̄(q)1−1/d dq a.s., (1)

where f̄ is the density of the absolutely continuous part of
the distribution of the points. The current estimate of the
constant in the case d = 2 is βTSP,2 ' 0.7120, [12].

Notice that the bound (1) holds for all compact sets: the
shape of the set only affects the convergence rate to the limit.
According to [9], if E is a “fairly compact and fairly convex”
set in the plane, then Eq. (1) provides an adequate estimate
of the optimal TSP tour length for values of n as low as 15.

Remarkably, the asymptotic cost of the stochastic TSP
for uniform point distributions is an upper bound on the
asymptotic cost for general point distributions: i.e.,

lim
n→+∞

TSP(Q)
n1−1/d

≤ βTSP,d|E|1/d,

where |E| is the volume of E ; this follows directly from an
application of Jensen’s inequality for concave functions to
the right hand side of (1).∫

E
f̄(q)1−

1
d dq ≤ |E|1/d

(∫
E
f̄(q) dq

)1− 1
d

≤ |E|1/d.

B. Problem Statement

Consider a bounded environment E in the plane with area
|E|. In the environment is a vehicle with maximum speed
v. Demands of type α arrive in E according to a Poisson
process with rate λα. Similarly, demands of type β arrive in
the environment according to a Poisson process with rate
λβ . Upon arrival, demands assume an independently and
uniformly distributed location in E . A demand of type α
(respectively, β) is serviced when the vehicle spends an on-
site service time that is generally distributed with finite mean
s̄α (respectively, s̄β).

Consider the arrival of the ith demand of type α. The
service delay for the ith demand, Dα(i), is the time elapsed
between its arrival and its service completion. The wait time
is then given by Wα(i) := Dα(i)−sα(i), where sα(i) is the
on-site service time required by demand i. Given a stable
policy P (i.e., a policy for which the α and β queue lengths

remain finite), the steady-state service delay is defined as
Dα(P ) := limi→+∞ E [Dα(i)], and the steady-state wait is
Wα(P ) := Dα(P ) − s̄α. In a similar fashion, we define
Dβ(P ) and Wβ(P ) for demands of type β. Then, given a
stable policy P , the average delay per demand is given by

D(P ) =
λα

λα + λβ
Dα(P ) +

λβ
λα + λβ

Dβ(P ).

The average delay per demand is the standard cost func-
tional for queueing systems with multiples classes of de-
mands. Notice that we can write D(P ) = cDα+ (1− c)Dβ ,
with c = λα/(λα + λβ). Then, a possible way to model
priority is to allow any convex combination of Dα and Dβ .
We are now ready to state our problem.

Problem Statement: Determine the vehicle rout-
ing policy P which minimizes

D(P ) := cDα(P ) + (1− c)Dβ(P ),

where c ∈ (0, 1).
We restrict our attention to the case where

c ≥ λα
λα + λβ

=: c∗; (2)

recalling the previous discussion, c = c∗ implies that we
are not giving any priority, while c > c∗ implies that the α
demands have higher priority. If for given values of λα and
λβ the desired value of c does not satisfy equation (2) then
the labels α and β on the classes can simply be exchanged.
Notice that a necessary condition for there to exist a policy
which yields a finite D(P ) is

% := λαs̄α + λβ s̄β < 1.

The quantity % is known as the “load factor” and captures
the fraction of time the service vehicle must be busy in any
stable policy.

III. LOWER BOUND IN HEAVY LOAD

In this section we present a lower bound on the two-class
DTRP in the form of two results, the first holds only in heavy
load, while the second (less tight) bound holds for all %.

