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Abstract— A new dissipative method to design observers
for a large class of nonlinear systems has been introduced
recently by the author. It generalizes and includes several well-
known observer design methods in the literature. In this paper
a procedure to design Proportional-Integral Observers based
on the dissipativity theory is presented. Properties of these
observers are discussed.

I. INTRODUCTION

Recently [1], [2] the author has proposed a Dissipative

Design of Observers for nonlinear systems that can be

transformed into the form

Σ :

{

ẋ = Ax+Gψ (σ) + ϕ (t, y, u) +Dw ,
y = Cx , σ = Hx, x (0) = x0

(1)

where x ∈ R
n is the state, u ∈ R

m is a known input, w ∈ R
q

is an unknown perturbation, y ∈ R
p is the measured output,

and σ ∈ R
r is a (not necessarily measured) linear function

of the state. ϕ (t, y, u) is an arbitrary nonlinear function of

the time, the input and the output. ψ (σ) is a q-dimensional

vector that depends on the variable σ. ψ and ϕ are assumed

to be locally Lipschitz in σ or y, continuous in u, and

piecewise continuous in t, so that existence and uniqueness

of solutions is guaranteed. Although not strictly necessary, it

will be assumed for simplicity that the trajectories of interest

of Σ are defined for all positive times.

For the most important cases the design can be reduced to

Linear Matrix Inequalities (LMI), that are numerically very

well behaved, and have became standard in the field. In the

perturbation free case, i.e. w = 0, this method generalizes

and encompasses several other design methods: the High-

Gain methodology [3], [4], the Thau observers [5], and the

observers for Lipschitz nonlinear systems [6], well-known in

the literature.

Proportional-Integral (PI) Observers are very well known

in the literature, in particular for linear systems, because

of their robustness properties against constant perturbations

[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. This is

basically a consequence of the internal model principle, since

the integral action represents an internal model of unknown

constant perturbations, a fact that is widely used in robust

regulation. For LTI systems [7], [15], [16] PI-Observers

are used for robust control under parameter perturbations,

whereas LTR recovery is the objective in [8]. The possibility

of robustly estimation of both states and perturbation with

PI-Observers is emphasized in [10]. An adaptive PI-Observer
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is introduced in [13]. In [9] it is shown that a PIO can be

used to attenuate the sensor noise. Simultaneous disturbance

attenuation and fault detection is the main objective in

[14], where fading observers are used instead of PIOs. PI-

Observers for linear descriptor systems [11], [12] or for

nonlinear systems [9], [17], [18], [19], [20], with Lipschitz

nonlinearities and linear observer gains, have been recently

proposed.

The objective of this paper is to show how to design a PI-

Observer when a Proportional (P) Observer is known, using

dissipative properties. It is also shown that the PI-Observer

can estimate perfectly the state and the unknown constant

perturbation, when this satisfies a matching condition. In

contrast to most results [9], [17], [18], [19], [20] our design

does not require Lipschitzness of the nonlinearities of the

plant, it allows to use nonlinear proportional and integral

observer gains, and these can be selected in a simple and

generic manner, assuring the convergence of the PI-Observer,

once the P-observer has been designed. Our design uses truly

integral action to reject constant perturbations instead of the

fading observer proposed in [19] to attenuate disturbances.

Moreover, the dissipativity theory is used in a different

manner than in [19], [20].

II. PRELIMINARIES

A. Dissipative systems

From the general dissipativity theory [21], [22], [23], [24]

(see also [25]) the following results are of relevance here.

Consider the LTI continuous time system

ΣL :

{

ẋ = Ax+Bu , x (0) = x0

y = Cx ,
(2)

where x ∈ R
n, u ∈ R

q , and y ∈ R
m are the state, the

input and the output vectors, respectively. Let us consider

quadratic supply rates

ω (y, u) = yTQy + 2yTSu+ uTRu , (3)

with Q, R symmetric.

Definition 1: System ΣL is said to be state strictly dissi-

pative (SSD) with respect to the supply rate ω (y, u), or for

short (Q,S,R)-SSD, if there exist a matrix P = PT > 0,

and ǫ > 0 such that
[

PA+ATP + ǫP , PB
BTP 0

]

−

[

CTQC CTS
STC R

]

≤ 0 .

