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Abstract— In this paper the identification of SISO Linear
Parameter Varying (LPV) models when both the output and the
time-varying parameter measurements are affected by bounded
noise is considered. First, the problem is formulated in terms of
Error-in-variables (EIV) identification in presence of bounded
noise. Then, a polytopic outer approximation of the feasible
parameter set (FPS) and the parameters uncertainty intervals
(PUI) of the LPV model are computed solving the EIV problem.

Index Terms— Linear Parameter Varying, bounded uncer-
tainty, errors-in-variable, parameter bounding, linear program-
ming.

I. INTRODUCTION

Most physical systems are inherently nonlinear, and,

though in some cases they can be represented by linear

models over a restricted operating range, nonlinear repre-

sentations are often required for their proper modeling. In

recent years, among the many different available techniques

to derive mathematical description of nonlinear systems,

Linear Parameter Varying (LPV) modeling approach received

a major attention from the identification and control research

community, mainly due to the strong connection between

LPV models and Gain Scheduling Control which, thanks to

the relevant research efforts devoted to the subject in the last

two decades, is now recognized as an effective technique for

the control of a large class of nonlinear systems (see the

survey paper [1] for a thorough review of the literature on

the subject).

LPV models belong to the more general class of linear

time-varying models and, roughly speaking, they can be

defined as linear systems where either the matrices of the

state equations or the coefficients of the difference equation

relating the input and the output signals depend on one or

more time varying parameters whose real-time measurement

are assumed to be available. According to [1], a linear

parameter varying model of a nonlinear plant can be obtained

by means of two different approaches. The first one, called

linearization scheduling, is based on Jacobian linearization

of the nonlinear system around a family of equilibrium

points parameterized by a set of measurable parameters

(the so called scheduling variables). Such a linearization

leads to a family of linear models parameterized by the

scheduling variables which actually represent an LPV model

of the nonlinear plant. The second approach is the so

called quasi-LPV scheduling which is based on the idea
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of hiding nonlinearities in the system equations by suitably

redefining some measurable state variables as time-varying

parameters (see [1] for details). A relatively small number

of papers can be found in the literature which address the

problem of identifying an LPV model from experimental

data, although a rapidly increasing attention has been devoted

to the problem in recent years. The paper by Nemani,

Ravikanth and Bamieh [2] seems to be the first contribution

addressing the problem. They consider linear parameter

varying models with a single time-varying parameter and

assume that the measurement of all the state variables are

available. Both the cases of exact and noisy measurement

are considered and the identification of the parameter of the

LPV model is reformulated as a least squares estimation

problem. The proposed algorithm is proved to be convergent

under some assumptions on the system. In the paper by

Lee and Poolla [3] LPV models with multiple time-varying

parameters are considered under the assumption that the

parameter dependence can be written as a Linear Fractional

Transformation (LFT). A parameter estimation scheme based

on the minimization of a prediction error cost function by

means of nonlinear (nonconvex) optimization is proposed. In

order to minimize the effect of the presence of local minima

on the estimation accuracy, a suitable boostrapping approach

is proposed for the initialization of the estimation procedure

for the particular case of LPV models whose parameter

dependence is affine. Bamieh and Giarré in [4] consider

the identification of LPV input-output models assuming that

measurements of inputs, outputs and scheduling parameters

are available. They show that the identification problem

can be reformulated in terms of a linear regression model

estimation and provide compact formulae for Least Mean

Square and Recursive Least Square algorithms solving the

problem. Besides, persistency of excitation conditions in

terms of inputs and scheduling parameters trajectories are

derived for the case of LPV models with polynomial time-

varying parameters dependence. The proposed technique has

been applied to rotating stall and surge control problem in

[5]. Subspace identification of MIMO LPV models with

affine parameter dependence is considered in the papers

[6], [7] and [8]. In [6], Verdult and Verhaegen show that

standard subspace algorithm cannot be used in practice

to identify LPV models since the dimensions of the data

matrices grow exponentially with the order of the system.

Then, they propose a suitable modification of the subspace

algorithm in order to overcome the curse of dimensionality.

