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Abstract— In this paper, we further illustrate the versatility
and effectiveness of our novel tests for ensuring safe adaptive
control in practice. The tests utilize a limited amount of
experimental and possibly noisy data obtained from a closed-
loop—consisting of an existing known stabilizing controller
connected to an unknown plant—to infer if the introduction of
a prospective controller will stabilize the unknown plant. The
need and importance of this arise in iterative identification and
control algorithms, multiple-model adaptive control (MMAC),
and multi-controller adaptive switching.

Index Terms— Adaptive Control, Multiple Model Adaptive
Control, Robust Control, Iterative Identification and Control.

I. INTRODUCTION

S
AFE adaptive control methods would generally refer

to an assurance that a destabilizing controller is never

switched in the closed-loop, even temporarily. The literature

reports evidence of connecting a destabilizing controller at

some point in the adaptive process, which although not

remaining permanently in the loop, can do a lot of damage in

the meantime [1], [2]. We discuss novel tests for verifying

that the introduction of a new controller will stabilize an

unknown plant using a limited amount of noisy experimental

data obtained from the plant connected to an existing known

stabilizing controller. These tests exploit phase information

of the current closed-loop data to assess stability conditions,

analogously to the Nyquist stability criterion, to ascertain

closed-loop stability with the new controller.

There exist iterative control design methods which utilize

the closed-loop data collected from an existing feedback

interconnection in order to replace the current controller

with a better performing controller, see e.g. [3] and the

references therein. However, the existing stability tests to

ascertain internal stability with the new controller before its

implementation in the closed-loop are based either on the

identification of a parametric ‘full order model’ of the current

closed-loop transfer functions, or on an identification of a

parametric ‘full order model of the plant’ from the current

closed-loop transfer functions and the current controller or on

the ‘full estimation’ of frequency bounds on the magnitude

of the current closed-loop transfer functions [4], [5], [6].

The existing validation tests use the identification of the

full dynamics of the current closed-loop system, and hence

the amount of experimental effort required for validation
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purposes can be much larger than that required for the design

of the controller update.

In contrast, we shall show that the validation tests of

Section IV require gathering of information only on a limited

known frequency region whose size depends on the size of

the controller change. This promises to address, in retrospect,

the so-called transient instability problem [7] in the context

of multiple model adaptive control (MMAC) [8], [9] and

iterative identification and control [10] methodologies. Here

there is the possibility that the controller connected to the

unknown plant at any particular time and frozen thereafter in

combination with the plant provides an unstable closed loop.

This happens partly because it is not always straightforward

to accurately predict the new closed-loop transfer function

that will result from changing a controller from one known

controller to another known controller, when the first closed-

loop transfer function is approximately known.

Furthermore, it is shown in [2], [11] that the data-driven

Unfalsified Adaptive Control approach of [12], and the

related references therein, can engender the worst problem

of inserting a destabilizing controller in the closed-loop;

moreover, such a destabilizing controller can remain in the

loop for a long period of time resulting in very large closed-

loop signals. It is reported in [2] that for a simple academic

example, a maximum value of 1.228×106 was recorded for

the plant input signal u(t) when the the reference signal

r(t) was a sinusoid of magnitude 1. Indeed, one cannot

even put a global upper bound on the time during which

the destabilizing controller is attached.

This paper aims to highlight the effectiveness and ver-

satility of our novel validation results for ensuring safe

adaptive control in practice by presenting two benchmark

examples. Section II collects the required and necessary

definitions and notations, and elucidates the problem of

concern by citing the internal stability results from the

relevant literature. Section III is built on our earlier results

[13], [14] and discusses the experimental setting which leads

to the development of the novel validation tests of Section IV

for SISO/MIMO systems. Two simulation examples are

presented in Section V, and Section VI contains concluding

remarks and future research directions.

