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Abstract— A nonlinear control law is proposed to asymp-

totically stabilize a single machine infinite bus (SMIB) system

based on Immersion and Invariance (I&I) control strategy. The

actuator used is a controllable series capacitor (CSC). The

SMIB system is described using the nonlinear second order

swing equation model, and the CSC is modeled using a first

order system. The control objective here is to approximate the

complete third order system with a second order dynamics, for

which we have an asymptotically stabilizing control law.

I. INTRODUCTION

Control of power swing oscillations is an important con-

trol problem. See [1] for an account of the new issues

in power system operations. Recently the application of

nonlinear control theory has been investigated for improving

the transient stability of a power system. Nonlinear control

using turbine control, see [2], and excitation control has been

proposed. The excitation control law has been investigated to

replace the traditional Automatic Voltage Regulator (AVR)

and the Power System Stabilizer (PSS) control structure. In

[3], [4], [5], [6], [7] feedback linearization was applied to

the nonlinear control problem for single machine as well

as multi-machine systems, using output feedback and state

observers. However, this method is fragile, as it relies on

nonlinearity cancellation, and the issue of robustness remains

unanswered. This motivated the investigation of energy-

based control technique for this control problem. The use

of energy function for control application has been given

in [8]. The work based on damping injection controllers,

also known as LgV controllers, is found in [9], [10], [11],

[12]. In [13], [14] a dynamic damping injection controller is

presented. It is shown that the domain of attraction becomes

larger. In [15], [16] a passivation technique is proposed for

power system stabilization. An observer-based controller is

given in [17]. Further, in [18] a passivity-based control law is

proposed for the excitation control of synchronous generator
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by shaping the total energy function via modification of

the energy transfer between the mechanical and electrical

components of the system. This control law enlarges the

domain of attraction, thus increasing the critical clearing

time. An observer-based (adaptive) control is given in [19].

In [20] an output feedback excitation control of synchronous

generators is proposed using a nonlinear observer. [21]

deals with transient stabilization of a multimachine power

system with nontrivial transfer conductances. In [22] energy

shaping approach is applied to a power system using direct

mechanical damping assignment. Transient stabilization of

structure preserving power systems with excitation control

using an energy-shaping technique is given in [23]. Recently,

in [24] interconnection and damping assignment passivity-

based control (IDA-PBC) strategy is used for transient sta-

bilization of a synchronous generator using a CSC.

An important factor, which decides the capacity of a

transmission line to transfer the electrical power across the

network, the stability margin of the power system, is the

reactance of the transmission line. Many power electronic

devices have been invented for increasing the capacity and

stability margin of the power systems. The concept of

Flexible AC Transmission System (FACTS) relies on the use

of such power electronic devices, and offers greater control

of power flow, secure loading and damping of power system

oscillations see, e.g.,[25]. These devices can be classified

into two categories, one is shunt devices (the injected cur-

rents are controlled), and the other is series devices (the

inserted voltages are controlled). Static VAR compensator is

an example of shunt devices, while series devices include

Unified Power Flow Controller (UPFC), Controllable Se-

ries Capacitor (CSC) and Quadrature Boosting transformer

(QBT). These series devices are known as Controllable

Series Devices (CSDs). See [26], [25] for use of CSDs in

power system stabilization.

In this paper we address the problem of transient stabiliza-

tion of the SMIB system using a CSC. The control system

consists of two subsystems- the second order nonlinear swing

equation of the SMIB system, and a first order system

representing the CSC. We employ the I&I control strategy

[27] to achieve the control objective. The control synthesis is

based on two important nonlinear tools-(system) immersion

and (manifold) invariance. This control design involves the

following important steps- The complete third order system

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA18.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2493



is immersed in a reduced order target dynamics of order

two. The choice of the target system is such that we have

an asymptotically stabilizing control law for the system. An

invariant manifold is constructed such that the restriction

of the full order system dynamics coincides with the target

dynamics. We then design a control law that renders the

manifold attractive and ensures all signals are bounded.

The paper is organized as follows: In Section II we

describe the control system and state the control objective.