Significant improvements of the method proposed in [6] have

been presented in [7], exploiting kernel methods, and in [8]
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where an instrumental variable approach is considered and

the positive effect of using periodic scheduling sequences

is highlighted. Application of LPV subspace identification

algorithms to both periodic and nonlinear systems have been

discussed in [9] by Verdult, Lovera and Verhaegen. On the

basis of the extensive simulation study conducted in the

paper, they also show that the proposed approach can be

used to provide accurate models of helicopter rotor dynamics.

Separable least squares have been exploited by Previdi and

Lovera in [10] to derive a novel algorithm for a class of

nonlinear parameter-varying models represented in the form

of a linear fractional transformation where the forward part

is a standard linear regression and the feedback time-varying

part is modeled by means of a neural network.

In all the papers mentioned above, the authors assume that

the measurement error ηt is statistically described. However,

there are many cases where in practice either a priori

statistical hypotheses are seldom satisfied or the errors are

better characterized in a deterministic way. Some examples

are given by systematic and class errors in measurement

equipments, rounding and truncation errors in digital devices.

A worthwhile alternative to the stochastic description of

measurement errors is the bounded-errors or set-membership

characterization, where uncertainties are assumed to belong

to a given set. In the bounding context, all parameter vectors

belonging to the feasible parameter set (FPS), i.e. parameters

consistent with the measurements, the error bounds and

the assumed model structure, are feasible solutions of the

identification problem. The interested reader can find further

details on this approach in a number of survey papers (see,

e.g., [11], [12]), in the book edited by Milanese et al. [13]

and the special issues edited by Norton [14], [15].

To the authors best knowledge, only a couple of contri-

butions can be found which address the identification of

LPV models when the measurement errors are supposed

to be bounded. In [16] the problem of identification and

model validation of LPV systems in presence of bounded

noise and a possible nonparametric part is considered by

Sznaier and Mazzaro. A solution is proposed recasting the

problem in terms of checking the feasibility of a set of

linear matrix inequalities. The obtained results are applied

to a practical problem arising in the context of active vision

showing the effectiveness of the proposed approach. Belforte

and Gay [17] consider the identification of discrete-time

LPV models with Finite Impulse Response (FIR) structure

and output measurement affected by bounded noise. The

coefficients of the FIR system are assumed to be nonlinear

functions of multiple time-varying parameters. The problem

of optimal worst-case experiment design is addressed. More

specifically, optimal sequences for both the input signal and

the scheduling parameters are derived which guarantee the

computation of the lowest worst case parameter uncertainty

intervals for LPV-FIR systems.

In this paper the identification of SISO input-output

discrete-time Linear Parameter Varying (LPV) models when

both the output and the time-varying parameters measure-

ments are affected by bounded noise is considered. To the

authors best knowledge this is the first attempt of addressing

such a problem. The paper is organized as follows. Section

II is devoted to the problem formulation. In Section III the

addressed problem is firstly rewritten in terms of Error-

In-Variables (EIV) identification, then a polytopic outer-

approximation of the feasible parameter set is derived and

finally parameter uncertainty intervals are computed. A sim-

ulated example is presented in Section IV showing the effec-

tiveness of the proposed identification scheme. Concluding

remarks end the paper.

II. PROBLEM FORMULATION

Consider the SISO discrete-time LPV model described by

the following equations

wt =
B(q−1, λt)

A(q−1, λt)
ut = G(q−1, λt)ut, (1)

or, equivalently, in terms of a linear difference equation

A(q−1, λt)wt = B(q−1, λt)ut, (2)

where ut, wt are the input and the output signals respectively,

while λt ∈ ℜα, λt = [λt
1
λt

2
. . . λt

α]T is a vector of time-

varying parameters which, according to the LPV modeling

and control literature (see, e.g., [1]) are assumed to be

measurable. The numerator A(·) and the denominator B(·)
of the transfer function G(·) are polynomials in the backward

shift operator q−1, (q−1wt = wt−1),

A(q−1, λt) = 1 + a1(λt)q
−1 + . . . + ana(λt)q

−na, (3)