Theorem 3.1 (Heavy load lower bound): In heavy load
(%→ 1−), for every routing policy, the delay D∗ is bounded
as

D∗ ≥ β2
TSP

2
· (2− c)λα + (1− c)λβ

v2(1− %)2
· |E|, (3)

where βTSP := βTSP,2, and c ≥ c∗.
Proof: Consider a tagged demand i of type α, and let us

quantify its total service requirement. The demand requires
on-site service time sα(i). In addition, to service demand
i, the vehicle must travel from the location of the demand
served prior to i, to i’s location. We denote this distance
by dα(i). Thus the total service requirement of demand i is
dα(i)+sα(i). The steady state expected travel requirement is
d̄α := limi→+∞ E [dα(i)] and in a similar manner we define
d̄β . To maintain stability of the system we must require that

λα

(
d̄α
v

+ s̄α

)
+ λβ

(
d̄β
v

+ s̄β

)
< 1. (4)
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Recalling that % = λαs̄α + λβ s̄β , we rewrite equation (4) as

λαd̄α + λβ d̄β < v(1− %). (5)

For a stable policy P , let Nα and Nβ represent the number
of demands of type α and β in the queue, respectively. From
a key result in the DTRP literature (see [13], page 23), we
have in heavy load (%→ 1−) the following

d̄α, d̄β ≥
βTSP√

2

√
|E|√

Nα +Nβ
=: d̄. (6)

Combining equations (5) and (6), squaring both sides, and
rearranging we obtain

β2
TSP

2
|E|(λα + λβ)2

v2(1− %)2
< Nα +Nβ .

From Little’s law Nα = λαWα and Nβ = λβWβ , and thus

λαWα + λβWβ

λα + λβ
>
β2

TSP

2
|E|(λα + λβ)
v2(1− %)2

. (7)

Recall that Wα = Dα− s̄α, and thus equation (7) gives us a
constraint on the feasible values of the delays Dα and Dβ .
In fact, when c = c∗, equation (7) yields a lower bound on
D∗. In general we require more constraints.

To determine another constraint, consider the case where
we provide the best possible service to α-demands, while
maintaining stability for β-demands. Since we are looking
for a lower bound, we ignore the travel time needed for β-
demands; at any instant the vehicle can serve a β-demand by
simply stopping for an on-site service time s̄β . By reducing
the workload of β-demands, we can reduce the delay for α-
demands. In this scenario d̄β = 0, and the expected travel
distance between successive α-demands is bounded by

d̄α ≥
βTSP√

2

√
|E|√
Nα

.

Combining the above equation with equation (5), squaring
both sides, and rearranging we obtain

Wα ≥
β2

TSP

2
|E|λα

v2(1− %)2
. (8)

Using the previous argument for β-demands we obtain

Wβ ≥
β2

TSP

2
|E|λβ

v2(1− %)2
. (9)

To simplify notation, let us define the linear operator

G(x) :=
β2

TSP

2
|E|

v2(1− %)2
x.

Thus, we can determine a lower bound by solving the linear
program

minimize cWα + (1− c)Wβ ,

subject to

 λα
λα+λβ

λβ
λα+λβ

1 0
0 1

[Wα

Wβ

]
≥

G(λα + λβ)
G(λα)
G(λβ)

 .

Wα

Wβ

Wβ = G(λβ)

Wα = G(λα)

Wαλα + Wβλβ

λα + λβ
= G(λα + λβ)

Fig. 1. The feasible region for the wait times Wα and Wβ .

Assuming that c ≥ λα/(λα + λβ), the linear program
is optimized at the vertex corresponding to the first two
constraints. Thus we obtain Wα ≥ G(λα), and

Wβ ≥
1
λβ

(
G((λα + λβ)2)− λαG(λα)

)
.

Substituting the bounds on Wα and Wβ into the cost function

cWα + (1− c)Wβ ≥ cG(λα)

+
(1− c)
λβ

(G((λα + λβ)2)−G(λ2
α)).

Applying the definition of G(·) and simplifying yields

cWα + (1− c)Wβ ≥
β2

TSP

2
((2− c)λα + (1− c)λβ)|E|

v2(1− %)2
.

Finally, letting Wα = Dα− s̄α and Wβ = Dβ− s̄β yields
the desired result.