In Section III we briefly introduce the control synthesis

methodology. In Section IV we give the main result of this

paper. The simulation plots are given in Section V. And

finally Section VI concludes the paper.

II. PROBLEM FORMULATION AND THE CONTROL

STRATEGY

Consider the SMIB system with a CSC as shown in Figure

1. In practice, an infinite bus is a large power system with

a large center of inertia. Such a system does not exhibit

significant oscillations on occurrence of transients and hence

we consider it as a reference bus to assess the performance

of a synchronous generator connected to it. In Figure 1 the

infinite bus is denoted by bus 2 and the generator internal

bus 1 is connected to the infinite bus through the transient

reactance x′d . The controllable series capacitor is represented

by the variable capacitor − jxc.

1 2

G

E∠δ
jx′d − jxc

V∠θ

Fig. 1. SMIB system with CSC

We use the following notation: δ is the rotor angle and

ω is the rotor angular speed deviation with respect to a

synchronously rotating reference for the generator. Further

E denotes the q-axis voltage behind transient reactance of

the generator. Let D > 0, M > 0, P be the damping constant,

moment of inertia constant, and the mechanical power input,

respectively. Next we assume that the rotor is round rotor

type, and hence neglect the effect of the saliency of the

rotor. Since the bus 2 is the infinite bus, V is constant. Also

θ is constant and is assumed to be zero. Let the effective

reactance between bus 1 and 2 be denoted by xl . Now we

make the following assumption.

Assumption 2.1: The region of operation is

D =
{

(δ ,ω,xl) | 0 ≤ δ ≤
π

2
−d1,xl ≥ d2

}

,

where d1 > 0 and d2 > 0 are small numbers.

A. Swing Equation Model with the First Order Model of CSC

First we describe the SMIB system using the swing

equation model given by

δ̇ = ω

ω̇ = 1
M

[

P−Dω −EV sinδ
xl

]

.

}

(1)

The actuator dynamics is represented using a first order

system of the form

ẋl =
1

Tdc

[−xl + xl⋆ +u] , (2)

where Tdc is the time constant of the actuator dynamics, and

xl⋆ is the line reactance at the desired equilibrium point and

u is the input to the actuator.

Consider the swing equation model of the SMIB with CSC

given by (1) and (2). We define the state variables of the

system as x1 = δ , x2 = ω , x3 = xl and x = [x1 x2 x3]
T as

the state vector. Then the open loop operating equilibrium

is denoted by x⋆ = (x1⋆
,0,x3⋆

). The complete control system

can now be written as

ẋ1 = x2

ẋ2 = 1
M

[

P−Dx2 −EV
sinx1

x3

]

ẋ3 = 1
Tdc

[−x3 + x3⋆
+u] ,











(3)

or equivalently,

ẋ = f (x)+g(x)u

=







x2

1
M

[

P−Dx2 −EV
sinx1

x3

]

1
Tdc

[−x3 + x3⋆
]






+





0

0
1

Tdc



u (4)

where x3⋆
=

EV sinx1⋆

P
for a given x1⋆

.

B. Control Objective

As mentioned earlier, x⋆ denotes the operating stable

equilibrium in D . We assume that x⋆ is known to us and

state the control objective as “to synthesize a control law u

in order to make the system (4) asymptotically stable at x⋆.”

Next we briefly state a result from [27] to explain the

controller design strategy.

III. IMMERSION AND INVARIANCE

The method of I&I for stabilization of nonlinear systems

is proposed in [27]. The main result of [27] is now stated.

Theorem 3.1: Consider the state space model of the sys-

tem

ẋ = f (x)+g(x)u (5)

where f (x) and g(x) are smooth functions, with state x ∈ IRn

and control u ∈ IRm, with an equilibrium point x⋆ ∈ IRn to be

stabilized. Let p < n and assume we can find mappings

α(·) : IRp → IRp
,π(·) : IRp → IRn

,c(·) : IRp → IRm
,

φ(·) : IRn → IRp
,ψ(·) : IRn×(n−p) → IRm

,
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such that the following hold.