B(q−1, λt) = b0(λt) + b1(λt)q
−1+ . . . + bnb(λt)q

−nb (4)

whose coefficients ai and bj are assumed to be nonlinear

memoryless functions of the parameters λt respectively

described by

ai(λt) =

ni
∑

k=1

ai,kfi,k(λt) (5)

and

bj(λt) =

mj
∑

h=0

bj,hgj,h(λt) (6)

Let yt and rt be the noise-corrupted measurements of wt

and λt respectively

yt = wt + ηt. (7)

rt = λt + εt. (8)

where εt = [εt
1
εt
2
. . . εt

α]T. Measurements uncertainties ηt and

εst
are known to range within given bounds ∆ηt and ∆εst

,

more precisely

|ηt| ≤ ∆ηt (9)

and

εt ∈ E =
{

εt ∈ ℜα : |εt
s| ≤ ∆εt

s, s = 1, 2, . . . , α
}

(10)

The unknown parameter vector θ ∈ Rp to be estimated is

defined as

θT = [a1,1 . . . a1,n1
. . . ana,1 . . . ana,nna

b0,1 . . . b0,m1
. . . bnb,1 . . . bnb,mnb

] ,
(11)
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where p =
∑na

i=1
ni +

∑nb

j=0
mj . In the set-membership

context, all parameter vectors belonging to the so-called

feasible parameter set (FPS), i.e. parameters consistent with

the measurements, the error bounds and the assumed model

structure, are feasible solutions of the identification problem.

Given N samples of the signals ut, yt and rt, the feasible

parameter set for the LPV system described by equations (1)

- (10), is defined as

Dθ = {θ∈Rp:A(q−1, rt − εt)[yt − ηt] = B(q−1, rt − εt)ut;

| ηt |≤ ∆ηt; εt ∈ E ; t = 1, .., N}.
(12)

As will be clarified in Section III, the exact feasible para-

meter region Dθ is, in general, a noncovex set described

by nonlinear inequalities whose shape may become fairly

complex for increasing values of N . Thus, in this paper

a polytopic outer approximation D′
θ of the exact feasible

parameter set Dθ will be derived. Such a polytope will be

also used to compute Parameter Uncertainty Intervals (PUI)

for each component of the parameter vector θ.

III. BOUNDING THE PARAMETERS OF THE LPV MODEL

Combining equations (1) – (6) we get the following-linear-

in-parameter regression model:

wt = −

na
∑

i=1

wt−i

ni
∑

k=1

ai,kfi,k(λt)

+

nb
∑

j=0

ut−j

mj
∑

h=1

bj,hgj,h(λt)

(13)

which can be rewritten in the following compact form:

wt = φT

tθ (14)

where:

φT

t = [ρt
1,1 . . . ρt

1,n1
. . . ρt

na,1 . . . ρt
na,nna

γt
1,1 . . . γt

1,m1
. . . γt

nb,1 . . . γt
nb,mnb

]
(15)

ρt
i,k = −wt−ifi,k(λt) (16)

γt
j,h = ut−jgj,h(λt). (17)

According to equations (7) – (10), wt−i and λt =
[λt

1
λt

2
. . . λt

α]T are uncertain variables which belong to the

following intervals

wt−i ≤ wt−i ≤ wt−i (18)

λt
s ≤ λt

s ≤ λ
t

s, for s = 1, . . . , α (19)

where

wt−i = yt−i − ∆ηt−i, wt−i = yt−i + ∆ηt−i

λt
s = rt

s − ∆εt
s, λ

t

s = rt
s + ∆εt

s, for s = 1, . . . , α.
(20)

Due to the uncertainty affecting λt, also fi,k(λt) and gj,h(λt)
are uncertain variables which belong to the following inter-

vals:

f
k
(λt) ≤ fi,k(λt) ≤ fk(λt) (21)

g
h
(λt) ≤ gj,h(λt) ≤ gh(λt) (22)

where

f
k
(λt) = min

εt∈E
fi,k(rt − εt), fk(λt) = max

εt∈E
fi,k(rt − εt)

(23)

and

g
h
(λt) = min

εt∈E
gj,h(rt − εt), gh(λt) = max

εt∈E
gj,h(rt − εt)