II. NOTATIONS AND BACKGROUND

We shall denote by H∞ the space of functions bounded

and analytic in the open right-half complex plane, and the

same function spaces with prefix R their real-rational proper

subspaces. The plant is assumed to be a MIMO linear time-

invariant system P ∈ Rn×n (although at times we will

restrict attention to scalar systems) and the controller is
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denoted by C; both assumed to be always proper transfer

functions. The eigenvalues of A ∈ C
m×m are denoted by

λ1, · · · , λm and its spectral radius ρ(A) = max1≤i≤m |λi|.
The determinant of a matrix is denoted by det and its singu-

lar values by σi(·) with the largest singular value σ(·) and the

smallest singular value σ(·). The number wno(·) denotes the

winding number of the Nyquist diagram of a scalar transfer

function, evaluated on a contour along the imaginary axis

and indented to the right around any pure imaginary pole.

The nearest integer function nint[·] returns the integer closet

to [·] with the additional rule that half-integers are always

rounded to even numbers. We denote G(jω)∗ as the complex

conjugate transpose of frequency-response function G(jω) at

each ω, i.e. G(jω)∗ = G(−jω)T .

Definition 1: The unwrapped phase of a transfer func-

tion is denoted by unwarg and refers to the phase of the

frequency response when it is in the form of a continuous

function of the frequency. The unwrapped phase is derived

from the phase frequency response by removing the discon-

tinuities of 2π, and ensures that all appropriate multiples of

2π are included in the phase-frequency response [15].

Definition 2: The interconnection [P, C] is “well-posed”

if the transfer function matrix mapping
[

r
d

]

to
[

y
u

]

exists.

Put another way, [P, C] is well-posed if (I − CP )−1 ∈ R.

Given such well-posedness, the four transfer functions of

Fig. 1 can be written as
[

y
u

]

=

[

P
I

]

(I − CP )
−1

[

−C I
]

[

r
d

]

= H(P,C)

[

r
d

]

.

Definition 3: The interconnection [P, C] is said to be

“internally stable” if it is well-posed and H(P,C) ∈ RH∞;

i.e., each of the four transfer functions in
[

r
d

]

7→
[

y
u

]

∈
RH∞.

Definition 4: The ordered pair {Ũ , Ṽ }, with Ũ , Ṽ ∈
RH∞, is a left-coprime factorization (lcf ) of C ∈ R if Ṽ is

invertible in R, C = Ṽ −1Ũ , and Ũ and Ṽ are left-coprime

over RH∞. Furthermore, the ordered pair {Ũ , Ṽ } is a

normalized lcf of C if {Ũ , Ṽ } is a lcf and Ṽ Ṽ ∗+Ũ Ũ∗ = I .

Definition 5:

G :=

[

N
M

]

, K̃ :=
[

−Ũ Ṽ
]

(1)

where G will be referred to as the graph symbol of P , and

K̃ will be referred to as the inverse graph symbol of C.

Theorem 6: [16, Proposition 1.9] Let G and K̃ be defined

as in (1). Then the following are equivalent:

i. [P, C] is internally stable;

ii. (K̃G)−1 ∈ RH∞;

iii. det(K̃G)(jω) 6= 0 ∀ω and wnodet(K̃G) = 0.

d

rC

P
yu

−

−

Fig. 1. Standard Feedback Configuration

III. PROBLEM SET-UP AND EXPERIMENTAL SETTING

The considered problem is that given an unknown plant,

which is stabilized by a known controller C0, and a limited

amount of experimental data obtained with C0, how can one

verify—without actual insertion in the closed-loop—if the

introduction of the new controller C1 will stabilize the plant?

The following theorem defines the experimental setting for

the stability tests discussed the sequel.

Theorem 7: Let [P,C0] be internally stable. Let C0 =
Ṽ −1

0
Ũ0 and C1 = Ṽ −1

1
Ũ1 be left coprime factorizations over

RH∞. Consider Fig. 2 and define T : r 7→ z to be

T = [−Ũ1 Ṽ1]

[

P (I − C0P )−1

(I − C0P )−1

]

Ṽ −1

0
(2)

Then the following are equivalent:

a) [P, C1] is internally stable;

b) T−1 ∈ RH∞;

c) det T (jω) 6= 0 ∀ω AND wnodetT = 0;

d) det T (jω) 6= 0 ∀ω AND unwarg detT (j∞) =
unwarg detT (j0).
Proof: Note that T = (K̃1G)(K̃0G)−1, and