1) (H1) (Target system) The system

ξ̇ = α(ξ ) (6)

with state ξ ∈ IRp has an asymptotically stable equi-

librium at ξ⋆ ∈ IRp and x⋆ = π(ξ⋆).

2) (H2) (Immersion condition) For all ξ ∈ IRp

f (π(ξ ))+g(π(ξ ))c(π(ξ )) =
∂π

∂ξ
α(ξ ). (7)

3) (H3) (Implicit manifold) The following set identity

holds

{x ∈ IRn | φ(x) = 0}

= {x ∈ IRn | x = π(ξ ) for some ξ ∈ IRp} . (8)

4) (H4) (Manifold attractivity and trajectory bounded-

ness) All trajectories of the system

ż =
∂φ

∂x
[ f (x)+g(x)ψ(x,z)] (9)

ẋ = f (x)+g(x)ψ(x,z) (10)

are bounded and satisfy

lim
t→∞

z(t) = 0 (11)

where z = φ(x) and u = ψ(x).

Then x⋆ is an asymptotically stable equilibrium of the closed-

loop system

ẋ = f (x)+g(x)ψ(x,φ(x)).

The above theorem can be interpreted as follows: Given

the system (5) and the target dynamical system (6), find if

possible, a manifold M such that

1) restriction of the closed loop system to M is the target

dynamics

2) M can be rendered invariant and attractive.

The left hand side of (8) gives an implicit description of M

while the right hand side is a parametrized description. The

control law u = c(π(ξ )) renders M invariant. A measure of

the distance of the system trajectories to M is given by z,

called as off-the-manifold coordinate. Our aim is to design

a control law u = ψ(x,z) that keeps the system trajectories

bounded and drives the coordinate z to zero.

IV. CONTROLLER SYNTHESIS USING I&I

In this section we synthesize a stabilizing controller for

the SMIB system with a CSC. The control system is given

by (4) and it consists of two subsystems- one is the second

order swing equation, a slow system, and the other is the

CSC which is a fast dynamics as compared to the swing

dynamics.

We use the Immersion and Invariance methodology de-

scribed earlier to synthesize the controller.

Target system

Selection of the target dynamics in which the closed loop

system is immersed, is a nontrivial task, in general. As

discussed in [27] we make a natural choice for the target

system as the mechanical subsystem. As a first step in the

control synthesis we define a two dimensional dynamical

system as follows: Let ξ = [ξ1,ξ2]
T ∈ S1×IR be the state of

the dynamical system.

ΣT :

{

ξ̇1 = ξ2

ξ̇2 = − ∂V (ξ1)
∂ξ1

−R(ξ )ξ2
(12)

where V (ξ1) denotes the potential energy of the system

which is to be chosen, and R(ξ1,ξ2) is a (possibly nonlinear)

damping function which is to be chosen. The target system

ΣT is a simple pendulum system with a stable equilibrium

ξ⋆ = (ξ1⋆
,0) with the energy function

H(ξ1,ξ2) =
1

2
ξ 2

2 +V (ξ1). (13)

To ensure the stability at the equilibrium we assume that

Assumption 4.1:

1) The potential energy function V (ξ1) satisfies










∂V (ξ1)
∂ξ1

∣

∣

∣

ξ1=ξ1⋆

= 0

∂ 2V (ξ1)

∂ξ 2
1

∣

∣

∣

ξ1=ξ1⋆

> 0

2) The damping function satisfies R(ξ⋆) ≥ 0.

Immersion Condition

Once we define a desired target dynamics, we define a

mapping π : S1×IR → IR3 as follows:

π(ξ ) : =





ξ1

ξ2

π3(ξ )



 (14)

where π3(ξ ) is to be chosen. Then with this choice of π(ξ )
and the target dynamics (12), Equation (7) becomes







ξ2

1
M

[

P−Dξ2 −EV
sinξ1

π3(ξ )

]

1
Tdc

[−π3(ξ )+ x3⋆
]







+





0

0
1

Tdc



c(π(ξ ))

=







1 0

0 1
∂π3(ξ )

∂ξ1

∂π3(ξ )
∂ξ2







[

ξ2

− ∂V (ξ1)
∂ξ1

−R(ξ )ξ2

]

.