(4)

For quadratic systems, i.e. m = q, passivity corresponds

to the supply rate ω (y, u) = yTu. This definition assures

the existence of a quadratic positive definite storage function
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V (x) = xTPx such that along any trajectory of the system

V̇ (x (t) , u (t)) ≤ −ǫV (x (t)) + ω (y (t) , u (t)).
A time-varying memoryless nonlinearity ψ : [0,∞) ×

R
q → R

m, y = ψ (t, u), piecewise continuous in t and

locally Lipschitz in u, such that ψ (t, 0) = 0, is said to be

dissipative with respect to the supply rate ω (y, u) (3), or for

short (Q,S,R)-D, if it satisfies ω (ψ (t, u) , u) ≥ 0 for every

t ≥ 0, and u ∈ R
q .

Remark 2: Note that the classical sector conditions [25]

for square nonlinearities, i.e. m = q, can be repre-

sented in this form. If ψ is in the sector [K1,K2], i.e.

(y −K1u)
T

(K2u− y) ≥ 0, then it is (Q,S,R)-D, with

(Q,S,R) =
(

−I, 1
2 (K1 +K2) ,−

1
2

(

KT
1 K2 +KT

2 K1

))

. If

ψ is in the sector [K1,∞], i.e. (y −K1u)
T
u ≥ 0, then it

is
(

0, 1
2I,−

1
2

(

K1 +KT
1

))

-D.

A generalization of the circle criterion of absolute stability

for non square systems can be easily obtained, and it will be

used in the sequel.

Lemma 3: Consider the feedback interconnection

ẋ = Ax+Bu , x (0) = x0

y = Cx , u = −ψ (t, y) .
(5)

If the linear system (C,A,B) is
(

−RN , S
T
N ,−QN

)

-SSD,

then the equilibrium point x = 0 of (5) is globally exponen-

tially stable for every (QN , SN , RN )-D nonlinearity.

B. A strong Lyapunov function

To analyze the convergence properties of PI-Observers

it will be required to study conditions for the asymp-

totic stability of the interconnection of a nonlinear globally

asymptotically stable system in the forward loop with an

integrator in the feedback. This general class of systems is

very important in adaptive control and identification [26],

[27] and it is usually studied, from a passive perspective,

as the negative feedback interconnection of two passive

subsystems. In this case the sum of the storage functions

constitutes a weak Lyapunov function, that is, one whose

time derivative is only negative semidefinite, even in the

cases when asymptotic stability can be assured. We will

be interested here in a special class with a time-invariant

interconnection. The novelty of our result here is that we will

provide explicit conditions for the global exponential stability

of the whole system and we will give a strong Lyapunov

function that ensures this.

Consider the following system

Ξ :

{

ẋ = f (x, t) +Bk (z) , x ∈ R
n

ż = Cx , z ∈ R
p (6)

where f (x, t) is locally Lipschitz in x and measurable in

t, k : R
p → R

p is locally Lipschitz continuous and it is

the gradient of a scalar, positive definite, decrescent, radially

unbounded, continuously differentiable function W (z), i.e.

kT (z) = ∂W (z)
∂z

, k (0) = 0, and B, C are constant matrices

of appropriate dimensions. Assume that f (0, t) = 0, and

that the system ẋ = f (x, t) has zero as a globally uniformly

asymptotically stable equilibrium point, and that there is

a quadratic Lyapunov function V (x) = xTPx, with P
symmetric and positive definite, such that

V̇ (x) =
∂V (x)

∂x
f (x, t) ≤ −ǫV (x) ,

with ǫ > 0. From a passivity approach it follows that, if

B = −P−1CT then the function V ∗ (x, z) = V (x)+W (z),
that is the sum of the individual storage functions, satisfies

V̇ ∗ (x, z) ≤ −ǫV (x)−xTCT k (z)+
∂W (z)

∂z
Cx = −ǫV (x) .

From this property it follows the uniform stability of the

equilibrium point, the boundedness of the trajectories and the

asymptotic convergence to zero of x. To assure the uniform

asymptotic stability of the origin further conditions, as those

in the Theorem of Matrosov [27] have to be used. V ∗ is

therefore a weak Lyapunov function for the system. Our aim

is to propose a strong Lyapunov function, that assures the

GUAS of the origin, under some additional assumptions.