Remark 3.2 (Lower bound for all % ∈ [0, 1)): With slight
modifications to the proof of Theorem 3.1 (see [10]), it is
possible to obtain the following lower bound which is valid
for all values of %, although less tight

D∗ ≥ γ2 ((2− c)λα + cλβ)|E|
v2(1− %)2

− c(1− 2%α)
2λα

+
(1− c)%β

λβ
,

(10)
where %α = λαs̄α and %β = λβ s̄β , which holds for all
% ∈ [0, 1) and c ≥ λα/(λα + λβ). •

IV. RANDOMIZED PRIORITY POLICY

In this section we propose and analyze a policy that is
within a constant factor of the previous lower bound. In
Section IV we introduce the policy and in Section IV-B we
establish two main results, Theorem 4.2 which characterizes
the α and β queue lengths, and Theorem 4.3 which estab-
lishes the constant factor.

A. Randomized Priority Policy

In the following, we assume that information on out-
standing demands of type α and of type β at time t is
summarized, respectively, as a finite set of demand positions

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.4

1208



Qα(t) and Qβ(t), with Nα(t) := card(Qα(t)) and Nβ(t) :=
card(Qβ(t)). Demands of type α (respectively of type β)
are inserted in sets Qα (Qβ) as soon as they are generated;
removal from the set Qα (respectively Qβ) requires that the
service vehicle moves to the demand location, and stays there
for the required on-site service time.

Randomized Priority Policy (RP)
if the set Qα ∪Qβ is empty then1

Move toward the median of E .2

if the set Qα ∪Qβ is non-empty then3

with probability p do4

Set Q := Qα ; /* task TS1 */5

and probability 1− p do6

Set Q := Qα ∪Qβ ; /* task TS2 */7

Compute the TSP tour through all demands in Q.8

Service all demands by following the TSP tour,9

starting at the demand closest to the vehicle’s
current position.

Repeat.10

Optimize over p.11

How close to the lower bound is the performance of the RP
policy? How do we optimize over p? The following analysis
will provide precise answers to these questions.

B. Analysis of the RP Policy in Heavy Load

We analyze the RP policy in the heavy load case, i.e.,
% → 1−. We first introduce some notation. We will refer
to the time instant ti in which the vehicle computes a new
TSP tour as the epoch i of the policy; we refer to the time
interval between epoch i and epoch i+1 as the i-th iteration
and we will refer to its length as Ti. For brevity we define
• Qα(ti) := Qα,i: set of outstanding α-demands at

beginning of iteration i;
• Nα(ti) := Nα,i: number of outstanding α-demands at

beginning of iteration i;
• Qβ(ti) := Qβ,i: set of outstanding β-demands at

beginning of iteration i;
• Nβ(ti) := Nβ,i: number of outstanding β-demands at

beginning of iteration i;
The following lemma, although straightforward, will be

essential in deriving our main results (see [10] for its proof).
Lemma 4.1 (Queue size in heavy load): In heavy load

(i.e., % → 1−), after transients, the number of demands
serviced in a single tour of the vehicle in the RP policy
is very large with high probability (i.e., with probability that
tends to 1 as % approaches 1).

By definition of the policy, at iteration i the vehicle will
choose to execute task TS1 with probability p and task TS2

with probability 1− p. Then, by the total probability law

E [Nα,i+1] = pE (Nα,i+1|TS1) + (1− p)E (Nα,i+1|TS2)
E [Nβ,i+1] = pE (Nβ,i+1|TS1) + (1− p)E (Nβ,i+1|TS2),

(11)

where the conditioning is with respect to the task being
performed at iteration i. During iteration i of the policy,
demands arrive according to a Poisson process. Call, respec-
tively, N new

α,i and N new
β,i the α- and β-demands newly arrived

during iteration i; then, by the law of iterated expectation

E (Nα,i+1|TS1) = E
(
N new
α,i |TS1

)
= λαE (Ti|TS1),

E (Nβ,i+1|TS1) = E
(
N new
β,i |TS1

)
+ E (Nβ,i|TS1)

= λβE (Ti|TS1) + E [Nβ,i],
E (Nα,i+1|TS2) = E

(
N new
α,i |TS2

)
= λαE (Ti|TS2),

E (Nβ,i+1|TS2) = E
(
N new
β,i |TS2

)
= λβE (Ti|TS2).