(15)

Next we choose π3(ξ ) and c(π(ξ )) to satisfy the above

equation as follows: The first row of (15) is already satisfied.

From the second row we have

1

M

[

P−Dξ2 −EV
sinξ1

π3(ξ )

]

= −
∂V (ξ1)

∂ξ1
−R(ξ )ξ2.
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We choose R(ξ ) = D
M

and V (ξ1) =−β cos ξ̃1 for some β > 0

(to be chosen). We use ξ̃1 to denote ξ1−ξ1⋆
. Then the above

equation becomes

1

M

[

P−EV
sinξ1

π3(ξ )

]

= −β sin ξ̃1

from which we get

π3(ξ ) =
EV sinξ1

P+Mβ sin ξ̃1

.

Notice that π3 is a function of ξ1 only. Here we make the

following assumption:

Assumption 4.2: β <
P
M

.

This assumption makes π3(ξ1) bounded for all ξ1. From the

third row we have

1

Tdc

[−π3(ξ1)+ x3⋆
]+

1

Tdc

c(π(ξ )) =
∂π3(ξ1)

∂ξ1
ξ2.

By substituting for π3(ξ1) and V (ξ1) in the above equation

we get

c(π(ξ )) = TdcEV ξ2







cosξ1

P+Mβ sin ξ̃1

−
Mβ sinξ1 cos ξ̃1
[

P+Mβ sin ξ̃1

]2







+
EV sinξ1

[

P+Mβ sin ξ̃1

] − x3⋆
.

Thus we get π(ξ ) and c(π(ξ )).

Implicit Manifold

The manifold M is implicitly described by

M =
{

x ∈ S1×IR2|φ(x) = 0
}

with

φ(x) = x3 −π3(x1)

= x3 −
EV sinx1

P+Mβ sin x̃1

where x̃1 denotes x1 − x1⋆
.

Manifold attractivity and trajectory boundedness

Here the off-the-manifold coordinate is z = φ(x) and we

have that

ż = ẋ3 − π̇3(x1)

= ẋ3 −
∂π3(x1)

∂x1
ẋ1

=
1

Tdc

[−x3 + x3⋆
+ψ(x,z)]−

∂π3(x1)

∂x1
x2

=
ψ(x,z)

Tdc

+

[

−x3 + x3⋆

Tdc

−
∂π3(x1)

∂x1
x2

]

.

To ensure the boundedness of the trajectories of the off-

the-manifold coordinate z and also that limt→∞ z(t) = 0 we

take

ż = −γz, γ > 0 (16)

and then we have

ψ(x,z) = Tdc

[

−γz+
x3 − x3⋆

Tdc

+
∂π3(x1)

∂x1
x2

]

.

The control law u(x)

Next we calculate the control law as

u(x) = ψ(x,φ(x))

= Tdc

[

−γφ(x)+
x3 − x3⋆

Tdc

+
∂π3(x1)

∂x1
x2

]

= (x3 − x3⋆
)−Tdcγ

[

x3 −
EV sinx1

P+Mβ sin x̃1

]

−TdcEV x2

[

Mβ sinx1 cos x̃1

[P+Mβ sin x̃1]
2

]

+TdcEV x2

[

cosx1

P+Mβ sin x̃1

]

. (17)

Finally, we establish boundedness of the trajectories of

the closed-loop system (4) with the control law (17) and the

off-the-manifold coordinate z

ẋ1 = x2

ẋ2 = 1
M

[

P−Dx2 −EV
sinx1

x3

]

ẋ3 = 1
Tdc

[−x3 + x3⋆
+u] ,

ż = −γz.



















(18)

Here x ∈ S1×IR2 and z ∈ IR. This implies x1 ∈L∞ where L∞

denotes the space of bounded functions. Now,

ẋ2 =
1

M

[

P−Dx2 −EV
sinx1

x3

]

= −
D

M
x2 +∆(x1,x3) (19)

where ∆(x1,x3) = 1
M

[

P−EV
sinx1

x3

]

. From Assumption 2.1

we have x3 ≥ d2 > 0 and also x1 is bounded as stated earlier.

