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Abstract— A semigroup approach for the well-posedness of
perturbed nonhomogeneous abstract boundary value problems
is developed in this paper. This allows us to introduce a
useful variation of constant formula for the solutions. Drawing
from this formula, necessary and sufficient conditions for the
approximate controllability of such systems are obtained, using
the feedback theory of well-posed and regular linear systems
developed by Salamon, Staffans and Weiss.
Index Terms— Boundary value problem, perturbation theory,

approximate controllability, regular systems.

I. INTRODUCTION

Perturbation theory has been proved very useful to solve

many Cauchy problems that can be regarded as perturbations

of well-established problems [1, Chap.III]. The well-known

classes of perturbations for strongly continuous semigroups

are the Miyadera–Voigt and the Desch–Schappacher pertur-

bations [1]. In the last few years, a general perturbation

theory for infinite dimensional linear systems had been

introduced, in Hilbert spaces [2] and in Banach spaces

[3, Chap.7]. All these perturbations are distributional. In

many cases, however, it happens that the perturbation acts

at the boundary of systems, hence the concept of perturbed

boundary-value problems, [4], [5]. These problems result

from the feedback theory of boundary control problems [3],

[5] , where the control is 0.

The following nonhomogeneous perturbed boundary value

problem is considered in this paper:

ẇ(t) = Amw(t) + f(t), t ≥ 0, w(0) = ̟ ∈ X ,

Nw(t) = Mw(t) + g(t)
(1)

where Am : Xm → X and N , M : Xm → U are linear

operators with Banach spaces X , U and Xm being a dense

domain of X endowed with a norm | · |, which is finer

than the norm ‖ · ‖ of X such that (Xm, | · |) is complete,
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and f : [0,∞) → X , g : [0,∞) → U are locally p-

integrable functions. Many partial differential equations can

be reformulated as (1). These include examples of boundary

and point controls, neutral systems, which are motivated by

important applications in aeroelastic systems, thermoelastic

plates, etc.

According to [4], [5], assume

(H1) A = Am with domain D(A) := KerN generates

a C0-semigroup (T (t))t≥0 on X ,

(H2) ImN = U .

These assumptions show that the boundary value problem

(1) with M = 0 and f = 0 is well-posed in the sense that

it can be reformulated as a well-posed open loop system on

the state space X and control space U ; see e.g. [6], [7], [8],

[9], [10], [11] and the references therein. One can think of

M as a perturbation of the boundary operator N . The well-

posedness of (1) with f = 0 and g = 0 has been studied

in [5] using boundary control systems theory and in [4] for

the case of bounded perturbations M using Hille–Yosida

theorem [1]. In this paper, weaker assumptions on M will

be introduced so that the system (1) is equivalent to a well-

posed open loop system and a variation of constants formula

for the solution of system (1) will be developed, using the

feedback theory of regular linear systems [2]. This formula

will then be used to develop conditions on approximate

controllability of systems that can be reformulated as system

(1), e.g. population dynamic systems and neutral differential

equations in Banach spaces.

Controllability, which reflects the reachability of a point

in the state space, is an important concept in systems theory.

This has been a very active area for many years; see e.g.

[12], [13], [14], [15], [16], [17], [18], [19] for this property

about time-delay systems, which belong to a special class of

infinite-dimensional systems and widely exist in engineering

[20]. In the classical finite-dimensional case, it is possible

to define controllability in different ways but they are all

equivalent and lead to the same concept. In the infinite-

dimensional case, this is no longer true. In this paper, the

concept of approximate controllability is studied, in the sense
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that, for a given arbitrary ε > 0, it is possible to steer the state

from the origin to the neighborhood, with a radius ε, of all

points in the state space. This is weaker than the concept of

exact controllability, where ε = 0. These concepts was first

studied by Fattorini [8] for distributed-parameter systems;

see [7] for details and some applications to systems with

state delays. The contribution of this paper is to develop

the approximate controllability of perturbed boundary control

problems, based on the perturbation theory of boundary value

problems.

The organization of the paper is as follows. The notion of

regular systems and their closed-loop systems is recalled in

Section II. The well-posedness of the homogeneous boundary

value problem associated with system (1) is developed in

Section III; a variation of constants formula for the solution

of system (1) is established in Section IV and then the

approximate controllability of perturbed boundary control

problems is investigated in Section V. Conclusions are made

in Section VI.