(24)

Remark 1 — The solution of problems (23) and (24)

requires the computation of the global maxima and minima

of nonlinear functions fi,k(·) and gj,h(·). While such global

extremes can be easily computed for the case of convex

fi,k(·) and gj,h(·), standard nonlinear optimization methods

usually trap in local maxima/minima when fi,k(·) and

gj,h(·) are nonconvex functions. In such a case global

maxima and minima can be obtained by means of branch

and bound optimization method which, however, can be

computationally cumbersome when the dimension of the

time-varying parameter λt ∈ ℜα is large. Note that a

number of significant real world applications involves quite

a low number of time-varying parameters.

Once bounds f
k
(λt), fk(λt), g

h
(λt), gh(λt) have

been obtained, extreme values of interval variables ρt
i,k and

γt
j,h defined as

ρt

i,k
= min

εt∈E
ρt

i,k, ρt
i,k = max

εt∈E
ρt

i,k (25)

and

γt

j,h
= min

εt∈E
γt

j,h, γt
j,h = max

εt∈E
γt

j,h (26)

can be easily computed applying basic results on interval

arithmetics (see, e.g., [18]) to equations (16) and (17).

A compact description of ρi,k and γj,h in terms of their

central values c(ρt
i,k), c(γt

j,h) and their perturbations δρt
i,k,

δγt
j,h are as follows

ρt
i,k = c(ρt

i,k) + δρt
i,k (27)

γt
j,h = c(γt

j,h) + δγt
j,h. (28)

where

|δρt
i,k| ≤ ∆ρt

i,k, |δγt
j,h| ≤ ∆γt

j,h (29)

∆ρt
i,k =

ρt
i,k − ρt

i,k

2
, c(ρt

i,k) =
ρt

i,k
+ ρt

i,k

2
(30)

∆γt
j,h =

γt
j,h − γt

j,h

2
, c(γt

j,h) =
γt

j,h
+ γt

j,h

2
. (31)

Thanks to equations (27) and (28), the regressor φt of

equation (15) can be rewritten as

φt = ϕt + δϕt (32)

where

ϕT

t = [ϕt
1
. . . ϕt

p]

= [c(ρt
1,1) . . . c(ρt

1,n1
) . . . c(ρt

na,1) . . . c(ρt
na,nna

)

c(γt
1,1) . . . c(γt

1,m1
) . . . c(γt

nb,1) . . . c(γt
nb,mnb

)]

(33)
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δϕT

t = [δϕt
1
. . . δϕt

p]

= [δρt
1,1 . . . δρt

1,n1
. . . δρt

na,1 . . . δρt
na,nna

δγt
1,1 . . . δγt

1,m1
. . . δγt

nb,1 . . . δγt
nb,mnb

]

(34)

Reduction of equations (7), (14) and (32) leads to the

following regression model

yt = (ϕt + δϕt)
Tθ + ηt. (35)

which fits in the framework of the Errors-In-Variables (EIV)

identification, i.e. a parameter estimation problem in a linear-

in-parameter model where the output and some or all the

explanatory variables are uncertain. From equation (35) it

can be seen that consecutive regressions are related determin-

istically by uncertain measurement samples (dynamic EIV)

giving rise to an exact feasible parameter set Dθ, described

by a set of nonlinear nonconvex inequalities, whose shape

may become fairly complex for increasing values of N . As

a consequence, tight parameters uncertainty intervals could

not be easily and exactly computed on the basis of Dθ [19].

On the other end, in the static EIV case exact parameter

bounds are piecewise linear and, although generally non

convex, the feasible parameter region is the union of at

most 2p polytopes: each being the intersection of the FPS

with a single orthant of the p-dimensional parameter space

(a detailed discussion on the geometrical and topological

structure of the feasible parameter region for static EIV

problems can be found in [20]). Thus, as shown in [19], the

FPS of static EIV can be more conveniently handled than the

FPS of dynamic EIV. That motivates the use, in this paper,

of results from the static EIV [20] which, however, will lead

to outer approximations of the exact FPS. More precisely,

assuming that the uncertain components δϕt of the regressor

φt are permitted to vary independently, the following outer

approximation D′
θ of the exact FPS Dθ, i.e. D′

θ ⊃ Dθ, is

obtained:

D′
θ = {θ∈Rp:yt = (ϕt + δϕt)

Tθ + ηt; | ηt |≤ ∆ηt;

| δϕt
1
|≤ ∆ϕt

1
; . . . | δϕt

p |≤ ∆ϕt
p; t = 1, . . . , N}.

