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Abstract— This paper provides a solution based on Linear
Programming to the problem of designing observers that
ensures guaranteed bounds on the estimated states. Firstly,
considering linear systems without uncertainties, we provide a
complete solution for the existence of interval observers having
minimal l1-norm of the interval error. Secondly, new type of
observers involving dilatation functions, are introduced in order
to deal with the robust estimation of systems that are possibly
nonlinear and subject to uncertainties. A new methodology is
provided for the design and characterization of tight robust
interval observers. All the proposed conditions are expressed
in term of Linear programming.
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I. INTRODUCTION

Since the seminal works [22], [23], [20], the estima-

tion problem has been thoroughly studied in the literature.

Tremendous efforts have been deployed for the design of

estimators (observers), involving many generalizations and

approaches in order to deal with nonlinearity and/or robust-

ness in the presence of uncertaities. For instance, without

been exhaustive, the design of estimators or observers is

based on different geometrical regions involving an appro-

priate machinery, as a box [18], an ellipsoid [8], [9], [10],

[15], [14], a parallelotope [11], a set-valued [26], a zonotope

[25], [6], [5], the nonnegative Rn orthant [2], [3], [4], [12],

[17], [27], [7].

In this paper, we consider the so-called bounding observa-

tion problem or interval observers reconstruction problem,

which consists of designing observers that provide guar-

anteed bounds on the estimated states [5], [6], [15], [19],

[18]. Our design of interval observers lies on the theory of

positive systems (see [16], [21], [24], [13], [3] for general

references). In fact, enforcing the positivity of the error

estimation will necessary lead to a guaranteed bounds on

the estimated states, once we start with a priori bounds

on the unknown initial condition of the observed system.

Here, we provide a simple and efficient way of designing

observers that ensures guaranteed bounds on the estimated

states (Interval Observers). The proposed methodology is

based on the Linear Programming (LP) approach initiated in

[1], [2], [3], [4]. However, we provide a new reformulation

of the LP conditions.

In the first place, we consider linear systems without

uncertainties, and look for an easy computable solution for
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the existence of interval observers. The obtained conditions

are checkable necessary and sufficient conditions in terms

of LP. Also, the minimization of the l1-norm of the interval

error, will be stated and solved as a linear program. In second

place, a new type of robust observers involving dilatation

functions: Dilatation Observers, are introduced in order to

deal with the robust estimation for systems that are possibly

nonlinear and subject to uncertainties. In addition, new

methodology is provided for the design and characterization

of a special type of dilatation observers with guaranteed

tight estimated error.

The remainder of the paper is organized as follows. In

section 2, the objective of the paper is stated and some

preliminary results are given. Section 3 treats the existence

and convergence of interval observers without introducing

uncertainties in the model. Section 4 introduces the concept

of dilatation observers in order to deal with the inter-

val estimation problem for systems involving nonlinearities

and/or subject to uncertainties. Section 5 studies a numerical

example. Finally, section 6 gives some concluding remarks.

Basic Notation: Rn
+ denotes the non-negative orthant of

the n-dimensional real space Rn. MT denotes the transpose

of the real matrix M . For a real matrix M , M > 0 means

that its components are positive: Mij > 0, and M ≥ 0 means

that its components are nonnegative: Mij ≥ 0.

II. PRELIMINARIES

This section exposes the objective under investigation and

provides some definitions and preliminary results that are

used throughout the paper.

A. Problem formulation

The paper is devoted to the estimation of the states of

systems which can be expressed as:

ẋ(t) = A(δ)x(t) + ξ(x, δ, t),
y(t) = Cx(t),

(1)

where the matrix A and the nonlinear term ξ possibly depend

on unknown parameter δ.

First, let us start with the following general definition.

Definition 2.1: An interval observer for system (1) is a

pair of lower and upper estimator functions {x̂l(·), x̂u(·)} of

the real state function x(·), that is

x̂l(t) ≤ x(t) ≤ x̂u(t),∀t ≥ 0.

In the sequel, we will also investigate the convergence of

interval observers and make use of the following definitions.