• (b) and Theorem 6.ii are equivalent since

(K̃0G), (K̃0G)−1 ∈ RH∞;

• (c) and Theorem 6.iii are equivalent since

{[P, C0] internally stable} ⇔ {det(K̃0G)(jω) 6= 0∀ω
AND wnodet(K̃0G) = 0} for which wno det(T ) =
wno det(K̃1G) − wnodet(K̃0G);

• (d) and (c) are equivalent because T ∈ RH∞ and is

bi-proper and therefore

wno det(T ) = Z (T )

=
1

π
[unwarg detT (j∞)−unwarg detT (j0)]

where Z (T ) is the number of open RHP zeros of T .

Note that one cannot explicitly construct the transfer

function T as the plant P is unknown. However, the stable

mapping T : r → z in Fig. 2 can be studied in a safe

experiment—where no instability can occur—to infer the

required properties of T via the reference signal r and the

constructed output signal z (computed as a filtered version

of the measured signals
[

y
u

]

via K̃1).

r

Ũ1

Ṽ1

Ũ0

Ṽ −1

0

yu
P

z

−

Fig. 2. Experimental setting: C0 = Ṽ −1

0
Ũ

0
, C1 = Ṽ −1

1
Ũ

1
.
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IV. NOVEL STABILITY VERIFICATION TESTS

The data-based stability tests of this section are built on

the experimental setting defined in Section III with the aim

of verifying condition (d) in Theorem 7. For the development

of these stability tests, following assumptions are introduced.

Assumption 8: The factors Ṽ0 and Ṽ1 are such that

Ṽ0(j∞) = Ṽ1(j∞) = I .

Assumption 9: The transfer functions PC0 and PC1 are

strictly proper.

It is evident that Assumption 8 is without loss of generality

and Assumption 9 captures a typical situation. Notice that the

transfer function T can be written as

T = Ṽ1(I − C1P )(I − C0P )−1Ṽ −1

0
(3)

for which under Assumptions 8 and 9 we have

det T (j∞) =
det Ṽ1(j∞)

det Ṽ0(j∞)

det(I − C1P )(j∞)

det(I − C0P )(j∞)
= 1 . (4)

Thus, det T (j∞) is strictly positive and known and will

be used as a datum for the verification of condition (d) in

Theorem 7 as shown in the following falsification test.

Theorem 10: Let the suppositions of Theorem 7 and

Assumptions 8 and 9 hold. Let ei denote a reference signal

where a step function is applied at the i−th input while

the other inputs are kept at 0. Perform n experiments with

reference signal r(t) = ei(t), i = 1, . . . , n and let z̄i be the

steady state output of T recorded in each experiment. Define

Z̄ = [z̄1, . . . , z̄n]. Then

[P,C1] is internally stable ⇒ det Z̄ > 0 .

Thus if det Z̄ ≤ 0, stability of [P,C1] is falsified.

Proof: See [13].

It readily follows that the aforementioned result on steady-

state step response measurements in Theorem 10 is robust

and in fact unaffected by all disturbances with finite energy.

Condition (d) in Theorem 7 can be verified in both its

necessary and sufficient parts by using more sophisticated

identification techniques. However, this is not desirable due

to the complexity involving a full sine sweep. In the sequel,

a novel test is proposed which proposes a mechanism to

measure the frequency response of T up to a finite frequency

ω0. The measurement can tolerate error as its purpose is

simply to facilitate computation of a certain phase change.

Lemma 11: Let the suppositions of Theorem 7 hold. Then

T = I + T ′, where (5)

T ′=[−(Ũ1−Ũ0) (Ṽ1−Ṽ0)]

[

P (I − C0P )−1

(I − C0P )−1

]

Ṽ −1

0
(6)

Proof: See [13].

Note that T ′ in (6) is strictly proper under Assumptions 8

and 9. Hence it can be expected that measuring the frequency

response of T = I +T ′ up to a frequency, say ω0, where the

response of T ′ has nearly vanished is enough to characterize

the full frequency response of T . This fact is utilized next.