II. PRELIMINARIES: AN OVERVIEW OF SALAMON–WEISS

SYSTEMS

In this section, the framework of infinite dimensional well-

posed and regular linear systems in the Salamon–Weiss sense

is recalled. See [5], [3], [21], [22], [2], [23] for more details.

Throughout this section X, U, Y are Banach spaces, p > 1
is a real number and (A,D(A)) is the generator of a C0-

semigroup (T (t))t≥0 on X . The type of T (t) is defined as

ω0(A) := inf{t−1 log ‖T (t)‖ : t > 0}. The domain D(A),
which is a Banach space, is endowed with the graph norm

‖x‖A := ‖x‖ + ‖Ax‖, x ∈ D(A). Denote the resolvent set

of A by ρ(A) and the resolvent operator of A by R(µ, A) :=
(µ−A)−1 for µ ∈ ρ(A). The completion of X with respect

to the norm ‖x‖−1 = ‖R(µ, A)x‖ for x ∈ X and some

µ ∈ ρ(A) is a Banach space denoted by X−1, which is

called the extrapolation space of A. For any Banach spaces

E and F , denote the Banach space of all linear bounded

operators from E to F by L(E, F ) with L(E) := L(E, E).
Let f : R→ X be a function and let I be an interval in R.

Then the restriction f |I of f to the interval I is defined as

f |I =

{
f

0
on the interval I,

otherwise.

Definition 1: B ∈ L(U, X−1) is called an admissible

control operator for A if for all t > 0 and u ∈ Lp([−r, 0], U)
the control map

Φ(t)u :=

∫ t

0

T (t − s)Bu(s) ds (2)

takes values in X .

If B is an admissible control operator, then the closed

graph theorem shows that Φ(t) ∈ L(Lp([0, t], U), X). More-

over,

Φ(t + s)u = Φ(t)(u(· + s)|[0,t]) + T (t)Φ(s)(u|[0,s]) (3)

for t, s ≥ 0 and u ∈ Lp([0, s + t], U). The pair (T, Φ) is

called a control system represented by the operator B; see

[22] for more details.

Definition 2: Let (T, Φ) be the control system represented

by the operator B. Define the reachability space

R := ∪t≥0RanΦ(t).

Then, (A, B) is said to be approximately controllable if R
is dense in X . Here, Ran is the range of an operator.

This means that, for a given arbitrary ε > 0, it is possible

to steer the state from the origin to the neighborhood, with

a radius ε, of all points in the state space.

Definition 3: C ∈ L(D(A), Y ) is called an admissible

observation operator for A if
∫ τ

0

‖CT (t)x‖p dt ≤ γp‖x‖p (4)

for all x ∈ D(A) and constants τ ≥ 0 and γ := γ(τ) > 0.

Let C be an admissible observation operator for A. Ac-

cording to (4), the map Ψ∞x := CT (·)x, defined on D(A),
extends to a bounded operator Ψ∞ : X → L

p
loc(R+, Y ). For

any x ∈ X we set Ψ(t)x := Ψ∞x on [0, t]. This shows that

{Ψ(t) : t ≥ 0} ⊂ L(X, L
p
loc(R+, X)) and

Ψ(t + s)x = Ψ(s)x on [0, s],

Ψ(t + s)x = [Ψ(t)T (s)x](· − s) on [s, s + t]
(5)

for t, s ≥ 0 and x ∈ X . We call (T (t), Ψ(t))t≥0 an

observation system [21].

Definition 4: The Yosida extension of an operator C ∈
L(D(A), Y ) with respect to A is the operator defined by

C̃x := lim
σ→+∞

CσR(σ, A)x,

D(C̃) :=
{
x ∈ X : lim

σ→+∞
CσR(σ, A)x exists in Y

}
.

(6)

If C is an admissible observation operator for A then

T (t)x ∈ D(C̃) and (Ψ∞x)(t) = C̃T (t)x (7)

for all x ∈ X and almost every (a.e.) t ≥ 0 [21, Thm. 4.5].