Definition 2.2: An interval observer for system (1) is said

to be convergent if the limit l = lim
t→+∞

x̂l(t) − x̂u(t) exists

or bounded.
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Definition 2.3: An interval observer for system (1) is said

to be asymptotically convergent if lim
t→+∞

x̂l(t) − x̂u(t) = 0.

The objective is to design convergent interval observers for

models of the form (1), in the case when the initial conditions

are not known but bounded

x0 ≤ x(0) ≤ x0,

and some parameters of the dynamical model (1) are not

perfectly known but bounded.

In fact, the main idea behind the proposed interval ob-

servers machinery is to reconstruct the error dynamics of

the estimators in such way that it can be governed by

a differential dynamical equation: ė = (A − LC)e + g

which enforced to be inherently positive by choosing an

adequate matrix gain L. That is, we have to ensure that if the

initial error is nonnegative e(0) ≥ 0, then error will remain

nonnegative e(t) ≥ 0 all the time. Consequently, by using

this positivity concept it will be shown that we can ensure

a robust estimation with guaranteed lower and upper bounds

on the observed states.

B. Positivity

Consider the following autonomous linear system:

ẋ(t) = Mx(t), (2)

where M is a constant matrix and the initial conditions are

assumed to be nonnegative x(0) ∈ Rn
+.

In order to use a common vocabulary, the following

definitions will be used throughout the paper.

Definition 2.4: System (2) is said to be a positive system

if the corresponding trajectory is nonnegative: x(t) ≥ 0 for

all t ≥ 0 and all nonnegative initial conditions x(0) ≥ 0.

Definition 2.5: A real matrix M is called a Hurwitz matrix

if all its eigenvalues have a real strictly negative part.

Definition 2.6: A real matrix M is called a Metzler matrix

if all its off-diagonal entries are nonnegative: Mij ≥ 0, i �= j.

The following classical result is connected to the positivity

of system 2

Lemma 2.1: [23] System (2) is positive if and only if M

is a Metzler matrix: Mij ≥ 0, i �= j.

The following stability results will play an essential role

for the analysis and synthesis of the observers convergence.

Theorem 2.1: [3] If System (2) is positive, then the fol-

lowing statements are equivalent:

• (i) System (2) is asymptotically stable for every initial

condition x(0) ∈ Rn (i.e: M is a Hurwitz matrix).

• (ii) System (2) is asymptotically stable for every non-

negative initial condition x(0) ∈ Rn
+.

• (iii) System (2) is asymptotically stable for some initial

condition x(0) in the interior of Rn
+.

• (iv) There exists λ ∈ Rn
+ such that Mλ < 0.

An immediate consequence of Theorem 2.1 is stated as

follows.

Theorem 2.2: If System (2) is positive (or equivalently M

is Metzler), then the following statements are equivalent:

• (i) System (2) is asymptotically stable for every initial

condition x(0) ∈ Rn (i.e: M is a Hurwitz matrix).

• (ii) There exists λ ∈ Rn
+ solution to

Mλ = −







1
...

1






, λ > 0.

Proof: One can mimics the proof of Theorem 2.1 given

in [3] by choosing xT
0 =

[

1 . . . 1
]

as initial condition.

III. EXACT INTERVAL OBSERVERS

Consider the following system:

ẋ(t) = Ax(t) + ξ(y(t), t),
y(t) = Cx(t),

(3)

It is well-known that an observer which converges to the

real state possessing a linear error dynamics can be designed

in the Luenberger form [22], [23]:

˙̂x = Ax̂ + ξ(y, t) + L(y − Cx̂) (4)

where L is the observer gain matrix to be designed. The

reconstruction error dynamics is governed by the following

linear dynamical equation : ė = (A − LC)e. Consequently,

the observer convergence and characteristic properties de-

pend only on the gain matrix L which can be adequately

designed in order to obtain an interval observer of system

(3).

A. Computation of Interval Observers

Here, the purpose is to show how to design interval

observers by using Linear programming. The following key

role result will be used in the sequel.

Proposition 3.1: For any given bound on the initial value

of system (3), x0 ≤ x(0) ≤ x0 there exists an asymptotically

convergent interval observer {x̂l(·), x̂u(·)} of the form:
{

˙̂xl = Ax̂l + ξ(y, t) + L(y − x̂l), x̂l(0) = x(0)
˙̂xu = Ax̂u + ξ(y, t) + L(y − x̂u), x̂u(0) = x(0),

(5)

if and only if A − LC is a Metzler and Hurwitz matrix.