Theorem 12: Suppose the hypothesis of Theorem 7 and

Assumption 8 and 9 hold. Define T ′ ∈ RH n×n
∞ by T ′ =

T − I via (5). Let ω0 ∈ [0,∞) be a frequency such that

{

ρ(T ′(jω)) < 1 n = 1

ρ(T ′(jω)) < sin(
π

n
) n ≥ 2

∀ω ≥ ω0 (7)

Then the condition

detT (jω) 6= 0 ∀ω ∈ [0, ω0) AND

2π × nint

[

unwarg detT (jω0)

2π

]

=unwarg detT (j0) (8)

is equivalent to condition (d) in Theorem 7.

Proof: Lemma 11 shows that T (j∞) = I under

Assumption 8 and 9. For the case n = 1, the inequality

in (7) becomes |T ′(jω)| < 1 ∀ω ≥ ω0, which implies

2π × nint

[

unwarg T (jω0)

2π

]

= unwarg T (j∞) .

For n ≥ 2 in (7), observe that |λi(T
′)| ≤ ρ(T ′) and that

det T =

n
∏

i=1

λi(I + T ′) =

n
∏

i=1

[1 + λi(T
′)] .

Since inequality (7) holds, [1 + λi(T
′)] (jω) lies in the

interior of a circle of center 1 and radius ξ = sin(π/n)
∀ω ≥ ω0 and detT (jω) 6= 0 ∀ω ∈ [ω0,∞). Hence the

angle θ depicted in Fig. 3 is precisely π/n. Consequently, the

angle of the complex number 1+λi(T
′) for each i and each

ω ∈ [ω0,∞) lies in
(

−π
n
, π

n

)

. Thus the angle of the complex

number det T (jω) is in (−π, π) for each ω ∈ [ω0,∞)
and det T can never complete a contour around the origin

∀ω ∈ [ω0,∞), because the contour can never cross the

negative real axis. Since det T (jω) is a continuous function

of frequency and is equal to unity at infinity frequency,

2π × nint

[

unwarg detT (jω0)

2π

]

= unwarg detT (j∞) .

Re

Im

ξ

θ

λi(T
′)

1

−1

1 2

Fig. 3. Graphical representation of the condition on λi(T
′). The angle θ

is of the form π/n.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB03.4

710



The aforementioned theorems outline experimental tests

to assess stability of [P, C1] before inserting C1. For the ap-

plication of Theorem 12, recall that ρ(T ′(jω)) ≤ σ(T ′(jω))
and σ(T ′(jω)) → 0 as ω → ∞. One can obtain an estimate

of ω0 knowing a rough estimate of the bandwidth of [P, C0]
and assuming that σ(T ′(jω)) remains below the right-hand

side of inequality (7) over some known high-frequency re-

gion. Notice that since nint[unwarg detT (jω0)/2π] is used

in condition (8), a rough estimate of unwarg detT (jω0)/2π
is enough and hence the test can tolerate estimation errors.

Moreover, the structure of T ′ in (6) reveals that a small

controller change certainly implies a smaller ω0 and hence

reduced experimental effort in estimating σ(T ′(jω)). In

practice, to check the condition in (7), one can use

σ(T ′) ≤ ‖T ′‖F = (
∑

i,j

∣

∣T ′
ij

∣

∣

2
)0.5 (9)

along with ρ(T ′(jω)) ≤ σ[T ′(jω)] to find an upper bound

on λi[T
′(jω)] at each frequency. Alternatively σ[T ′(jω)] ≤√

n ‖T ′(jω)‖
1

can be utilized at each frequency.

V. SIMULATION EXAMPLES

In this section, we consider a SISO system and a MIMO

system to illustrate the advantages and effectiveness of our

stability tests captured in Theorem 10 and Theorem 12.