This implies ∆(x1,x3) is bounded. As we have D > 0 and

M > 0, (19) is an asymptotically stable linear system in x2

with a bounded driving function ∆(x1,x3). This implies x2 ∈
L∞.

Next, we have x3 = z+π3(x1). We have from (16) that z is

bounded. Also, from Assumption 4.2 we have that π3(x1) is

bounded for all x1, and hence we can conclude boundedness

of x3.

The above discussion on the control synthesis can be

summarized in the following proposition which is the main

result of this paper.

Proposition 4.1: The closed-loop system (4) with the con-

trol law (17) is asymptotically stable at x⋆.

Proof:

Based on the arguments given above. 2

V. SIMULATION RESULTS

In this section we give simulation results for the control

law given by (17). The simulation parameters are [26]: M =
8

100π ,D = 2
100π ,E = 1.075(p. u.),V = 1(p. u.),x′d = 0.85,P =
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Fig. 2. Open loop performance
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Fig. 3. Closed-loop performance with γ = 20 and β = 1

1.1(p. u.) and we assume Tdc = 0.1. The tuning parameters

are γ and β . The performance of the controller was assessed

for the following two different transients:

1) A short circuit fault occurs on the far end of the

transmission line at time t = 20 s for a duration of

about 0.1 s.

2) An open circuit fault occurs on one of the two parallel

transmission lines resulting in change in x′d at time

t = 60 s for a duration of about 0.1 s.

The open loop performance as well as closed-loop perfor-

mance is presented in the plots. Figure 2 shows the open loop

response of the system to both the transients. The open loop

response shows heavy oscillations in the swing angle and the

angular velocity. For the first transient the magnitude of the

oscillations is greater as compared to the second transient.

To assess the closed-loop performance we choose different

values for β and γ . The tuning parameter β decides the shape

of the energy function for the closed-loop system, and γ
decides the rate at which the closed-loop system trajectories

come closer to the desired trajectories.

Figure 3 shows simulation plots for γ = 20 and β = 1. In

this case the oscillations in the swing angle are significantly

slow and have smaller amplitude as compared to the open

loop response. Also, the response of the angular velocity

shows very small amplitude oscillations.

In the second case we keep γ = 20 and change β = 1

to β = 5. The simulation results are shown in Figure 4.
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Fig. 4. Closed-loop performance with γ = 20 and β = 5
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Fig. 5. Closed-loop performance with γ = 100 and β = 5

In this case the closed-loop response improves slightly in

magnitude, however, it is oscillatory in nature. The angular

velocity experiences rapid oscillations as compared to the

first case. This further reflects in the response of the swing

angle. This shows the effect of increase in β , that is, an

increase in β introduces oscillations in the load angle and

the angular velocity.

In the third case we keep β = 5 and increase γ = 20 to

γ = 100. Figure 5 shows simulation plots. In this case the

oscillatory form of the closed-loop response is the same as

that of the second case, since β is kept unchanged. However,

oscillations decay fast as compared to the first two cases,

which is the effect of an increase in γ .

Further, for a short circuit fault on the far end of the

transmission line at time t = 20 s and duration of about 0.5 s

the open loop system was found to be unstable. The closed-

loop response is shown in Figure 6 for γ = 100 and β = 40.

VI. CONCLUSION

In this paper we presented a nonlinear control law based

on Immersion and Invariance methodology to asymptotically

stabilize the SMIB system with a CSC at an equilibrium. The

SMIB was described by the swing equation model and the

actuator by a first order model. A simple pendulum system

with a suitable energy function was chosen as the target

dynamics. We have chosen a manifold such that the closed

loop system restricted to the manifold is the target dynamics.
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Fig. 6. Closed-loop performance with γ = 100 and β = 40

The control law has been synthesized in order to render the

manifold invariant and attractive. A few simulation results

have been provided to show the controller performance.
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