Definition 5: Let B and C be admissible control and ob-

servation operators for A, respectively, and (T (t), Φ(t))t≥0

and (T (t), Ψ(t))t≥0 be the corresponding control and obser-

vation systems. Then (A, B, C) is said to generate a well-

posed system on X, U, Y if there exist operators F(t) ∈
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L(Lp([0, t], U), Lp([0, t], Y )) such that

[F(t + s)u](τ) = [F(t)(u(· + s)|[0,t])](τ − s)

+ [Ψ(t)Φ(s)(u|[0,s])](τ − s)
(8)

for τ ∈ [s, s+t], t, s ≥ 0, and u ∈ Lp([0, s+t], U). This well-

posed system is denoted as Σ := (T (t), Φ(t), Ψ(t), F(t)) and

the operators F(t) are called input–output operators.

An important subclass of the well-posed systems, called

regular systems, is defined as follows [2].

Definition 6: Assume that (A, B, C) is the generator of a

well-posed system Σ on X, U, Y with input–output operators

(F(t))t≥0. Define

(F∞u)(t) := (F(τ)u)(t), t ∈ [0, τ ].

The system Σ is called regular (with feedthrough D = 0) if

lim
t→0+

1

t

∫ t

0

(F∞u0)(σ) dσ = 0

exists in Y for the constant function u0(t) = u, u ∈ U, t ≥ 0.

Alternatively, (A, B, C) is called a regular triple.

Assume that
{

ẇ(t) = Aw(t) + Bu(t), t ≥ 0,

y(t) = Cw(t), t ≥ 0,
(9)

with B ∈ L(U, X−1) and C ∈ L(D(A), Y ) is a regular

system. Let C̃ be the Yosida extension of C with respect

to A and Φ(t) be the control map as in (2). Then the state

trajectory w(·) and output function y(·) of the system (9)

satisfy [2], [23]:

(1) For any t ≥ 0 and u ∈ Lp([0, t], U),

w(t) = T (t)w(0) + Φ(t)u.

(2) For almost every t ≥ 0,

w(t) ∈ D(C̃) and y(t) = C̃w(t).

(3) For µ ∈ ρ(A),

Im
(
R(µ, A−1)B

)
⊂ D(C̃) (10)

and the transfer function of the system (9) is given by

G(µ) = C̃R(µ, A−1)B. (11)

According to [2], there exists γ > 0 such that

sup
Reµ>γ

‖G(µ)‖ < ∞. (12)

Definition 7: Let Σ be a well-posed linear system on

X, U, Y with input–output operators F(t), t ≥ 0. An operator

Γ ∈ L(Y, U) is called an admissible feedback for Σ if the

operator I − F(t)Γ has uniformly bounded inverse.

Theorem 8: [23] Let (A, B, C) generates a regular linear

system Σ with Γ ∈ L(Y, U) as an admissible feedback, and

C̃ be the Yosida extension of C with respect to A. Then

(AΓ, B, C̃) generates a regular linear system ΣΓ, where

AΓ := A−1 + BΓC̃,

D(AΓ) =
{
x ∈ D(C̃) : (A−1 + BΓC̃)x ∈ X

}
.

The C0-semigroup TΓ := (TΓ(t))t≥0 on X generated by AΓ

satisfies Im(TΓ(t)) ⊂ D(C̃) for a.e. t ≥ 0, and

TΓ(t)x = T (t)x +

∫ t

0

T−1(t − τ)BΓC̃TΓ(τ)xdτ

for any t ≥ 0 and x ∈ X .

III. HOMOGENEOUS BOUNDARY VALUE PROBLEMS

Considering the system (1) with f = g = 0, that is,

ẇ(t) = Amw(t), t ≥ 0, w(0) = ̟,

Nw(t) = Mw(t), t ≥ 0.
(13)

Define the operator

Ax = Amx, D(A) =
{
x ∈ D(Am) : Nx = Mx

}
. (14)

This operator is already used by Salamon [5] and Greiner [4]

to prove the well-posedness of the initial value problem (13).