A. Example 1: Applicability of our Results to SISO Systems

Consider the system used in [6] with

P =
1.2( 1

2
s + 1)(−1

4
s + 1)

( 2

3
s + 1)(1

3
s + 1)( 1

10
s + 1)

with a DC-gain of K = 1.2 and a non-minimum-phase zero

at z = 4. In [6], a Multiple Model Adaptive Control scheme

is used with the control objective of extending the bandwidth

of the complementary sensitivity transfer function that ex-

ceeds that of the open-loop plant. This control objective was

set with the consideration of practical limitations imposed by

the existence of the non-minimum-phase zero. The multiple

model set consisted of 441 plant models defined by

Pi =
Ki(

2

3
s + 1)(−1

zi
s + 1)

( 1

2
s + 1)(1

3
s + 1)(1

3
s + 1)

(10)

with the modeled DC-gain Ki ∈ [0.2, 2] and the modeled

non-minimum-phase zero zi ∈ [1, 10], both varying in 20

logarithmically equally spaced intervals. For each model in

the set, controllers are designed to achieve the objective of

expanding closed-loop bandwidth. To show the effectiveness

of our tests, we consider only three controllers from the

controller set designed to achieve closed-loop bandwidths

of 2 rad .s−1 and 2.1 rad .s−1 using the models in (10)

corresponding to Ki ∈ {0.6720, 0.5953, 1.0911} and zi =
2.9764, respectively. Let the stabilizing C0 below

C0 =
−0.738(s + 3)2(s + 2)

(s + 1.5)(s2 + 2.976s + 11.91)

ensure a closed-loop bandwidth of 2 rad .s−1, [P, C0] ∈
RH∞ with a left coprime factorization, C0 = Ṽ −1

0
Ũ0,

Ṽ0 =
(s + 1.5)(s2 + 2.97s + 11.91)

(s + 1.56)(s2 + 4.47s + 11.45)

satisfying Assumption 8, Ṽ0(j∞) = 1, and

Ũ0 =
−0.7382(s + 3)2(s + 2)

(s + 1.56)(s2 + 4.47s + 11.45)
.

Suppose the adaptive control decision unit suggests the

use of C1, which achieves a bandwidth of 2.1 rad .s−1,

C1 =
−0.875(s + 3)2(s + 2)

(s + 1.5)(s2 + 2.976s + 12.5)

with a left coprime factorization, C1 = Ṽ −1

1
Ũ1,

Ṽ1 =
(s + 1.5)(s2 + 2.976s + 12.5)

(s + 1.578)(s2 + 4.747s + 11.68)

satisfying Assumption 8, Ṽ1(j∞) = 1, and

Ũ1 =
−0.875(s + 3)2(s + 2)

(s + 1.578)(s2 + 4.747s + 11.68)
.

Setting up the experimental configuration of Fig. 2 and

utilizing Theorem 10 to check if C1 is stabilizing, we

perform experiments with reference signal r(t) = step(t)
and the step response is measured at the output z. The steady

state value of T : r → z is z̄ = −0.0711 < 0 and hence the

stability of [P, C1] is falsified. Indeed, computing H(P, C1)
shows that it has one pole at s = 0.0136 which conforms

with the results. Note that our validation test above does not

include any identification and is very easy to carry out while

the results in [6] require identification of closed-loop transfer

functions to prevent switching to destabilizing controllers.

Let the next suggested controller to replace C0 be C2 from

the set, achieving a bandwidth of 2.1 rad .s−1,

C2 =
−0.4773(s + 3)2(s + 2)

(s + 1.5)(s2 + 2.976s + 12.5)

with a left coprime factorization, C2 = Ṽ −1

2
Ũ2,

Ṽ2 =
(s + 1.5)(s2 + 2.976s + 12.5)

(s + 1.528)(s2 + 3.847s + 12.18)

satisfying Assumption 8, Ṽ2(j∞) = 1, and

Ũ2 =
−0.4774(s + 3)2(s + 2)

(s + 1.528)(s2 + 3.847s + 12.18)
.