(36)

When we apply results from [20] to our problem we get the

following description of the set D′
θ at the single time t

(ϕt − ∆ϕt)
Tθ ≤ yt + ∆ηt (37)

(ϕt + ∆ϕt)
Tθ ≥ yt − ∆ηt (38)

where

∆ϕT

t =[∆ρt
1,1sgn(a1,1) . . . ∆ρt

1,n1
sgn(a1,n1

)

∆ρt
na,1sgn(ana,1) . . . ∆ρt

na,nna
sgn(ana,nna

)

∆γt
0,1sgn(b0,1) . . . ∆γt

0,m1
sgn(b0,m1

)

∆γt
nb,1sgn(bnb,1) . . . ∆γt

nb,mnb
sgn(bnb,mnb

)].

(39)

For each component θl of the parameter vector θ, lower and

upper bounds θmin
l and θmax

l can be computed solving the

following two linear programming problems:

θmin
l = min

θ∈D′

θ

θl, θmax
l = max

θ∈D′

θ

θl. (40)

The computed bounds, which implicitly define the so called

parameter uncertainty interval PUIθl
= [θmin

l θmax
l ], can be

used to computed the central estimate θc of the parameter

vector θ defined as:

θc = [θc
1
. . . θc

p]
T (41)

where

θc
l =

θmin
l + θmax

l

2
, l = 1 . . . p. (42)

The parameter vector θc is the Chebishev centers in the ℓ∞
norm of D

′

θ and enjoys peculiar optimality properties (see

[21] for details).

Remark 2 — In principle, the computation of θmin
l

and θmax
l , l = 1, . . . , p requires the solution of 2p2p LP

problems (the coefficient 2p accounts for p minimization

problems and p maximization problems while 2p is the

number of orthant in the p-dimensional parameter space

in which the above 2p optimization problems must be

carried out) with 2N + p constraints (2N constraints derive

from equations (37) and (38) with t = 1, . . . , N ; p is the

number of constraints defining the orthant in the parameter

space). In practice, however, the computational load can

be significantly reduced if the signs of θl, l = 1, . . . , p
are a-priori known. Indeed, in that case the number of LP

problems dramatically decreases to 2p. If not available,

information about the signs of θl can be achieved through a

point estimate (using least squares estimates, for example)

which will indicate the orthant where the optimization

should be carried out. If some of θmin
l (θmax

l ) obtained

working on such an orthant are zero, then the optimization

problems should be also solved in the orthants characterized

by θl < 0 (θl > 0).

IV. A SIMULATED EXAMPLE

In this section we illustrate the proposed parameter bound-

ing procedure through a numerical example. The system

considered here is characterized by (2) with: A(q−1) =
1+(0.5λt)q

−1+(−0.2+0.3λ2

t )q
−2 and B(q−1) = 0.1q−1+

(1λt + 0.2λ2

t )q
−2. Thus, in this example, the system coef-

ficients depend on a single time-varying parameter λt and

the function fi,k and gj,h of equations (5) and (6) are the

following polynomial basis functions f1,1 = λt, f2,1 = 1,

f2,2 = λ2

t , g1,1 = 1, g2,1 = λt, g2,2 = λ2

t . The true

parameter vector is θ = [a1,1 a2,1 a2,2 b1,1 b2,1 b2,2]
T

=
[0.5 − 0.2 0.3 0.1 1 0.2]

T
. From the simulated transient

sequences {wt, ηt} and {λt, εt}, the signal to noise ratios

SNR are evaluated through

SNRw = 10 log

{

N
∑

t=1

w2

t

/

N
∑

t=1

η2

t

}

(43)