Proposition 4: Consider the system (6) satisfying the

given conditions. Suppose further that: (i) f (x, t) is globally

bounded by ‖f (x, t)‖ ≤ (λ+ lµ (‖x‖)) ‖x‖, where λ > 0,

l ≥ 0 and µ (·) a monoton increasing function, (ii) that the

Jacobian matrix of k (z) is continuous and uniformly upper

and lower bounded, and (iii) that C has full row rank. Under

these conditions

U (x, z) = δ (V ∗ (x, z)) + xTCTk (z) ,

with δ (·) some suitable K∞ function, is a strong Lyapunov

function for the system. Moreover, under these assumptions

the equilibrium point is globally uniformly asymptotically

and locally exponentially stable.

Proof: Note that from the mean value theorem (see

[28]) it follows that 2W (z) = zTH (tz) z, k (z) =

H (τz) z, for some t, τ ∈ (0, 1), where H (z) = ∂2W (z)
∂z2

is the Hessian matrix of W (z). By assumption, c1I ≤
H (z) ≤ c2I for all z ∈ R

p and some positive constants

c1, c2. We show first that for a suitable δ function U is

positive definite and decrescent, i.e. there exist K∞ functions

α1, α2 such that α1 (‖(x, z)‖) ≤ U (x, z) ≤ α2 (‖(x, z)‖).
For this consider a continuously differentiable K∞ function

δ (r) = δ̄
∫ r

0
(λ+ lµ (βσ))2 dσ, with δ̄, β > 0. Note that

U (x, z) = δ
(

xTPx+W (z)
)

+ xTCTk (z) ≥

≥ δ̄xTPx+ xTCTk (z) + δ̄W (z) ≥

≥ δ̄λmin (P ) ‖x‖
2
+ c1 ‖C‖ ‖x‖ ‖z‖ + δ̄c1 ‖z‖

2

it follows easily that U is positive definite for some value

of δ̄ sufficiently large, with α1 (r) a quadratic function. In

a similar manner it can be shown that U is decrescent, but

in general α2 (r) is not a quadratic function. Next we show

that the derivative of U is negative definite. Recall that by

hypothesis ‖f (x, t)‖ ≤ (λ+ lµ (‖x‖)) ‖x‖, for all t ≥ 0
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and x ∈ R
n.

U̇ (x, z) ≤ −δ′ (V ∗ (x, z)) ǫV (x) + kT (z)Cf (x, t) +

− kT (z)CP−1CT k (z) + xTCT ∂k (z)

∂z
Cx

≤ −δ̄ǫλmin (P ) (λ+ lµ (βV ∗ (x, z)))2 ‖x‖2

+ c2 (λ+ lµ (‖x‖)) ‖C‖ ‖x‖ ‖z‖+

− c21
∥

∥CP−1CT
∥

∥ ‖z‖
2

+ c2 ‖C‖
2
‖x‖

2

≤ −α3 (‖(x, z)‖) .

It follows easily that U̇ is negative definite for some values

of β and δ̄ sufficiently large. Moreover, since (locally) α1

and α3 are quadratic functions, global uniform asymptotic

and local exponential stability follows [29].

Remark 5: The condition on matrix C to be of full row

rank implies the requirement that p ≤ n, i.e. the number

of integrators is at most equal to the state dimension of the

nonlinear subsystem. Although, this is not necessary for the

stability of the interconnection, it is in fact necessary to have

asymptotic stability. This can be easily seen in the linear

time invariant case, when f (x, t) = Ax and k (z) = Kz.

If p > n the system matrix of system (6) will be singular,

so that it cannot be Hurwitz matrix, whatever the values of

A, B, C or K are. In the nonlinear time-invariant case, i.e.

f (x, t) = f (x), the necessity of p ≤ n for exponential

stability follows simply from linearization.

Remark 6: A twice continuously differentiable function

W (z) is uniformly convex in R
p [28], that is, there is a

constant c > 0 such that, for all z, y ∈ R
p and 0 <

α < 1 it is satisfied that αW (z) + (1 − α)W (y) −
W (αz + (1 − α) y) ≥ cα (1 − α) ‖z − y‖2

if and only if

its second order derivative (the Hessian matrix) is uniformly

positive definite , i.e. 0 < c1I ≤ H (z) for all z ∈ R
p.