Setting up the experimental configuration of Fig. 2 for

simulation and using the results of Theorem 10 to check

if C2 is stabilizing, we perform experiments with reference

signal r(t) = step(t) and the step response is measured

at the output z. The steady state value of T : r → z is

z̄ = 4.74 > 3∀t > 30 which does not falsify the stability

of [P, C2]. Thus, we shall use the results of Theorem 12 to

check if C2 is stabilizing. As shown in Fig. 4a, the simulation

results reveal that |T − 1| ≤ 1 ∀ω ≥ 0.691 rad /s. Given

that unwarg T (j0) = 0 and unwarg T (jω0) = −0.2039π
as shown in Fig. 4b, the condition in Theorem 12 holds
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(a) Magnitude Response of T ′ = T − 1
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(b) Phase Response of T

Fig. 4. Example 1: Magnitude and Phase responses

and hence C2 is stabilizing. Indeed, computing H(P, C2)
confirms that C2 is stabilizing. The Nyquist diagram of T is

shown in Fig. 5.

B. Example 2: Applicability of our Results to MIMO Systems

We shall now consider a five-state dynamic model of
the distillation process obtained from [17], which includes
liquid flow dynamics and composition dynamics as well as
disturbances. Let P ∈ R2×2 be

P =
1

(s + 0.183)(s + 0.0736)(s + 0.0051)(s2 + 0.924s + 1.193)

"

P
11

P
12

P
21

P
22

#

P
11

= 0.3012(s + 0.1786)(s + 0.0783)(s
2

+ 1.263s + 1.726)

P
12

= 0.1906(s + 0.1764)(s + 0.0708)(s
2

− 3.251s + 3.762)

P
21

= −0.4023(s + 0.1634)(s + 0.0922)(s
2

+ 0.8788s + 1.18)

P
22

= −0.8735(s + 0.1592)(s + 0.0640)(s
2

+ 0.88s + 1.019)

Here, we consider a set of controllers consisting of two

controllers C0 and C1, which are designed via µ-optimal

design based on DK-iteration using the following idealized

model of a simplified distillation process

Psimp(s) =
1

75s + 1

[

87.8 −86.4
108.2 −109.6

]

.

These controllers are extracted from the first two DK-

iterations and then truncated by employing the closed-loop

controller reduction method detailed in [18, Sec. 4.3]. It is

assumed that the Hankel singular values of the graph symbol

of the controller are decreasingly ordered (σ1 > σ2 > · · · ),

−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0 dB

−20 dB

−10 dB
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−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Real Axis

Im
a

g
in

a
ry

 A
x
is

Fig. 5. Nyquist plot of T (jω) in Example 1.

balanced realization is performed, and the result is truncated

to retain all Hankel singular values greater than 0.06σ1.
Let C0 be a stabilizing controller, [P, C0] ∈ RH∞,

C0 =
1

(s + 5.846)(s + 0.5047)(s − 0.0007)(s + 0.0002)

"

C
11
0 C

12
0

C
21
0 C

22
0

#

C
11
0 = −1.5477(s + 1.974)(s + 0.0231)(s − 0.0004)

C
12
0 = 0.6529(s − 2.675)(s − 0.0188)(s − 0.0012)

C
21
0 = −1.0881(s − 0.9831)(s − 0.0476)(s − 0.001)

C
22
0 = 1.669(s + 1.626)(s + 0.0296)(s − 0.0005)

with a left coprime factorization, C0 = Ṽ −1

0
Ũ0,

Ṽ0 =
1

(s + 6.356)(s + 0.9046)(s + 0.0372)(s + 0.0056)

"

Ṽ
11
0 Ṽ

12
0

Ṽ
21
0 Ṽ

22
0

#

Ũ0 =
1

(s + 6.356)(s + 0.9046)(s + 0.0372)(s + 0.0056)

"

Ũ
11
0 Ũ

12
0

Ũ
21
0 Ũ

22
0

#

Ṽ
11
0 = −(s + 6.095)(s + 0.7012)(s + 0.0178)(s − 0.0005)

Ṽ
12
0 = −0.07(s − 13.13)(s − 0.0456)(s − 0.001)

Ṽ
21
0 = −0.07(s − 13.47)(s − 0.0445)(s − 0.0011)

Ṽ
22
0 = −(s + 6.125)(s + 0.6982)(s + 0.0178)(s − 0.0005)

Ũ
11
0 = 1.5477(s + 2.372)(s + 0.0527)(s + 0.0061)

Ũ
12
0 = −0.6529(s − 2.381)(s

2
+ 0.0102s + 8.647e − 5)

Ũ
21
0 = 1.0881(s − 0.6265)(s − 0.0535)(s + 0.0037)

Ũ
22
0 = −1.669(s + 2.036)(s + 0.0581)(s + 0.0060) .

