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Abstract— The problem of designing a digital controller is
considered with the novelty of explicitly taking into account
the computation cost of the controller implementation. A class
of controller emulation methods inspired by numerical analysis
is proposed. Through various examples it is shown that these
methods are capable of outperforming the conventional ones,
in the sense of achieving a better performance/computation
cost tradeoff. The performance indexes consider (i) the error
between the continuous-time controller to be emulated and the
digital controller; and (ii) the closed-loop induced norm.

I. INTRODUCTION

With the advent of cost-effective processors, fast and

reliable analog-digital (A/D) and digital-analog (D/A) con-

verters, digital control has become the tool per excellence

for controller implementation. Several approaches have been

taken for designing a digital controller, essentially following

two main directions: emulation and direct design. While

in emulation, given a continuous-time controller the digital

controller is obtained by using a numerical discretization

method, in direct design, a discrete-time model of the plant

is first obtained and the digital controller is then synthesized

in discrete-time. We also include in this latter group the

sampled-data design approach, presented in [1], [2], that

directly takes into account in the design the continuous-

time performance specifications. These approaches consider

a fixed sampling period h for the measurements and ac-

tuation update, and recover the performance of the ideal

continuous-time linear controller as h → 0 [1]. However,

using a very small sampling period becomes impractical for

digital controllers implemented on embedded processors with

limited computation resources. Moreover, the computation

effort is tied in with the energy consumption of the processor,

which generally needs to be kept as small as possible. This

motivates the search for efficient digital controllers with

minimal computation requirements, which is the subject of

the present paper. More specifically, the problem addressed

herein can be stated as a tradeoff performance/cost: Given a

plant to be controlled with an A/D and D/A interface, find

a digital controller algorithm to satisfy a given performance

criteria with the least computation cost.

The work of C.Silvestre and D.Antunes was partially supported by FCT
(ISR/IST pluriannual funding) through the POS Conhecimento Program that
includes FEDER funds, the PTDC/MAR/64546/2006 OBSERVFLY project,
and the FCT PhD Student Scholarship, SFRH/BD/24632/2005.

The work of J. Hespanha was supported by the National Science
Foundation under Grant No.CNS-0720842

D. Antunes and C. Silvestre are with the Dep. of Elect. Eng. and
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The emulation approach is followed with the novelty of

directly taking into account the computation cost of the

digital controller implementation. In this setting, the main

contributions are two fold (i) show that nonuniform sampling

can reduce the controller computation cost; and (ii) propose a

class of emulation methods inspired from numerical analysis

that can significantly outperform classical implementations,

in the sense of achieving a better performance/computation

cost tradeoff. By nonuniform sampling we mean that the

output sampling and actuation update operations might not

occur at evenly spaced time instants. This is motivated by the

availability of increasingly faster A/D and D/A converters,

which generally allow for on demand conversions.

The performance indexes considered herein are similar

to existing ones in the literature for related problems and

consider (i) the error between the continuous-time controller

to be emulated and the digital controller interfaced through

A/D and D/A converters [3], [4]; and (ii) the closed-loop

L2 induced norm of the feedback interconnection of a

continuous-time plant with the digital controller [1].

Regarding related work in the literature, see [1], [3], for a

discussion of various issues associated with digital control,

including the computation cost. This latter paper, outlines

performance indexes to evaluate digital controller implemen-

tations, some of which, are used in the present paper. With

respect to the relation between numerical analysis methods

and control, see [5], where the similarities between the

two areas are pointed out in terms of stability definitions.

Among the many references available in the literature for

non-conventional digital control algorithms, see [6] for a

discussion on computation saving.

The remainder of this paper is organized as follows.

Section II presents the problem statement and Section III

discusses the performance indexes and costs considered

herein. Section IV outlines numerical integrations methods

and provides an example of their applicability to control. The

proposed emulation method is presented in Section V, fol-

lowed by the results in the considered performance indexes

in Section VI. The conclusions are provided in Section VII.

Notation: The space of square integrable functions

defined in [0,∞) will be denoted by L2, and the space of

square summable sequences {x0, x1, . . .} will be denoted by

l2. Further notation will be added when necessary.

II. PROBLEM STATEMENT

This paper addresses the digital implementation of a SISO

controller to be connected to a continuous-time process.

The input of the controller is a sequence yi that results

from sampling the continuous-time process output y(t). The
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controller output is a sequence ul from which the continuous-

time control signal u(t) is generated by a hold device.