(12)

In the second equality, notice that the number of β-demands
outstanding at the beginning of iteration i is independent
of the task that will be chosen, therefore E (Nβ,i|TS1) =
E [Nβ,i]. Therefore, we are left with computing the condi-
tional expected values of Ti.

The length of Ti is given by the time needed by the vehicle
to travel along the TSP tour plus the time spent to service
demands. Assuming i large enough, Lemma (4.1) holds, and
we can apply Eq. (1) to estimate from Nα,i and Nβ,i the
length of the TSP tour at iteration i. Then, conditioning on
task 1 (when only α-demands are serviced)

E (Ti|TS1) =
βTSP

√
|E|

v
E
(√

Nα,i|TS1

)
+

+ E
(∑Nα,i

k=1 sα,k|TS1

)
≤
βTSP

√
|E|

v

√
E [Nα,i] + E [Nα,i]s̄α,

(13)

where we have

• applied Eq. (1);
• applied Jensen’s inequality for concave functions, in the

form E
[√

X
]
≤
√

E [X];
• removed the conditioning on TS1, since random vari-

able Nα,i is independent from future events, and thus
from the choice of the task at iteration i;

• used the fact that the on-site service times are indepen-
dent from the number of outstanding demands.

Similarly,

E (Ti|TS2) ≤
βTSP

√
|E|

v

√
E [Nα,i +Nβ,i]+

+E [Nα,i]s̄α + E [Nβ,i]s̄β .
(14)

Collecting all results (for short E [X] is denoted by X̄ ,
where X is any random variable):

N̄α,i+1 ≤ pλα
(βTSP

√
|E|

v

√
N̄α,i + N̄α,is̄α

)
+

(1− p)λα
(βTSP

√
|E|

v

√
N̄α,i + N̄β,i + N̄α,is̄α + N̄β,is̄β

)
,

(15)
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and

N̄β,i+1 ≤ p
[
N̄β,i + λβ

(βTSP

√
|E|

v

√
N̄α,i + N̄α,is̄α

)]
+

(1− p)λβ
(βTSP

√
|E|

v

√
N̄α,i + N̄β,i + N̄α,is̄α + N̄β,is̄β

)
.

(16)

The two above inequalities describes a system of recursive
relations for an upper bound on N̄α,i and N̄β,i. The following
theorem (whose proof is given in [10]) bounds the values to
which they converge.

Theorem 4.2 (Queue length): For every set of initial
conditions (N̄α,0, N̄β,0) ∈ R2

>0, the trajectories i 7→
(N̄α,i, N̄β,i), resulting from equations (15) and (16), satisfy

lim sup
i→+∞

N̄α,i ≤
λ2
αβ

2
TSP|E|(p+

√
(1− p)2 + µ(1− p))2

v2(1− %)2
,

and

lim sup
i→+∞

N̄α,i ≤
λαλββ

2
TSP|E|(p+

√
(1− p)2 + µ(1− p))2

v2(1− %)2(1− p)
,

where µ = λβ/λα.
With the previous theorem we can prove (see [10]) that

the upper and lower bound differ by a known constant factor.
Theorem 4.3 (Constant factor): The Randomized Priority

policy performs within a factor

D(RP )
D∗

≤ 2
1−pc
1−p

(
p+

√
(1− p)2 + (1− p)µ

)2

2− c+ (1− c)µ
, (17)

of the optimal policy as %→ 1−. By optimizing over p, this
factor is bounded by a constant, independent of c and µ.

C. Optimizing the RP Policy

Ideally we would obtain a closed form expression for value
of p, as a function of c and µ := λβ/λα, which minimizes the
right-hand side of equation (17). Unfortunately this does not
seem to be a simple task. However, given values for µ and
c, finding the optimal value of p is a simple one-dimensional
constrained optimization that can be readily solved. In Fig. 2
the left figure shows optimal values of p as a function of c,
for several values of µ. The right figure shows the constant
factor at the optimal value of p. These constant factor curves
are plotted for all values of c. At c = c∗ there is a “kink”
corresponding to the swapping of α and β labels as the high-
priority demand changes.