III. DISSIPATIVE OBSERVER DESIGN

The Dissipative Design of Observers is a method recently

proposed in [1], [2]. Its basic idea is to decompose the

observer error dynamics into dissipative subsystems, and,

using the dissipative theory, design the output injection in

such a way, that the error dynamics converges. For the

particular class of systems described by the form (1) the

results are particularly suitable for calculations, since in this

case the system is naturally decomposed as a LTI system

with a memoryless nonlinearity in the feedback loop, for

which checking dissipativity is particularly simple. For the

nominal system Σ, i.e. with w = 0, a full order observer of

the form

Ω :











·

x̂ = Ax̂ + L (ŷ − y) +Gψ (σ̂ +N (ŷ − y))+
+ϕ (t, y, u) , x̂ (0) = x̂0

ŷ = Cx̂ , σ̂ = Hx̂
(7)

is proposed, where matrices L ∈ R
n×p, and N ∈ R

r×p

have to be designed. Defining the state estimation error by

e , x̂−x, the output estimation error by ỹ , ŷ− y, and the

functional estimation error by σ̃ , σ̂ − σ, the dynamics of

e can be written as

Ξ :

{

ė = ALe+Gν , e (0) = e0
z = HNe , ν = −φ (z, σ) ,

(8)

where AL , A + LC, HN , H + NC, z , HNe, and

a new nonlinearity φ (z, σ) , ψ (σ) − ψ (σ + z). Note that

φ (0, σ) = 0 for all σ. In general, the error dynamics (8) is

not autonomous, since it is driven by the system (1) through

the linear function of the state σ = Hx. φ is therefore a

time varying nonlinearity, whose time variation depends on

the state trajectory of the plant.

The observer design consists in finding matrices L and

N , if they exist, so that Ξ satisfies the conditions of Lemma

3. For this it is necessary to assume that the nonlinearity φ
satisfy one or several supply rates ω:

Assumption 7: φ is (Qi, Si, Ri)-D for some finite set

of non positive semidefinite quadratic forms ωi (φ, z) =
φTQiφ+ 2φTSiz + zTRiz ≥ 0, ∀σ, i = 1, · · · ,M .

If φ satisfies Assumption 7, then it is
∑M

i=1 θi (Qi, Si, Ri)-
D for every θi ≥ 0, i.e. φ is dissipative with respect to

the supply rate ω (φ, z) =
∑M

i=1 θiωi (φ, z). In this case the

design is as follows:

Theorem 8: [1], [2], [30] Suppose that assumption 7 is

satisfied. If there are matrices L and N , and a vector

θ = (θ1, · · · , θM ), θi ≥ 0, such that the linear subsys-

tem of Ξ is
(

−Rθ, S
T
θ ,−Qθ

)

-SSD, with (Qθ, Sθ, Rθ) =
∑M

i=1 θi (Qi, Si, Ri), that is if there exist a matrix P =
PT > 0, matrices K , W , and ǫ > 0 such that
[

PAL +AT
LP + ǫP +HT

NRθHN , PG−HT
NS

T
θ

GTP − SθHN Qθ

]

≤ 0

(9)

then Ω is a global exponential observer for Σ, V (e) = eTPe
is a Lyapunov function for Ξ and V̇ ≤ −ǫV (e).

Remark 9: All the results are valid if ψ depends on the

time, and/or a measurable signal υ, as for example the input

or the output of the plant. This is also true if system matrices

are time-varying (or parameter-varying), but P and ǫ are

constant.

Remark 10: The observer design relies on finding (if they

exist) matrices L and N , a vector θ = (θ1, · · · , θM ),
θi ≥ 0, a matrix P = PT > 0, and ǫ > 0 such that

the inequality (9) is satisfied. In general this is a nonlinear

matrix inequality feasibility problem. However, when N is

fixed it becomes Linear Matrix Inequality (LMI) feasibility

problem, for which a solution can be effectively found by

several algorithms in the literature [31], [32].

Remark 11: The proposed method generalizes, unifies and

improves several methods previously proposed in the litera-

ture. Some of them are [1]: (i) The Circle criterion design

[33], [34]. (ii) Lipschitz observer design [5], [6]. (iii) High-

Gain observer design [3], [4].

IV. A DISSIPATIVE PROPORTIONAL-INTEGRAL

OBSERVER DESIGN

The observer designed in Theorem 8 is proportional, since

only a static nonlinear function of the estimation error is

injected. It is well known that the injection of an integral
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term of the estimation error greatly improves the robustness

properties of the observer. In what follows, a (nonlinear)

proportional-integral term will be included in the dissipative

observer, and the properties of such observer will be studied

using the dissipativity theory.