Formally, the sample and hold operations are modeled by

the following operators

Sσi
: L2 7→ l2, yi = y(σi)

Hτl
: l2 7→ L2, u(t) = ul, t ∈ [τl, τl+1), (1)

where the elements of the sequences of sampling times

{σi}i≥0, 0 < σi < σi+1, and actuation updating times

{τl}l≥0, 0 < τl < τl+1, take values on R≥0. We assume

that the measured output sampling and actuation update

operations are available at any time instant and the sampling

and updating rates might be nonuniform, that is, σi+1 − σi

and τl+1 − τl do not need to be either constant or equal.

In broad terms, given a plant with a D/A and A/D interface

(1) and a performance index related to the closed-loop

behavior we want to find an efficient design method for the

digital control algorithm yielding a good tradeoff between

the performance index and the cost. Hence, we need to

define what we mean by (i) digital control algorithm, (ii)

performance index, (iii) computation cost, and (iv) efficient

design method.

By Digital Control Algorithm (DCA) we mean a numerical

algorithm implemented digitally, that causally maps yi into

ul, that is, provides u(τl) based on {y(σi) : σi ≤ τl}.

Each DCA has associated a cost, measured for example

in terms of computations per second, and an index, which

measures the performance of the DCA according to some

specifications. The two main ingredients to define a DCA

are (i) the selection of the sampling times τl and σi and

the associated input-output map from ul to yi; and (ii)

implementation of this map in terms of a computational al-

gorithm. The value of the performance index, depends solely

on (i), whereas the computation cost depends most directly

on (ii), but also indirectly on (i). To discuss computational

algorithms for DCA and their associated costs, we need to

provide specific pseudocode for (ii) that implements their

input output map with a reduced amount of computation.

For example, the implementation of a FIR system of order

N working at a sampling period of h, is specified by the

sampling times τk = σk = tk, tk+1 − tk = h and input-

output map Q(z) =
∑N

i=0 ci+1z
−i and can be described by

the following computational algorithm

DCA QFIR

Initializations, Y = zeros(1, N).
At each time tk do,

uk = c1y(tk) +
∑N

i=1
ci+1Y [i],

shiftright(Y ),
Y [1] = y(tk).

However, the same input-output map can be implemented

with a state-space based computational algorithm which

typically requires a different number of operations.

The performance index and cost are simply maps, that

assign a positive number to a DCA, and are denoted by I
and C, respectively. By convention, we intend to minimize

I and C. Both the emulation methods considered herein

and conventional methods depend on a design parameter η,

such as the sampling period h, that is chosen to yield a

good tradeoff between performance and computation cost.

A reasonable way to compare the efficiency of DCAs is

in terms of the tradeoff obtained while varying η. More

specifically an efficiency curve for a parameterized class of

DCAs A is defined as the set

(C(A(η)), I(A(η))), η ∈ Ξ. (2)

A class of DCAs is more efficient than other if its efficiency

curve lies bellow.

III. COMPUTATION COST AND PERFORMANCE INDEXES

A. Cost

The computation cost of implementing a digital controller

in a digital processor depends on the number of multiplica-

tions, additions, and memory accesses, among other factors.

As a good approximation it suffices to consider the number

of multiplications per second, since the computation time

in a digital processor is often largely dominated by this

number [7]. This is the approximation followed in the present

paper. The efficient structures for implementing a digital filter

discussed in [7] are the cascade, parallel and direct forms.

These require a minimum of
(M+N+1)

h
multiplications per

second for implementing a filter at a sampling period h

taking the form
∑

M

k=0
bkz−k

1−
∑

N

k=1
akz−k

. Notice that, in general, M =

N for the digital controllers resulting from zero-order hold

(ZOH), first order hold (FOH), and bilinear discretizations

[3], which reduces to M = N − 1 for the ZOH if the

continuous-time controller is strictly proper.