Theorem 10 puts forward a solution to the problem of
checking in advance using collected closed-loop data if the
controller C1 given here by

C1 =
1

(s + 22.71)(s + 11.35)(s + 1.838)(s − 0.0313)

"

C
11
1 C

12
1

C
21
1 C

22
1

#

C
11
1 = −43.305(s + 19.69)(s + 1.77)(s + 0.0231)

C
12
1 = −21.1218(s + 28.17)(s + 1.875)(s − 0.0987)

C
21
1 = 18.3868(s + 27.68)(s + 2.171)(s − 0.1072)

C
22
1 = 32.0272(s + 20.24)(s + 1.717)(s + 0.0372)

with a left coprime factorization, C1 = Ṽ −1

1
Ũ1,

Ṽ1 =
1

(s + 59.41)(s + 28.31)(s + 1.464)(s + 0.3251)

2

6

4

Ṽ
11
1 Ṽ

12
1

Ṽ
21
1 Ṽ

22
1

3

7

5

Ũ1 =
1

(s + 59.41)(s + 28.31)(s + 1.464)(s + 0.3251)

2

6

4

Ũ
11
1 Ũ

12
1

Ũ
21
1 Ũ

22
1

3

7

5

Ṽ
11
1 = −(s + 35.04)(s + 21.56)(s + 1.77)(s + 0.0279)

Ṽ
12
1 = 20.603(s + 25.23)(s + 1.845)(s − 0.1174)

Ṽ
21
1 = 20.603(s + 23.5)(s + 2.057)(s − 0.1187)

Ṽ
22
1 = −(s + 45.07)(s + 20.07)(s + 1.827)(s + 0.0233)

Ũ
11
1 = 43.305(s + 32.34)(s + 1.125)(s + 0.5017)

Ũ
12
1 = 21.122(s + 16.38)(s + 2.421)(s + 0.0247)

Ũ
21
1 = −18.387(s + 13.22)(s + 3.196)(s − 0.04082)

Ũ
22
1 = −32.027s + 39.71)(s

2
+ 1.577s + 0.6223) .
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Fig. 6. Step Responses: r(t) = step(t) · e1 and r(t) = step(t) · e2

We setup the experimental configuration of Fig. 2 and

perform two experiments with reference signals r(t) =
step(t) · e1 and r(t) = step(t) · e2. The step responses are

shown in Fig. 6 and the steady state values of T : r → z are

Z̄ =

[

1.09 0.178
0.0129 1.08

]

with det(Z̄) = 1.1749 > 0 which does not falsify the stabil-

ity of [P, C1]. Thus, we shall use the results of Theorem 12

to check if C1 is stabilizing.

Given that T ′ = T − I ∈ RH 2×2

∞ , we shall follow the

results of Theorem 12 for n = 2, which requires us to find

the frequency ω0 such that ρ(T ′(jω)) < sin(π/2) ∀ω ≥
ω0. As discussed in Section IV, one can use (9) along

with ρ(T ′(jω)) ≤ σ(T ′(jω)) to find an upper bound on

the eigenvalues of T ′(jω) in order to check the condition

above. The simulation results reveal that σ(T ′(jω)) <
1∀ω ≥ 1.8401 rad /s. Given that unwarg detT (j0) = 0
and unwarg detT (jω0) = −0.0079π, the condition in (8)

in Theorem 12 holds and hence C1 is stabilizing. Indeed,

computing H(P, C1) confirms that C1 is stabilizing.

VI. CONCLUSIONS

The simulations of Section V clearly showed the effec-

tiveness and applicability of the proposed tests. The novel

validation tests aim to protect internal stability with the

introduction of a new controller C1 by utilizing a limited

amount of experimental data obtained from the stable closed-

loop interconnection [P,C0]. Our current research focuses

on extending our results to include nonlinear controllers and

possibly nonlinear plants.
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