A Proportional Integral Observer (PIO) for system (1) is

a dynamical system ΩPI that has as inputs the input u and

the output y of Σ, and its output x̂ is an estimation of the

state x of Σ. A full order PI observer for Σ of the form

ΩPI :



















·

x̂ = Ax̂+ Lỹ +Gψ (σ̂ +Nỹ) + ϕ (t, y, u)+
+E [κI (ξ) + κP (Kỹ)] , x̂ (0) = x̂0

ξ̇ = Kỹ , ξ (0) = ξ0
ŷ = Cx̂ , σ̂ = Hx̂ , ỹ = ŷ − y ,

(10)

is proposed, where matrices L ∈ R
n×p, N ∈ R

r×p, K ∈
R

q×p, and E ∈ R
n×q , and the functions κI : R

q → R
q, and

κP : R
q → R

q have to be designed.

The dynamics of the error system ΞPI can be written as

the feedback interconnection of two systems:

ΞPI :















Ξ1 :

{

ė = ALe−Gφ (HNe, σ) + Eυ −Dw ,
γ̃ = KCe , e (0) = e0

Ξ2 :

{

ξ̇ = γ̃ , ξ (0) = ξ0
υ = κI (ξ) + κP (γ̃) ,

(11)

The objective of the design is to render the (closed) set

{(e, ξ) ∈ R
n×q | e = 0} asymptotically stable for system

ΞPI in the nominal case, i.e. w = 0. Since V1 (e) = eTPe
is a Lyapunov function for the system we have for Ξ1 that

V̇1 ≤ −ǫV1 (e)− eTPE (−υ). If K and E are selected such

that eTPE = −γ̃T = −eTCTKT , then it follows that Ξ1

is strictly state passive from (−υ) → γ̃.

It will be shown in the sequel that if κI (·) and κP (·) are

selected appropriately, then the subsystem Ξ2 is also passive

from γ̃ → v. Consider a C1 function V2 (ξ) ≥ 0 for all

ξ ∈ R
q, and V2 (0) = 0. Select

κI (ξ) =

(

∂V2 (ξ)

∂ξ

)T

.

Then it is clear that V2 (ξ) =
∫ ξ

0 κI (z) · dz. Moreover, if

κP (·) is such that κ
T
P (γ̃) γ̃ ≥ 0 for all γ̃, then along the

trajectories of Ξ2 it is satisfied

V̇2 (ξ) = κ
T
I (ξ) ξ̇ = κ

T
I (ξ) γ̃ = −κ

T
P (γ̃) γ̃ + υT γ̃ ≤ υT γ̃ .

It follows then that the time derivative of the storage function

V (e, ξ) = V1 (e) + V2 (ξ) along the solutions of ΞPI is

V̇ (e, ξ) ≤ −ǫV1 (e) − γ̃Tυ − κ
T
P (γ̃) γ̃ + υT γ̃

≤ −ǫV1 (e) − κ
T
P (γ̃) γ̃ .

This ensures that e (t) → 0 as t → ∞. Moreover, if V2 (ξ)
is radially unbounded, then the state (e, ξ) will be bounded.

If convergence of the equilibrium point (e, ξ) = 0 is

desired, further conditions are required. A set of such con-

ditions are given in the next theorem, together with a strong

Lyapunov function to ensure this.

Theorem 12: Suppose that the conditions of Theorem 8

are satisfied, and that ψ (σ) and κP (γ̃) are globally bounded

by some K∞ functions. If given any K ∈ R
q×p such that

KC has full row rank, and a C2 uniformly convex in R
q,

positive definite, decrescent function V2 (ξ), with V2 (0) =

0, one selects E = −P−1CTKT , κI (ξ) =
(

∂V2(ξ)
∂ξ

)T

and κ
T
P (γ̃) γ̃ ≥ 0, with κI (ξ) globally Lipschitz, then

ΩPI (10) is a globally asymptotic and locally exponential

stable PI-observer for Σ. Moreover, the function U (e, ξ) =
δ
(

eTPe+ V2 (ξ)
)

+ eTCTKT
κI (ξ) is a strong Lyapunov

function for δ (·) some suitable K∞ function.