Proof: Sufficiency: We have to show that the upper

error e+ = x̂u − x and the lower error e− = x − x̂l

are positive and converges to zero. Since the upper error

satisfies ė+ = (A − LC)e+ and A − LC is Metzler, it

suffices to use Lemma 2.1 to show the nonnegativity of the

estimated error. The necessity part and the rest of the proof

are straightforward.

Now, for the computation of the interval observer of the

form (5) we provide a constructive methodology based on

Linear programming.

Theorem 3.1: For any given bound on the initial value of

system (3), x0 ≤ x(0) ≤ x0 there exists an asymptotically

convergent interval observer {x̂l(·), x̂u(·)} of the form (5), if

and only if the following LP problem in the variables λ ∈ ℜn

and Z ∈ ℜr×n is feasible:


























AT λ − CT Z







1
...

1






< 0,

λ > 0,

AT diag(λ) − CT Z + I ≥ 0.

(6)
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Moreover, a gain matrix L can be computed as follows

L = diag(λ)−1ZT ,

where the vector λ and the matrix Z constitute any feasible

solution to the above LP problem.

Proof: It is clear that by using the preceding Theorem

3.1, we have to prove that there exits a matrix gain L such

that A − LC is a Metzler and Hurwitz matrix.

Sufficiency: If the LP conditions (6) are satisfied, then

the third inequality is equivalent to the positivity of the

error. Multiplying it by diag(λ)−1 gives AT − CT LT +
diag(λ)−1 ≥ 0 or equivalently that A − LC is a Metzler

matrix. In addition, the first and second inequalities ensure

asymptotic stability of the error. To see that we substitute

Z = LT diag(λ) into AT λ − CT Z







1
...

1






< 0 and obtain

(AT − CT LT )λ < 0, which means by using Theorem 2.1

that (A − LC)T is a Hurwitz matrix, or equivalently, that

A − LC is a Hurwitz matrix.

Necessity: Let L be the gain of the interval observer (5).

Then, by using lemma 2.1 the transpose matrix (A−LC)T

must be a Hurwitz and Metzler matrix. Now, using Theorem

2.1 there exists λ > 0 such that (A − LC)T λ < 0,. Thus,

by making the change of variables Z = LT diag(λ) the first

two inequalities in the LP conditions (6) are obtained. The

Last inequality by multiplying (A − LC)T by diag(λ) and

obtain the associated Meztler matrix AT diag(λ) − CT Z.

Then, by using the fact that the vector λ can be chosen

with sufficiently small components (using homogeneity of

the stability condition) we obtain AT diag(λ)−CT Z+I ≥ 0
and the proof is complete.

B. Optimal Interval Observers

Our aim is to design interval observers with minimal

interval error. This can be done by minimizing the l1-norm

of the interval error:

‖e‖1 =

∫ +∞

0

[

1 . . . 1
]

e(s)ds.

A preliminary explanation on the know-how handling the

optimization of the l1-norm ‖e‖1 should be given. Note that

by integrating the equation ė = (A−LC)e we have that the

integral of the interval error satisfies

(A − LC)

∫ +∞

0

e(s)ds = x0 − x0,

Thus, the the integral of the interval error is given by the

formula
∫ +∞

0

e(s)ds = (A − LC)−1(x0 − x0).

In conclusion, the l1-norm of the interval error can be

expressed as

‖e‖1 =
[

1 . . . 1
]

(A − LC)−1(x0 − x0),

= (x0 − x0)
T (A − LC)−T

[

1 . . . 1
]T

.
(7)

We stress out that right now this expression is nonlinear in

the gain L of the interval observer.

By using the vector λ solution to

(A − LC)T λ = −







1
...

1






, λ > 0, (8)

which always exists by the fact that A−LC is Metzler and

Hurwitz (see for this claim Theorem 2.2). Then, λ is simply

expressed as

λ = −(A − LC)−T







1
...

1






.