B. Performance Indexes

The first two performance indexes considered herein are

related to the error system shown in Fig. 1, where K(s)
is a stable continuous-time controller that we intend to

approximate by the DCA A, and F (s) is a stable strictly

proper system. The first performance index is the induced

norm of the operator L2 7→ L2, e = (K − Hτl
ASσi

)Fw,

and it will be denoted by IE(.). Notice that this norm is

the same as the one considered in the extensively studied

model reduction and weighted model reduction problems,

and therefore there is a bulk of knowledge on how this open-

loop norm impacts on the closed-loop performance [3]. For

example, denoting the plant transfer function by P (s) and

choosing F = P
1+KP

, if the L2 induced norm w 7→ e is less

than 1 one can guarantee closed-loop stability. The second

performance index, denoted by IES(.), is a sampled version

of the previous one and is given by the induced norm of

the operator L2 7→ L2, es = Hτl
Sτl

(K − Hτl
ASσi

)Fw. A

similar performance index is considered in [4] for the typical

case, tk = τk = σk, tk+1 − tk = h.

The last performance index is given by considering di-

rectly the closed loop performance in the four-port frame-

work depicted in Fig. 2, defined in terms of the closed-loop

L2 induced norm w 7→ z. This performance index is denoted

by ICL(A) := ‖F(G,Hτl
ASσi

)‖L2 7→L2
, where F denotes

the feedback connection.
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Fig. 1. Error System
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Fig. 2. Closed-loop system

Notice that to compute both induced norms associated

with Fig. 1 we need to restrict K(s) and A to be stable,

and F (s) must be strictly proper, otherwise the norm of

the operators w 7→ es, w 7→ e would be unbounded

[1], [4]. The DCAs considered herein have an input-output

map description in terms of periodically time-varying linear

systems. The DCA A is defined to be stable if this system

description is stable, which can be easily verified [8]. The

induced norms considered can be computed using extensions

to the periodic case of the sampled-data lifting tools provided

in [1]. The derivations are omitted due to space limitations.

IV. NUMERICAL ANALYSIS AND EMULATION

METHODS

The traditional emulation methods used in control are

inspired in numerical techniques for ODEs and in numerical

integration methods. This originates from the fact that a

linear controller K : L2 7→ L2 can be equivalently described

by the linear ODE
{

ẋ = Ax + By, x(t) = 0
u = Cx + Dy

,

or by the convolution integral

u(t) =

∫ t

0

C exp(A(t − s))By(s)ds + Dy(t) .

The Bilinear (particular case of Adams-Moulton), Runge-

Kutta, Adams-Moulton and Adams-Bashforth methods [9]

are numerical methods with a direct application in control by

their iterative nature. The ZOH, FOH are based on approx-

imating the convolution integral. This integral interpretation

is the basis of the method to be presented shortly. Therefore

we briefly outline numerical integration methods and present

an example of application to controller emulation.

A. Numerical Integration and Gaussian Quadrature

The numerical integration methods approximate an inte-

gral of the form

I(f) =

∫ b

a

W (x)f(x)dx (3)

by a quadrature formula Q(f) =
∑I

i=0 Aif(xi), a ≤ xi <
xi+1 ≤ b. We assume the weighting function W (x) verifies:

P1:
∫ b

a
|x|nW (x)dx is integrable and finite for all n ≥ 0.

The integration methods are classified by the degree of

precision P , which is the largest polynomial order for which

the quadrature formula is exact, meaning that

Q(xj) = I(xj), j ∈ {0, 1, . . . , P}. (4)

Well-known examples, are the Trapezoidal and Simpson

formulas, which are particular cases of the Newton-Cotes

formulas, obtained by using evenly spaced nodes, xi =
a + i

I
(b − a), i = 0, . . . , I . For future reference we write

the equations for the trapezoidal rule QT and for the zero-

order approximation rule QZ , which have degree of precision

P = 1 and P = 0, respectively

QT = f(a)(

∫ b

a

(x − b)

a − b
W (x)dx)+f(b)(

∫ b

a

(x − a)

b − a
W (x)dx)

QZ = f(a)

∫ b

a

W (x)dx. (5)

From these class of methods, denominated simple rules, com-

posite rules can be constructed, by dividing [a, b] into smaller

intervals, applying an integration method with degree of

precision P on each interval, and summing the contributions.

The formula is then exact for piecewise polynomials of order

P . An optimal method, in the sense that attains the maximal

degree of precision P = 2I+1 is called gaussian quadrature.

This method amounts to choosing the 2(I + 1) degrees of

freedom Ai and xi, as to make the set of equations (4) hold

for P = 2I + 1. These are nonlinear equations, difficult

to solve for large I , and therefore a different approach is

typically followed. Suppose besides P1, W (x) verifies:

P2: W (x) does not change sign in [a, b].

P3:
∫ b

a
W (x)g(x)dx = 0 for some nonnegative continuous

function g(x), then g(x) ≡ 0 on (a, b).