In the present work, we introduce weaker conditions on M to

prove that the operator A is a generator in X and, moreover,

characterize its spectrum using the feedback theory of regular

linear systems. Before going into details, some known results

concerning boundary control systems are recalled. Consider

ẇ(t) = Amw(t), t ≥ 0, w(0) = ̟,

Nw(t) = u(t), t ≥ 0,
(15)

where u(t) is the boundary input, coupled with the observa-

tion equation

y(t) = Mw(t), t ≥ 0. (16)

The feedback law y(t) = u(t) retrieves the abstract boundary

value problem (13). In order to investigate the admissibility

of this feedback law, the boundary input–output system

(15)–(16) is transformed into a distributed-parameter linear

system.

Assume that the conditions (H1) and (H2) are satisfied.

Greiner [4, Lemma 1.2] and Salamon [5] showed that the

following direct sum holds:

D(Am) = D(A) ⊕ Ker(µ −Am), µ ∈ ρ(A), (17)

and the following inverse, called the Dirichlet operator,

Dµ :=
(
N |Ker(µ−Am)

)−1

: U → Ker(µ −Am) (18)
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exists and is bounded. For µ ∈ ρ(A), there is

(Am −A−1) = (µ −A−1)DµN on D(Am).

Define

B := (µ −A−1)Dµ, µ ∈ ρ(A). (19)

Then B ∈ L(U ,X−1), Im(B) ∩ X = {0} and

(Am −A−1)|D(Am) = BN . (20)

According to (19) and the resolvent equation

R(λ,A) − R(µ,A) = (µ − λ)R(λ,A)R(µ,A),

there is

Dλ − Dµ = (µ − λ)R(λ,A)Dµ for λ, µ ∈ ρ(A). (21)

Using (20), one can see that the system (15)–(16) is equiv-

alent to the following distributed-parameter system

ẇ(t) = A−1w(t) + Bu(t), t ≥ 0, w(0) = ̟,

y(t) = Cw(t), t ≥ 0,
(22)

where C := MJ with J the canonical injection from D(A)
to D(Am). The boundary system (15)–(16) is called well-

posed if and only if (A,B, C) generates a well-posed linear

system on X ,U ,U .

Lemma 1: Assume that (H1)–(H2) are satisfied and

(A,B, C) generates a regular linear system with transfer

function G(µ) and that

lim
σ→+∞

MDσz = 0, z ∈ U . (23)

Then

D(Am) ⊂ D(C̃), M = C̃ on D(Am), (24)

where C̃ is the Yosida extension of C with respect to A. In

this case,

G(µ) = MDµ, µ ∈ ρ(A). (25)

Proof: By the above assumptions and by combining

(19) with (10) we have Im(Dµ) ⊂ D(C̃) for some µ ∈ ρ(A).
Since D(A) ⊂ D(C̃), by (17) we have D(Am) ⊂ D(C̃). Take

z ∈ U and a real number σ > ω0(A) and µ ∈ ρ(A). The

identity (21) shows that

lim
σ→+∞

MDσz = MDµz − lim
σ→+∞

CσR(σ,A)Dµz.

According to the assumption (23), there is

MDµ = C̃Dµ on U . (26)

Since z − DµN z ∈ D(A) for z ∈ D(Am),

M(z − DµN z) = C(z − DµN z) = C̃(z − DµN z).

Now (24) follows by (26) and, finally, (25) follows by (11).

Theorem 9: Assume that (H1)–(H2) are satisfied and

(A,B, C) generates a regular linear system with the identity

operator Γ = I : U → U as an admissible feedback operator.

Moreover, assume that (23) holds. Then the operator A

defined in (14) generates a strongly continuous semigroup

TI := (TI(t))t≥0 on X , satisfying Im
(
TI(τ)

)
⊂ D(C̃) for

almost every τ ≥ 0. Moreover,

TI(t)x = T (t)x +

∫ t

0

T−1(t − τ)BC̃TI(τ)xdτ (27)

for all t ≥ 0 and x ∈ X .

Proof: The above assumptions and Theorem 8 show

that the operator

AI := A−1 + BC̃,

D(AI) :=
{
x ∈ D(C̃) : (A−1 + BC̃)x ∈ X

} (28)

generates a strongly continuous semigroup TI := (TI(t))t≥0

on X satisfying (27). Now we prove that the operator AI

coincides with A. For µ ∈ ρ(A) and x ∈ D(AI),

AIx = A−1(x − DµC̃x) + µDµC̃x ∈ X ,

due to (19). Thus x − DµC̃x ∈ D(A). Moreover, Nx =
NDµC̃x = C̃x = Mx, by (24). This shows that D(AI) ⊂
D(A). By combining (20) and (24), it follows that

Ax = Amx = A−1x + BNx = A−1x + BMx

= A−1x + BC̃x = AIx.