Proof: Let us rewrite the system as

ΞPI :

{

ė = f (e, σ) − P−1CTKT
κI (ξ) , e (0) = e0

ξ̇ = KCe , ξ (0) = ξ0

where

f (e, σ) , ALe−Gφ (HNe, σ) − P−1CTKT
κP (KCe) .

(12)

From the Hypothesis it follows that f (e, σ) is globally

bounded by some K∞ function uniformly in σ. Consider

V (e) = eTPe. Its time derivative along the solutions of

system ė = f (e, σ) is

V̇ (e) = eTPf (e, σ) = eTP (ALe−Gφ (HNe, σ))+
−eTCTKT

κP (KCe) ≤ −ǫV (e) .

The result then follows directly from Proposition 4.

Remark 13: A particular, but important, case is the one

when κI (ξ) = KIξ, KI = KT
I > 0 and κP (γ̃) = KP γ̃,

KP > 0, are linear functions. In this case V2 (ξ) = 1
2ξ

TKIξ.

However, it is also possible to use nonlinear and discontin-

uous functions κP (γ̃).

Remark 14: Note the enormous flexibility in selecting the

PI-gains allowed by the Theorem: if κI (ξ) and κP (γ̃) are

appropriate gains, then so do γ1κI (ξ) and γ2κP (γ̃) for

arbitrary positive gains γ1 and γ2.

V. ROBUSTNESS PROPERTIES OF THE PI-OBSERVER

Now consider the perturbed case, when in (1) w 6= 0.

Suppose that the matching condition D = −P−1CTKT =
E is satisfied, and define ξ̄ = κ

−1
I (w), that exists for every

w, since κI is globally invertible, and eξ = ξ− ξ̄. The error

dynamics (11) can be written as

ΞPI :

{

ė = f (e, σ) +D
(

κI

(

ξ̄ + eξ

)

− κI

(

ξ̄
))

,
ėξ = KCe+ ζ , e (0) = e0, eξ (0) = eξ0

where f (e, σ) is given by (12), and ζ = dξ̄/dt =
(

∂κI(ξ̄)
∂ξ

)

−1

ẇ is related to the time derivative of w. The

robust convergence of the PI-Observer is assured by the next

Theorem.

Theorem 15: Suppose that the conditions of Theorem 12

are satisfied, that ψ (σ) and κP (γ̃) are globally Lipschitz,

and that the matching condition D = −P−1CTKT is

satisfied. Under these conditions, if one selects E = D,

the PI-Observer ΩPI (10) is a globally exponentially stable

PI-observer for Σ, so that x̂ → x and ξ → ξ̄, when the
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perturbation w is constant (or converges to a constant value).

When w is a time-varying signal, the observation error (e, eξ)
converges to a neighborhood of the origin, with a radius

depending on the time derivative of w, that is, the observer

is practically stable.

Proof: From the globally Lipschitzness of f (e, σ)
follows the global exponential stability of the PI-Observer

error, from which, by standard arguments [25], it follows its

ISS with respect to the perturbation ζ, from which the results

of the Theorem are obtained.

Remark 16: When the (unknown) perturbation is constant,

its value can be determined from the state of the integral

term, since w = κI

(

ξ̄
)

. If w changes slowly, this estimation

is correct up to a small error. When the matching condition

D = −P−1CTKT is satisfied, the effect of the perturbation

can be compensated exactly by the integral term of the PI-

observer.

Remark 17: An alternative way of designing a PI-

Observer by the dissipative method consists in two steps.

First, the plant model will be extended by a model of the

perturbation. Since in this case the perturbation is constant

a model is given by an integrator. In the second step a

dissipative observer can be designed for the extended plant

model. This alternative method constitutes an extension of

most known results [9], [17], [18], [19], [20]. It allows also

to alleviate the main drawback of the proposed method in

this paper: the satisfaction of the matching condition for

eliminating the perturbation.

Using the convergence and robustness properties of the

PI-Observer a separation result in the spirit of our previous

result [30] can be proved for a closed loop system with

constant perturbations.