SNRλ = 10 log

{

N
∑

t=1

λ2

t

/

N
∑

t=1

ε2

t

}

. (44)

Bounded absolute errors have been considered when simu-

lating the collection of transient data. More precisely, we

assumed |ηt| ≤ ∆ηt, |εt| ≤ ∆εt where {ηt} and {εt}
are random sequences belonging to the uniform distributions
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U [−∆ηt,+∆ηt] and U [−∆εt,+∆εt] respectively. Bounds

on output and varying parameter measurement errors were

supposed to have the same value, i.e., ∆ηt = ∆εt =
∆E. Four different values of uncertainty bounds ∆E were

considered corresponding to four different signal-to-noise

ratios. For each given ∆E, we consider two different data

lengths, N = 100 and N = 1000. The input sequence {ut}
is a random uniform distributed signal which takes values in

the interval [−1, 1] while two different cases are considered

for the trajectory of the time-varying parameter λt. In the

first case λt is assumed to be a random uniform distributed

signal which takes values in the interval [−1, 1], while in the

second one λt = sin(0.1t) is assumed.

The obtained results are reported in Tables I — IV. For

low noise level (SNRw, SNRλ ≈ 60 dB) and for all N ,

the central estimates are consistent with the true parameters.

For higher noise level (SNRw, SNRλ ≤ 40dB), θc gives

satisfactory estimate of the true parameters. As the number

of observations increases (from N = 100 to N = 1000),

parameter uncertainty bounds ∆θl = |θmax
l − θmin

l |/2
decreases unsurprisingly.

V. CONCLUSION

A parameter bounding procedure for SISO discrete-time

LPV models when both the output and the time-varying

parameter measurements are affected by bounded noise has

been outlined. First, the problem is formulated in terms

of Error-in-variables (EIV) identification in presence of

bounded noise. Then, a polytopic outer approximation of the

feasible parameter set (FPS) and the parameters uncertainty

intervals (PUI) of the LPV model are computed solving the

EIV problem. The effectiveness of the proposed approach

has been demonstrated by means of a simulated example.
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Table I: Parameter central estimates (θc
l ) and pa-

rameter uncertainty bounds (∆θc
l ) against signal-

to-noise ratios (SNRw and SNRλ) when λt is a

uniform random sequence and N = 100

SNRw SNRλ θl True θ
c

l ∆θl

(dB) (dB) Value

58.9 61.3 θ1 0.5 0.500 1.6e-3
θ2 -0.2 -0.200 2.7e-3
θ3 0.3 0.299 3.8e-3
θ4 0.1 0.100 9.4e-4
θ5 1.0 1.000 2.5e-3
θ6 0.2 0.201 2.8e-3

44.2 48.1 θ1 0.5 0.501 8.9e-3
θ2 -0.2 -0.197 1.5e-2
θ3 0.3 0.295 2.0e-2
θ4 0.1 0.102 6.4e-3
θ5 1.0 0.999 1.1e-2
θ6 0.2 0.198 1.3e-2

38.6 40.8 θ1 0.5 0.501 2.2e-2
θ2 -0.2 -0.185 3.5e-2
θ3 0.3 0.278 4.8e-2
θ4 0.1 0.100 1.1e-2
θ5 1.0 1.001 2.8e-2
θ6 0.2 0.202 3.3e-2

24.5 27.5 θ1 0.5 0.513 8.1e-2
θ2 -0.2 -0.188 1.5e-1
θ3 0.3 0.268 1.8e-1
θ4 0.1 0.106 5.0e-2
θ5 1.0 1.020 1.1e-1
θ6 0.2 0.178 1.1e-1

Table II: Parameter central estimates (θc
l ) and pa-

rameter uncertainty bounds (∆θc
l ) against signal-

to-noise ratios (SNRw and SNRλ) when λt is
a uniform random sequence and N = 1000

SNRw SNRλ θl True θ
c

l ∆θl

(dB) (dB) Value

56.0 60.0 θ1 0.5 0.500 1.1e-3
θ2 -0.2 -0.200 6.6e-4
θ3 0.3 0.300 1.3e-3
θ4 0.1 0.100 4.3e-4
θ5 1.0 1.000 1.2e-3
θ6 0.2 0.200 1.2e-3