The converse follows as above and hence A = AI .

Proposition 1: Assume the assumptions in Theorem 9

be satisfied. For µ ∈ ρ(A), the following statements are

equivalent:

(a). µ ∈ ρ(A).
(b). (I −MDµ) is invertible.

Moreover, for µ ∈ ρ(A) ∩ ρ(A),

R(µ, A) = (I − DµM)−1R(µ,A). (29)

Proof: Let Σ be the regular linear system generated by

(A,B, C), ΣI be its closed-loop system under the admissible

feedback operator I and µ ∈ ρ(A). According to the proof

of Theorem 9, the operator A coincides with the generator

of ΣI . Then, by [24, Theorem 1.2] µ ∈ ρ(A) if and only if

I − G(µ) is invertible, where G(µ) is the transfer function

of Σ. Lemma 1 shows that G(µ) = MDµ. This proves the

first part of the proposition.
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Now let µ ∈ ρ(A) ∩ ρ(A). By taking Laplace transform

on both sides of (27), there is

R(µ, A) = R(µ,A) + R(µ,A−1)BC̃R(µ, A)

= R(µ,A) + DµMR(µ, A),

due to (19) and (24). Hence,

(I − DµM)R(µ, A) = R(µ,A). (30)

According to [3, p.744], for µ ∈ ρ(A)∩ρ(A), the inverse of

I − DµM exists and

(I − DµM)−1 = I + Dµ(I −MDµ)−1M. (31)

Hence, (29) holds from (30). This completes the proof.

IV. NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS

Following the previous section, this section is devoted to

the well-posedness of the boundary value problem (1).

Lemma 2: Assume the assumptions of Theorem 9 be

satisfied. Set B := ( B I ) and C := ( C 0 )⊤. Then

(A, B, C) generates a regular linear system Σ on X , U, U,

with the identity operator on U := U × X as an admissible

feedback.

Proof: Let Σ := (T , Φ, Ψ, F) be the system generated

by the triple (A,B, C). It is clear that the triple (A, IX , C)
generates a regular linear system Σ0 = (T , Φ0, Ψ, F0) with

Φ0(t)u = (T ∗u)(t) and F
0(t) = C̃Φ0(·) on [0, t] (F0 is well

defined due to [25, Prop.3.3]). Define

T(t) = T (t),Φ(t) = (Φ(t) Φ0(t)),Ψ(t) = ( Ψ(t)
0

)

and

F(t) =

(
F(t) F

0(t)
0 0

)

for t ≥ 0. Then the system Σ := (T,Φ,Ψ,F) is generated

by the triple (A, B, C) and has the identity operator on U×X
as an admissible feedback.

Theorem 10: Assume the assumptions of Theorem 9 be

satisfied. Then system (1) is equivalent to the distributed-

parameter control system

ẇ(t) = Aw(t) + Bg(t) + f(t), t ≥ 0, w(0) = ̟ ∈ X ,

and has a unique strong solution w : R+ → X satisfying

w(t) ∈ D(C̃) for a.e. t ≥ 0 and

w(t) = TI(t)̟ +

∫ t

0

(TI)−1(t − τ)[Bg(τ) + f(τ)] dτ

(32)

for t ≥ 0 and ̟ ∈ X .

Proof: Let Σ and Σ be the regular linear systems

introduced in the proof of Lemma 2. If y(t) and y(t)
denote the output functions of Σ and Σ, respectively, then

y(t) = (y(t), 0)⊤ for a.e. t ≥ 0. Let, by Lemma 2,

ΣI := (TI ,ΦI ,ΨI ,FI) be the closed-loop system of Σ.