Now, by using the formula (7) we like to reformulate the

expression of the l1-norm ‖e‖1 as

‖e‖1 = (x0 − x0)
T λ, (9)

for which λ satisfies the stability condition (8). Thus, we

arrived at the ultimate point and a linear objective to be

minimized is obtained.

Based on the preceding consideration, we are in place to

minimize the l1-norm ‖e‖1 and then, here is a way to do it.

Theorem 3.2: For any given bound on the initial value

of system (3), x0 ≤ x(0) ≤ x0 the tightest asymptotically

convergent interval observer {x̂l(·), x̂u(·)} of the form:

˙̂xl = Ax̂l + ξ(y, t) + L(y − x̂l), x̂l(0) = x0

˙̂xu = Ax̂u + ξ(y, t) + L(y − x̂u), x̂u(0) = x0,

can be computed from the minimal solution to

(P1) :











min
L∈ℜn×r

‖x̂u − x̂l‖1

subject to:

A − LC is Metzler and Hurwitz matrix.

(10)

Or equivalently, the associated optimal gain L can be calcu-

lated from the optimal solution to the following optimization

LP problem in the variables β ∈ ℜ, λ ∈ ℜn and Z ∈ ℜr×n:

(P2) :











































min (x0 − x0)
T λ

subject to:

AT λ − CT Z







1
...

1






= −







1
...

1






,

λ > 0,

AT diag(λ) − CT Z + βI ≥ 0.

(11)

Moreover, any solution to (P1) corresponds to a solution to

(P2) and viceversa the optimal gain matrix L of (P1) can

be computed as follows

L = diag(λ)−1ZT ,

where the vector λ and the matrix Z are any optimal solution

to (P2).
Proof: Here is a sketch of the proof. Take into account

the previous explanations by using the formula (9) then
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combine it with the result of Theorem 2.2. Thus, it suffices

to follow a similar proof as for Theorem 3.1. But in contrast,

it is emphasized that the first inequality in the proposed LP

conditions (11), is not homogeneous in the variable λ, so that

we need to add an extra slack scalar variable β to ensure that

the matrix A − LC is Metzler.

IV. ROBUST INTERVAL OBSERVERS

Consider the following uncertain nonlinear system in the

form:
ẋ(t) = A(δ)x(t) + ξ(x, δ, t),
y(t) = Cx(t),

(12)

where the matrix A(δ) ∈ Rn×n is assumed to be unknown

and depending on an uncertain parameter δ and ξ(x, δ, t) is

the nonlinear part.

Remark 4.1: We stress out that the proposed results also

apply to any kind of nonlinear systems

ẋ = f(x, δ, t),

which can be split into the form of system (12).

In the next, we define our dilatation concept that will be

utilized for the design of dilatation observers.

A. Dilatation Observers

Definition 4.1: A function ψ(·) : Rn → Rn is called a

positive dilatation if it satisfies

ψ(x) ≥ x, ψ(x) ≥ 0 ∀x ∈ Rn.

A function φ(·) : Rn → Rn is called a negative dilatation

if it satisfies

x ≥ φ(x), φ(x) ≤ 0 ∀x ∈ Rn.

Based on theses definitions, we introduce and define our

dilatation observers which are given by the following two

nonlinear dynamical systems
{

˙̂xl = Ax̂l + L(y − Cx̂l) − (A − A)ψ(x̂l) + ξ,
˙̂xu = Ax̂u + L(y − Cx̂u) − (A − A)φ(x̂u) + ξ,

where the functions ψ and φ are respectively positive and

negative dilatations (with regard to Definition 4.1). The

functions ξ and ξ are obtained by adequately substituting

ξ by any known upper and lower bounds on it. The matrices

A,A are assumed to be constant and such that

A ≤ A(δ) ≤ A.

Theorem 4.1: For any given bounds on the initial value of

system (12), x0 ≤ x0 ≤ x0 and any given functions ψ and φ

which are respectively positive and negative dilatations, then

there exists a robust interval observer of the form:






˙̂xl = Ax̂l + L(y − Cx̂l) − (A − A)ψ(x̂l) + ξ,
˙̂xu = Ax̂u + L(y − Cx̂u) − (A − A)φ(x̂u) + ξ,

x̂l(0) = x0, x̂u(0) = x0,

(13)

if the matrix A − LC is Metzler.