41.9 46.2 θ1 0.5 0.502 8.5e-3
θ2 -0.2 -0.201 4.5e-3
θ3 0.3 0.301 9.2e-3
θ4 0.1 0.100 2.5e-3
θ5 1.0 0.999 6.7e-3
θ6 0.2 0.199 6.7e-3

36.0 40.2 θ1 0.5 0.498 1.2e-2
θ2 -0.2 -0.202 6.5e-3
θ3 0.3 0.306 1.1e-2
θ4 0.1 0.098 2.6e-3
θ5 1.0 0.999 1.1e-2
θ6 0.2 0.203 1.1e-2

22.1 26.1 θ1 0.5 0.521 7.6e-2
θ2 -0.2 -0.192 3.1e-2
θ3 0.3 0.281 7.7e-2
θ4 0.1 0.093 2.4e-2
θ5 1.0 0.996 7.9e-2
θ6 0.2 0.218 8.7e-2
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Table III: Parameter central estimates (θc
l ) and parameter

uncertainty bounds (∆θc
l ) against signal-to-noise ratios

(SNRw and SNRλ) when λt = sin(0.1t) and N = 100

SNRw SNRλ θl True θ
c

l ∆θl

(dB) (dB) Value

57.8 61.3 θ1 0.5 0.499 1.9e-3
θ2 -0.2 -0.200 3.4e-3
θ3 0.3 0.299 5.0e-3
θ4 0.1 0.100 1.3e-3
θ5 1.0 1.000 2.2e-3
θ6 0.2 0.200 2.4e-3

43.1 48.1 θ1 0.5 0.499 1.2e-2
θ2 -0.2 -0.204 1.7e-2
θ3 0.3 0.304 2.6e-2
θ4 0.1 0.101 4.3e-3
θ5 1.0 1.001 1.4e-2
θ6 0.2 0.197 1.6e-2

37.5 40.8 θ1 0.5 0.498 2.5e-2
θ2 -0.2 -0.199 3.5e-2
θ3 0.3 0.292 5.8e-2
θ4 0.1 0.101 1.0e-2
θ5 1.0 1.003 2.8e-2
θ6 0.2 0.198 3.2e-2

23.3 27.5 θ1 0.5 0.504 1.1e-1
θ2 -0.2 -0.186 1.4e-1
θ3 0.3 0.244 2.0e-1
θ4 0.1 0.096 5.5e-2
θ5 1.0 1.003 1.1e-1
θ6 0.2 0.229 1.1e-1

Table IV: Parameter central estimates (θc
l )

and parameter uncertainty bounds (∆θc
l )

against signal-to-noise ratios (SNRw and
SNRλ) when λt = sin(0.1t) and N = 1000

SNRw SNRλ θl True θ
c

l ∆θl

(dB) (dB) Value

57.4 61.9 θ1 0.5 0.500 2.0e-4
θ2 -0.2 -0.200 2.9e-4
θ3 0.3 0.301 3.1e-4
θ4 0.1 0.100 7.0e-5
θ5 1.0 1.000 3.4e-4
θ6 0.2 0.200 3.6e-4

43.5 48.0 θ1 0.5 0.503 7.5e-4
θ2 -0.2 -0.201 6.0e-4
θ3 0.3 0.300 7.6e-4
θ4 0.1 0.099 1.0e-4
θ5 1.0 1.000 1.9e-3
θ6 0.2 0.201 7.8e-4

37.7 41.8 θ1 0.5 0.496 6.5e-3
θ2 -0.2 -0.199 1.3e-2
θ3 0.3 0.296 1.4e-2
θ4 0.1 0.101 5.3e-3
θ5 1.0 0.997 9.1e-3
θ6 0.2 0.202 1.2e-2

23.5 28.0 θ1 0.5 0.492 3.0e-2
θ2 -0.2 -0.159 4.9e-2
θ3 0.3 0.247 5.3e-2
θ4 0.1 0.114 1.4e-2
θ5 1.0 1.002 5.0e-2
θ6 0.2 0.209 5.6e-2
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