Note that A−1 + BC̃ = A−1 + BC̃. Then by the proof of

Theorem 9, the operator A coincides with the generator of

ΣI . Hence TI(t) = TI(t), where TI is the C0-semigroup

on X generated by A; see Theorem 9. Let u be the input of

Σ and introduce the feedback law u = y + uc, where uc

is another suitable input. Then, the state trajectory of ΣI is

given by

w(t) = TI(t)̟ + ΦI(t)uc, t ≥ 0. (33)

Take uc = (g, f)⊤, then u = (u, f)⊤ with u = y + g as the

input of Σ. This means that the closed-loop system ΣI with

input uc = (g, f)⊤ is equivalent to system (1). Substitute

uc = (g, f)⊤ into (33), then the strong solution of system

(1) can be obtained as

w(t) = TI(t)̟ +

∫ t

0

(TI)−1(t − τ)Buc(τ) dτ

= TI(t)̟ +

∫ t

0

(TI)−1(t − τ)[Bg(τ) + f(τ)] dτ.

This completes the proof.

Remark 11: In this paper, only the strong solutions of

system (1) when ̟ ∈ X are discussed. For classical

solutions, new extrapolation spaces associated with X and

more conditions on the smoothness of f will be needed.

This will be discussed in another paper.

V. APPROXIMATE CONTROLLABILITY OF PERTURBED

BOUNDARY CONTROL PROBLEMS

Let U be a Banach space, B ∈ L(U,X ) and K ∈ L(U,U).
Taking

f = Bu and g = Ku,

where u ∈ L
p
loc(R+, U) is a control function, then system

(1) becomes the following boundary control problem

ẇ(t) = Amw(t) + Bu(t), t ≥ 0, w(0) = ̟,

Nw(t) = Mw(t) + Ku(t).
(34)

According to Theorem 10, the above is equivalent to the

distributed-parameter control system

ẇ(t) = Aw(t) + (B + BK)u(t), t ≥ 0, w(0) = ̟,

(35)

with B defined in (19).

Definition 12: Let assumptions of Theorem 9 be satisfied.

The boundary value problem (1) with f = Bu and g = Ku is
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said to be approximately controllable if the open-loop system

(A, B + BK) is (in the sense of Definition 2).

Theorem 13: Let assumptions of Theorem 9 be satisfied.

The boundary value problem (1) with f = Bu and g = Ku

is approximately controllable if and only if, for µ ∈ ρ(A) ∩
ρ(A) and ϕ ∈ X ′, the fact that

〈(I − DµM)−1(DµK + R(µ,A)B)u, ϕ〉 = 0, for ∀u ∈ U,

(36)

implies that ϕ = 0.

Proof: According to Definition 2, the open-loop system

(A, B + BK) is approximately controllable if and only if

Cl

(
⋃

t≥0

{
∫

t

0
(TI)−1(t−τ)(B+BK)u(τ)dτ :u∈L

p

loc
(R+,U)

})
= X ,

where Cl(·) means the closure of a set. The above is equiv-

alent to the fact that, for t ≥ 0 and any u ∈ L
p
loc(R+, U),

〈∫ t

0

(TI)−1(t − τ)(B + BK)u(τ) dτ, ϕ
〉

= 0 (37)

implies ϕ = 0, for ϕ ∈ X ′. Now, for µ ∈ ρ(A)∩ρ(A), after

taking Laplace transform to (37), the fact that, for ϕ ∈ X ′,
〈
R(µ, A−1)(B + BK)û(µ), ϕ

〉
= 0 (38)

implies that ϕ = 0. Here, û(µ) ∈ U is the Laplace trans-

form of u ∈ L
p
loc(R+, U). Conversely, by the uniqueness

of Laplace transform one can see that (38) implies (37).

According to (29) and (19),

R(µ, A−1)(B + BK) = (I − DµM)−1R(µ,A−1)(B + BK)

= (I − DµM)−1(DµK + R(µ,A)B).

This completes the proof.

VI. CONCLUSION

This paper shows a useful variation of constant formula

for nonhomogeneous perturbed boundary value problems,

using the feedback theory of regular linear systems. It is

then applied to investigate the approximate controllability of

perturbed boundary control problems. The obtained result

can be applied to investigate the approximate controllability

of systems that can be reformulated as perturbed boundary

control problems. As an example, the approximate controlla-

bility of general neutral systems with state and input delays

in Banach spaces is investigated in [26].
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