Without loss of generality P2 can be replaced by assuming

W (x) is non-negative in [a, b]. Then, the gaussian quadrature

nodes xi are given by the roots of the polynomial of order

I + 1, from the set of orthogonal polynomials according to

the inner product

< pn(x), pm(x) >=

∫ b

a

W (x)pn(x)pm(x)dx, (6)

which can be obtained by Gram-Schmidt orthogonalization

[9]. The coefficients Ai can then be obtained by solving the

system (4) for P = I , which amounts to a linear set of

equations after replacing the nodes xi.

B. Example of application to controller emulation

To gain intuition, we start by considering a first order

controller, which we intend to approximate by a DCA,

K =

{[

ẋ
u

]

=

[

a b
1 0

] [

x
y

]

, x(t0) = 0 , (7)

and assume the actuation updating times are fixed at a given

rate. Denoting by H the actuation update period, the value
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of the actuation signal u(t) provided by (7) at evenly spaced

sampling times τl, τl+1 − τl = H , verifies

u(τl+1) = adu(τl) + IB(y
l
),

where ad = exp(aH), y
l
(t) = y(τl + t), t ∈ [0,H) and

IB(y
l
) =

∫ H

0
exp(a(H−s))y

l
(s)ds. This formula motivates

a DCA that implements the following recursion

ul+1 = adul + QB(y
l
), (8)

where QB(y
l
) =

∑I

i=0 Riyl
(σi) is a quadrature formula

for IB(y
l
). This DCA can be implemented as follows

DCA E
Initializations, U = 0.
At each time t = lH + σi,

save y(t) in memory.
At each time tl = lH do,

U = adU + QB(y
l−1

),

ul = U.

We consider five integration methods for the quadrature

formula QB . The first two use uniform sampling and are

composite rules considering at each of L intervals of length
H
L

(i) the zero-order approximation simple rule; and (ii)

the trapezoidal simple rule (5). The associated DCAs are

denoted (i) ZOH; and (ii) FOH, because they are equivalent

to consider a discretization at a fast sampling rate, h = H
L

,

by the ZOH and FOH methods, respectively, and provide

the actuation only at times kH . Using this same procedure

for the bilinear discretization yields another method, denoted

by (iii) BIL. The remaining two use nonuniform sampling

based on (iv) a composite rule considering at each interval

of length H
L

a gaussian quadrature formula with 2 nodes,

I = 2L − 1; and (v) pure gaussian quadrature with I + 1
nodes. These are denoted (iv) comp. gauss; and (v) gauss.

The number of multiplications per second is (I + 1)H for

(i) and (I + 2)H for the remaining methods.

A reasonable performance index is the norm of the error

sequence ‖ul−u(τl)‖l2 , when the input of the controller y(t)
belongs to a certain class of signals. This index corresponds

to IES

H
, where IES is the index presented in Section III-B,

when the class of signals is {y = Fw,w ∈ L2}, where F (s)
is the filter shown in Fig.1. It is possible to write the DCA

as a linear periodic input-output map and therefore ISE can

be computed as indicated in Section III-B.

Example 1: Consider K(s) = 1
s+1 , H = 0.25, and

F (s) = (
w2

c

s2 +
√

2wcs + w2
c

)2, (9)

for wc = 2π. The efficiency curves (2) in the index IES

H

are shown in Fig. 3 in a logarithmic scale, for different

values of the parameter η = I . The results are impres-

sive showing that for this performance index, choosing the

sampling times coincident with gaussian quadrature nodes

can drastically outperform the conventional methods. It is

interesting to notice that, in this example, the DCAs inherits

the characteristics of the numerical method used for QB [9].

For example, in the case of the trapezoidal rule the error
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Fig. 3. Efficiency curves in index IES for DCAs of the illustrative example

decreases by four when the number of integration nodes for

QB doubles. We will see, however, that in other performance

indexes the improvement is not so drastic.

V. NEW EMULATION METHOD

In this section, we present an emulation method based

on numerical integration, and particularize it for gaussian

quadrature.