VI. EXAMPLE

To illustrate the design procedure and the performance

of the proposed method, consider a system composed of

two carts, where x1 (x3) and x2 (x4) are the position

and velocity of Cart 1 (Cart 2), respectively. Carts 1 and

2 are connected by a linear spring with constant k1 and

a linear damper with damping coefficient d1. Cart 1 is

fixed to the wall through a nonlinear spring, with spring

function δ (x1) = k2 tanh (x1) + k3x1, with k2, k3 positive

constants, and a nonlinear damper, with friction represented

by ξ (x2) = Fmx
2
2 sign (x2) + µvx2, where Fm ≥ 0 and

µv ≥ 0 are viscous friction constants. On Cart 2 acts an

external force u. A state space representation of the system

is given by (1), where ψ(σ) = δ(σ1) + ξ(σ2) and

A =









0 1 0 0
−k1 −d1 k1 d1

0 0 0 1
k1 d1 −k1 −d1









B =









0
0
0
1









G =









0
−1
0
0









C =
[

0 0 1 0
]

H =

[

1 0 0 0
0 1 0 0

]

.

The nonlinearity ψ : R
2 → R, ψ (σ) = δ (σ1) + ξ (σ2)

represents the total force acting on Cart 1, consisting of the

sum of the forces due to the nonlinear spring, depending

on the elongation σ1, and the nonlinear friction, that is a

function of the velocity σ2. Note that none of the methods

in Remark 11 can be used to design a P-Observer for this

system, since the nonlinearity has two inputs and one output

and is not globally Lipschitz. Therefore none of the known

methods to design PI-Observers can be used in this case.

φ (z, σ) = φ1 (z1, σ1)+φ2 (z2, σ2) is written as the sum of

the individual incremental functions φ1 (z1, σ1) = δ (σ1) −
δ (σ1 + z1) and φ2 (z2, σ2) = ξ (σ2) − ξ (σ2 + z2) . It is

possible to show that φ is (Q,S,R)−D with

Q = 0 , S =
[

0 − 1
2

]

, R =

[

(k2 + k3)
2

0
0

(

1
4 − µv

)

]

.

For numerical calculations and simulations k1 = 1, d1 = 1,

k2 = 5, k3 = 1, µv = 1, Fm = 2, have been taken. The

following values of P , ǫ, N and L satisfy the MI (9) and

are used to design a P-Observer:

P =









19.375 0 −44.75 −18.875
0 0.5 −7.5 0

−44.750 −7.5 300 25
−18.875 0 25 25.875









ǫ = 1.75

N =

[

5
−15

]

LT = [−324.5,−797.5,−53.2,−194.6] .

A nonlinear PI-Observer is designed proposing κI (ξ) =
3000

(

ξ + ξ3 sat (0.001ξ)
)

and κP (γ̃) = 50
(

10γ̃ + γ̃3
)

,

that satisfy the conditions of Theorem 12. Simulation results

are presented in Figures 1 and 2. The input function u (t) is

selected as a step function that changes from −1.9 (Nt) to

8.1 (Nt) at t = 5.8 (s). The initial conditions are x0 = 0 for

the plant, xP0 =
[

2 4 1 −5
]

for the P-Observer and

xPI0 = −xP0 for the PI-Observer. They have been selected

different to improve the visibility of the graphics. In Figure

1 the observation errors for both observers are presented

for the nominal system without perturbation, whereas in

Figure 2 the observation errors are seen when a (matched)

constant perturbation is added to the plant. It is clear that

the response of both observers for the nominal case are

very similar, so that no loss of convergence velocity is

appreciated by the introduction of the Integral term in the

observer. When the constant perturbation of magnitude 500
is added, the asymptotic insensibility of the PI-Observer is

clearly appreciated in Figure 2, that shows a large steady

state deviation of the P-Observer.

VII. CONCLUSIONS

Given a P-Observer, designed by an arbitrary method, in

this paper a procedure is proposed to design a PI-Observer,

based on dissipativity properties. In this form it is easy to

design nonlinear proportional and integral gains ensuring

the stability of the PI-Observer. Its main drawback is the

requirement of a matching condition for the perturbation.

These PI-Observers have the usual properties of systems with

integral terms, that are robust against constant perturbations,

and they can be used, in principle, for robust regulation

purposes. For this kind of observers the separation property

derived in [30] for the basic dissipative observers can be
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Fig. 1. Estimation error of the P- and PI-Observers without perturbation.
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Fig. 2. Estimation error of the P- and PI-Observers with perturbation.

extended to systems with constant perturbations. A further

extension would consist in selecting the observer gains to

attenuate the effect of the perturbation on the estimation

error.
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