One can see that when µ is small there is a threshold
below which the optimal value of p is p = 0. We let ccrit
denote the minimum c value at which the optimal value of p
is positive. By differentiating the right-hand side of equation
(17) with respect to p, and setting p = 0, we can determine
ccrit to be

ccrit = 1 +
2√

1 + µ
− 2 + µ

1 + µ
. (18)

A plot of ccrit as a function on µ is shown in Fig. 3. From
this figure one can see that for small µ values, the optimal
p is p = 0, unless c is very close to one. Conversely, when
µ is large, p = 0 is never the optimal value.
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Fig. 2. Left Figure: The optimal value of p as a function of c for several
µ values. Right Figure: The constant factor at optimal p for several values
of µ. Notice that the curves are plotted for all c ∈ (0, 1). The “kink” in
the constant factor curve occurs at c = c∗.

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ
c

 

 

minimum c for p > 0
minimum c for ! priority

Fig. 3. Minimum value of c at which the optimal p is greater than zero,
and the line c = c∗ := 1/(µ+ 1).

D. Simulations of the RP Policy

Simulations of the Randomized Priority policy were per-
formed using linkern 1 as a solver to generate approxima-
tions to the optimal TSP tour. Fig. 4 shows a comparison be-
tween experimental results and the theoretical upper bound.
Each experimental data point represents the average of the
steady state delay of ten runs, where each run consists of 300
repetitions of the RP policy. To ensure convergence to steady
state and avoid effects due to the transient response, only the
last 50 iterations in each run were used to calculate the delay.
Changes in the load factor were made by altering the on-site
service times, s̄α and s̄β . Fig. 4(a) shows a comparison for
equal α and β arrival rates, c = 0.75, and an optimal p of
zero. Fig. 4(b) shows simulations when the arrival rate of β
tasks is five times that of α tasks, c = 0.8, and an optimal p
value of 0.585. One can see that the upper bound provides
a good approximation to the actual performance even for
load factors as low as % = 0.7. The right hand figures show
that as % approaches one, the ratio between the experimental
results and the theoretical upper bound decreases and there
thus there appears to be evidence that the theoretical upper
bound is tight. Note that in some runs the experimental delay
is larger than the theoretical upper bound. This unexpected
fact is due to one or a combination of the following reasons:

1linkern is written in ANSI C and is freely available for academic
research use at http://www.tsp.gatech.edu//concorde.html.
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Fig. 4. Left Figures: Experimental delay values and delay values pre-
dicted by theoretical upper bound. Right Figures: The ratio between the
experimental delay values and the theoretical upper bound delay values.

we are using an approximate solution for the optimal TSP,
we have not reached the limit as %→ 1−, the transients may
not have completely been eliminated in each run.

V. DISCUSSION AND CONCLUSIONS

A. Using the results

The results of this paper could be applied in the fol-
lowing scenario. A system designer is given the parameters
λα, s̄α, λβ , s̄β . For each c ∈ (0, 1) there is a corresponding
optimal value of p, and thus upper bounds on the α and β
delays (when c < c∗ the labels are switched). Thus, given a
tolerance on the α delay, c could be selected such that the
tolerance is satisfied and the β delay is kept within a constant
factor of the minimum.

B. Light load policy

In light load, when %→ 0+, existing DTRP policies can be
used to achieve optimal performance. Indeed the following
policy, first introduced in [4] is known to be optimal.

Locate the vehicle at the median of E . When a
demand arrives (α or β), service them first-come-
first-served, returning to the median location after
each service is completed.

The performance of this policy is independent of c, since in
light load, the server has enough “free time” to optimally
service both queues.

C. Conclusions

In this paper we have introduced the multi-class Dynamic
Traveling Repairperson problem. We derived a lower bound

on the achievable performance and proposed the Randomized
Priority Policy which performs within a constant factor of the
optimal in heavy load. This paper provides an important first
step into into the broad class of problems in the dynamic
servicing of heterogeneous demands. For future work we
would like to extend our results to multiple service vehicles,
nonuniform spatial densities, and m classes of demands
where m > 2.
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