A. Method Description

The continuous-time controller to be emulated by a DCA

is denoted by
[

ẋ
u

]

=

[

A B
C D

] [

x
y

]

, x(t0) = 0. (10)

Consider a time-interval H , which determines the periodicity

of the DCA, and the time sequence ρr = rH . Between times

ρr and ρr+1, the actuation is updated at times t = ρr + τl,

with τl ∈ (0,H) ∀l ∈ {1, . . . , L − 1} and τ0 = 0. Using

these definitions, the continuous-time controller (10) can be

written in the form
{

xr+1 = Adxr + B(y
r
)

ur(τl) = Clxr + Dy
r
(τl) + Dl(y

r
)

where the output is considered at τl and Ad = exp(AH),
Cl = C exp(Aτl), y

r
(t) = y(ρr + t), ur(t) = u(ρr + t),

t ∈ [0,H). The integral operators B and Dl can be written

in the form

B(y
r
) = IB(y

r
) = [I1

B(y
r
) . . . IN

B (y
r
)]T

In
B(y

r
) =

∫ H

0

Wn
B(s)y

r
(s)ds,

Dl(y
r
) = I l

D(y
r
) =

∫ τl

0

W l
D(s)y

r
(s)ds, (11)

where, denoting by en ∈ R
1×N the nth standard basis vector,

Wn
B(s) = en exp(A(H − s))B, n∈ {1, . . . , N}

W l
D(s) = C exp(A(τl − s))B, τl ∈ [0,H),

l ∈ {1, . . . , L − 1}. (12)
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To obtain a DCA we approximate these operators by the

quadrature formulas,

Qn
B(y

r
)=

In

∑

i=0

Rn
i y

r
(σn

i ), Ql
D(y

r
)=

Jl

∑

j=0

Sl
jyr

(νl
j). (13)

The proposed DCA can then be described by

DCA H
Initializations, X=zeros(N,1).

At each time t = rH + σn
i and t = rH + νl

j ,
save y(t) in memory.

At each time t = rH do,
X = AdX + QB(y

r−1
).

At each time t = rH + τl do,

ul = ClX + Dy(t) + Ql
D(y

r
).

For simplicity, we consider the same number of nodes

for the formulas Qn
B , that is, In = I , and evenly spaced

actuation update times τl+1 − τl = H
L

, l ∈ {0, . . . , L − 1}.

Then, the DCA can be parameterized by

(H,L, J l, Methl, I, MethI), l ∈ {1, . . . , L − 1}, (14)

where H is the time period of the DCA, L is the number

of actuation updating times τl within a period H . The

parameters (J l, Methl) and (I, MethI) provide the number

of integration nodes and integration method used in Ql
D, and

Qn
B , ∀n, respectively, and determine σn

i and vl
j .

We determine next the computation cost (number of multi-

plications) of H, when an efficient block-diagonal realization

for (10) is considered. Assuming A has Nr real and Nc pairs

of complex conjugate simple eigenvalues, N = Nr + 2Nc,

there exist a block-diagonal realization taking the form

A = diag(a1, . . . , aNr
, A1, . . . , ANc

), ai ∈ R, Ai ∈ R
2×2

B =
[

b1 . . . bNr
bT

c1 . . . bT

cNc

]

T

, bi ∈ R bT

ci ∈ R
2×1

C =
[

1 . . . 1 cc1 . . . ccNc

]

, cci = [1 cdi] ∈ R
1×2. (15)

The number of multiplications of the DCA H along a

period H is given by M = Mr + Mc + MH , where Mr =
Nr + Nr(I + 1) + Nr(L − 1), Mc = 4Nc + 2Nc(I + 1) +
Nc(2L − 1), and MH =

∑L−1
l=1 (J l + 1). The terms in Mr

and Mc account for the multiplications of Ad, QB and Cl,

and MH for the multiplications of QD. Adding up the terms

yields,

M = N(I + 1 + L) +

L−1
∑

l=1

(J l + 1) + 3Nc. (16)

The total number of multiplications M should be com-

pared to MC = (2N + 1)H
h

= (2N + 1)L, which is the

number of multiplications in a time period H needed by a

conventional implementation of a digital controller with the

same actuation updating period h = H
L

. Notice that M can

be smaller than MC for large N . This means we can apply

numerical integration methods with high degree of precision

even for small I and J l, use less number of multiplications

and potentially obtain better results, due to the high efficiency

of the numerical methods illustrated in Example 1.

It is possible to show that this DCA H is a linear periodic

input-output map, and therefore the performance indexes

considered in Section III can be computed as indicated

therein.