Proof: To simplify the notation, we define e− = x−x̂l,

e+ = x̂u − x, ξ− = ξ − ξ and ξ+ = ξ − ξ. We have to show

that if the matrix A−LC is Metzler then we have necessary

e+ ≥ 0 and e− ≥ 0 whenever e+(0) ≥ 0 and e−(0) ≥ 0.

Since the lower and upper errors e− and e+ satisfy

ė− = (A − LC)e− + (A − A)x̂l + (A − A)ψ(x̂l) + ξ−,

ė+ = (A − LC)e + (A − A)x̂u − (A − A)φ(x̂u) + ξ+,

If A − LC is Metzler then A − LC is Metzler for any A

in the interval

A ≤ A(δ) ≤ A.

Therefore, since ξ− ≥ 0, ξ+ ≥ 0, then it suffices to show

the nonnegativity of the following terms

v1 = (A − A)x̂l + (A − A)ψ(x̂l) ≥ 0,

v2 = (A − A)x̂u − (A − A)φ(x̂u) ≥ 0.

Now, since ψ(x̂l) ≥ x̂l and A − A ≤ 0, this implies

(A − A)x̂l ≥ (A − A)ψ(x̂l). So by using the positivity of

the dilatation function ψ(·) ≥ 0 and the fact that A−A ≥ 0,

we can see that

v1 ≥ (A − A)ψ(x̂l) + (A − A)ψ(x̂l),

v1 ≥ (A − A)ψ(x̂l) ≥ 0.

In the same manner, since x̂u ≤ φ(x̂u) ≥ and A − A ≥ 0,

we have (A − A)x̂u ≥ (A − A)φ(x̂l). So regarding to the

negativity of the dilatation function φ(·) ≤ 0 and the fact

that A − A ≥ 0, we obtain

v2 ≥ (A − A)φ(x̂u) − (A − A)φ(x̂u),

v2 ≥ (A − A)φ(x̂l) ≥ 0,

and the proof is complete.

The previous result will be applied to a very interesting

interval observers involving a special kind of dilatation

functions
d+(x) = 0.5(x+ | x |),
d−(x) = 0.5(x− | x |),

(14)

where | x | denotes the vector formed by the absolute values

of the components of the vector x ∈ ℜn.

B. Tight Robust Interval Observers

In order to derive the main result of this section, we will

use the following key role Lemma.

Lemma 4.1: Consider the following differential system

v̇ = Mv + g(v, t), where M is a Metzler matrix.

Then, if g(v, t) ≤ g̃ we have

v(t) ≤ ṽ(t), ∀t ≥ 0,

where ṽ(·) is the solution of the differential equation

˙̃v = Mṽ + g̃, ṽ(0) = v(0) = v0.

Proof: Omitted because of the lack of space.

Now, we are in place to state the main result of this section.

Theorem 4.2: Assume that the trajectory of system (12)

is bounded.

| x(t) |≤ m, ∀t ≥ 0.
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Then, for any given bound on the initial value of system

(12), x0 ≤ x0 ≤ x0, the following special robust interval

observer of the form:






˙̂xl = Ax̂l + L(y − x̂l) − (A − A)d+(x̂u) + ξ,
˙̂xu = Ax̂u + L(y − x̂u) − (A − A)d−(x̂l) + ξ,

where d+, d− are given by (14),

(15)

is a convergent robust interval observer if the matrix A−LC

is Metzler and the matrix A−LC is Hurwitz. Moreover, we

have that

lim sup
t→+∞

x̂u(t) − x̂l(t) ≤ 2(A − LC)−1[(A − A)m + ξ − ξ].

Proof: Let e = x̂u − x̂l be the interval error, which

satisfies

ė = (A − LC)e + (A − A)(d+(x̂l) − d−(x̂u)) + ξ − ξ.

Regarding to the fact that d+(·), d−(·) are dilatation func-

tions then by using Theorem 4.1, we have

x̂l(t) ≤ x(t) ≤ x̂u(t), ∀t ≥ 0.

By using the assumption | x(t) |≤ m and the property

that d+(·) involves only the nonnegative components of x̂u

and d−(·) involves only the negative components of x̂l, we

necessarily have

d+(x̂l(t)) ≤ m and − d−(x̂u(t)) ≤ m, ∀t ≥ 0.