B. Gaussian Sampling

Due to the optimality of gaussian quadrature in the sense

already mentioned, we show how to particularize the pro-

posed method to the case where the nodes and weights of the

quadrature formulas Qn
B and Ql

D, given by (13), are chosen

according to gaussian quadrature. The caveat is that the

orthogonal polynomial approach, addressed in Section IV-

A, requires the technical conditions P2 and P3, besides P1.

In the next lemma we give conditions on the time period H
under which these conditions hold.

Lemma 5.1: There exists a block-diagonal realization (15)

of (10) such that the weighting functions W l
D(s), Wn

B(s),
given by (12), verify conditions P1-P3 in the interval [a, b] =
[0,H] where H ∈ [0,min{ǫ1, ǫ2}) for

ǫ1 = sup{ǫ : C exp(At)B does not change sign in [0, ǫ)}
ǫ2 =

{

π
max(acn) if ∃n : acn 6= 0

∞ otherwise
,

where acn, n ∈ {1, . . . , Nc} are the imaginary parts of the

eigenvalues of A.

VI. RESULTS

In this section we test the proposed emulation method in

the three performance indexes IES , IS and ICL.

A. Error System Norms IE , IES

Consider the continuous-time controller taken from

[10](pp.565)

K(s) = − 94.5(s + 7.98)(s + 2.52)

(s + 4.28 ± 6.42j)(s + 10.6)
,

and the filter F (s) of Fig.1 taking the form (9) for wc = 10π.

A first DCA M1 is obtained for the parameters (14) L = 4,

I = 1, J l = 1, ∀l, using the pure gaussian quadrature

for Methl and MethI . A second DCA M2 is obtained

for the same parameters except for I = 0, J l = 0, ∀l.

For an actuation update period of h = H
L

, the number of

multiplications per second (16) is 27
4h

for M1, 21
4h

for M2,
6
h

for the ZOH, and 7
h

for the FOH and bilinear methods. The

efficiency curves (2) are shown in Fig. 4 in the index IES

for η = h ∈ {0.04/2i−1, i ∈ {1, . . . , 8}}, and in Fig. 5 in the

index IE for η = h ∈ {0.04/2i−1, i ∈ {1, . . . , 5}}. In the

index IES very significant amount of computation savings

are obtained, whereas for IE the results are more moderate.

However, by properly choosing the degrees of freedom, as

in the choice of M2, there is still a significant amount of

computation savings.

B. Closed Loop

We consider here a standard L2 induced norm problem,

depicted in Fig. 7, which can be formulated in the framework

of Fig. 2.

The plant P is a simple double integrator P = 1
s2 . The

frequency weights W1(s) = 1, W2(s) = 0.2, Z1(s) = 0.5,
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Fig. 7. H∞ problem set-up

and Z2(s) = 0.5( s+10
s+100 )2 are chosen in order to make of

the L2 induced norm of G : [w1 w2] 7→ [z1, z2], a useful

index of the closed-loop behavior of the system, which we

desire to minimize. The continuous-time optimal controller

that minimizes the closed-loop induced norm is given by

Kopt(s)=− 51.41(s3 + 201.12s2 + 1.02.104s + 1.12.104)

s4 + 68.16s3 + 1636s2 + 1.98.104s + 1.28.104

For evaluating the performance of the digital imple-

mentations we limited the bandwidth of the disturbances

w2 by setting the frequency weight W2(s) to W2(s) =
p2

2

s2+
√

2p2s+p2

2

with p2 = 100. This is in fact needed, to make

the norm-computation well-posed[1]. The controller Kopt in

this performance index yields γ = ‖F(G,Kopt)‖L2 7→L2
=

0.7283. Figure 6 shows the results in the performance index

ICL(M) := ‖F(G,Hτl
MSσi

)‖L2 7→L2
− γ for the conven-

tional methods and for a DCA M with parameters (14),

L = 5, I = 0, and J l = 0, ∀l and using the pure gaussian

quadrature for Methl and MethI . The set of values considered

for the actuation update rate η = h, which is the parameter

of the efficiency curves (2), is h ∈ {0.00125/2i−1, i ∈
{1, . . . , 5}}. Once again, the proposed method outperforms

the conventional ones.

VII. CONCLUSIONS

The design of computationally efficient digital controllers

was tackled with a direct concern with the computation

cost in the continuous-time controller emulation procedure.

A technique was provided that takes advantage of highly

efficient numerical integration methods such as the gaussian

quadrature. The results show that moving away from the

paradigm of using a uniform sampling rate can lead to

significantly more efficient methods.
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