Now, consider the linear differential equation

v̇ = (A − LC)v + 2(A − A)m + ξ − ξ, v(0) = e(0),

and note that A − LC is Metzler since A − LC is Metzler.

Then, by using the comparison Lemma 4.1 we obtain

e(t) ≤ v(t), ∀t ≥ 0.

Now, since A − LC is Hurwitz, v(t) converge to the only

equilibrium steady state v̄ solution to

(A − LC)v̄ + 2(A − A)m + ξ − ξ = 0,

or equivalently

v̄ = 2(A − LC)−1[(A − A)m + ξ − ξ].

Since we showed that e(t) ≤ v(t), ∀t ≥ 0, consequently,

we obtain

lim sup
t→+∞

x̂u(t) − x̂l(t) ≤ 2(A − LC)−1[(A − A)m + ξ − ξ].

The previous result can be improved by minimizing the

derived bound on the interval observer:

2(A − LC)−1(A − A)m + ξ − ξ.

This is possible by using the following result.

Theorem 4.3: A sharpest bound on the interval observer

{x̂l(·), x̂u(·)} of the form (15) can be computed from the

optimal solution to the following LP problem in the variables

β ∈ ℜ, λ ∈ ℜn and Z ∈ ℜr×n is achievable:

(P3) :











































min [(A − A)m + ξ − ξ]T λ

subject to:

A
T
λ − CT Z







1
...

1






= −







1
...

1






,

λ > 0,

AT diag(λ) − CT Z + βI ≥ 0.

(16)

Moreover, the gain matrix L of the interval observer (15)

can be computed as follows

L = diag(λ)−1ZT ,

where the vector λ and the matrix Z are any feasible solution

to the above LP problem.

C. Numerical Example

We consider an uncertain nonlinear system subject to a

parametric perturbation as follows:

ẋ(t) = A(δ)x(t) + δ sin[x1(t)
2]





1
1
1



 ,

y(t) = [1 1 0]x(t),

(17)

where the matrix A(δ) is given by

A(δ) =





−2.5 0.2 1
0.1 −0.5 1
0 0.3 −0.8 − 0.01δ



 ,

and the uncertain parameter satisfies 0 ≤ δ ≤ 1.

We have to find a robust interval observer of the form (15)

which provide guaranteed upper and lower bounds of all the

plants between the two extreme plants (δ = 0 and δ = 1).

Note that A(1) ≤ A(δ) ≤ A(0) and the components of

the nonlinear part of system (17) range between −1 and 1.

Thus, a simple choice of a priori bounds on the dynamics of

system (17) is as follows: A = A(1), A = A(0) and

ξ =





−1
−1
−1



 , ξ =





1
1
1



 ,

x̂l(0) =





−1.5
1.5
0.5



 , x̂u(0) =





−0.5
2.5
1.5



 .

Then, by applying Theorem 4.3 we have obtained the

following gain matrix:

L =





0.2
0.1
0.0



 .

Hence, with this gain, the numerical simulation was

carried out by using ODE solver: ODE23 in Matlab. The

numerical results for the state evolution of an arbitrary

plant corresponding to δ = 0.5 and an initial condition

x0 =
[

−1 2 1
]T

, (which ranges between x̂l(0) and

x̂u(0)) are depicted in Figure 1, Figure 2 and Figure 3.
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V. CONCLUSIONS

In this paper, interval observers reconstruction has been

studied and developed. New methodology is proposed for

designing observers that ensures guaranteed bounds on the

estimated states. We have provided a simple and complete

solution to the existence problem of interval observers having

fast convergence and minimal l1-norm of the interval error

for systems without uncertainties. For this case, all the

proposed condition are necessarily and sufficient checkable

condition in terms of Linear programming. Also, new type of

observers involving dilatation functions, has been introduced.

It has been shown that by using dilatation observer we can

deal with the robust estimation problem for systems that are

possibly nonlinear and subject to uncertainties.
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Fig. 1. Evolution of the real state x1(t) (solid line).
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Fig. 2. Evolution of the real state x2(t) (solid line).
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Fig. 3. Evolution of the real state x3(t) (solid line).
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