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Abstract— One of the important and efficient tools in system
analysis is the analysis of responses to harmonic excitations. For
linear systems the information on such responses is contained
in the frequency response functions, which can be computed
analytically. For nonlinear systems there may be even no
periodic response to a periodic excitation. Even if such a
periodic response exists and is unique, its computation is, in
general, a computationally expensive task. In this paper we
present a fast method for computing periodic responses to
periodic excitations for a class of nonlinear systems. The method
allows one to efficiently compute the responses for harmonic
excitations corresponding to a grid of excitation frequencies
and amplitudes. The results are illustrated by application to
a flexible beam with one-sided stiffness subject to harmonic
excitation.

I. INTRODUCTION

A common way to analyze the behavior of a linear (closed-
loop) dynamical system is to investigate its response to
harmonic excitations. For linear systems, the information on
responses to harmonic excitations is contained in frequency
response functions, which can be computed analytically.
These frequency response functions serve as important anal-
ysis and design tools allowing one to quantify frequency-
dependent steady-state characteristics of forced linear sys-
tems. In the context of control, they allow one to quantify
the sensitivity of the closed-loop system to measurement
noise and external perturbations and its tracking properties
at various frequencies. These characteristics are essential for
many control applications, see e.g. [1].

There are many problems on controller design and sys-
tem analysis for nonlinear (control) systems, where it is
important to evaluate quantitative characteristics of steady-
state responses to harmonic excitations at various frequencies
and amplitudes. An engineering field in which this question
arises frequently is that of the passive/active vibration sup-
pression in mechanical structures with one-sided flexibilities
(an example of such a system is studied in detail in Sec-
tion VII). These types of systems are commonly encountered
in practice, e.g. think of tower cranes, suspension bridges [2],
snubbers on solar panels on satellites [3], floating platforms
for oil exploration [4], safety stops in car suspensions, etc.
Very often these systems are subject to exogenous distur-
bances that induce undesirable vibrations, which, in turn,
may cause damage to the mechanical structure and may
lead to inferior system’s performance. As a consequence,
measures to reduce these vibrations, such as active control,
are of great importance. To support a control design aiming at
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superior disturbance attenuation properties, the closed-loop
responses to exogenous disturbances need to be assessed. It is
a common practice to evaluate quantitative characteristics of
responses to harmonic disturbances, since many disturbances
are either nearly harmonic, think of engine-induced periodic
vibrations in vehicles [5], or can be approximated as such. It
is exactly in the scope of such performance analysis (where
responses to a range of excitation amplitudes, excitation
frequencies and control gain settings need to be evaluated)
that tools for fast computation or evaluation of the periodic
responses of a nonlinear system are imperative.

A Lyapunov approach to estimating quantitative charac-
teristics of steady-state responses to oscillatory excitations
generated by an exosystem is presented in [6]. For linear dif-
ferential inclusions these estimates can be found by solving
certain linear matrix inequalities. Another approach to quan-
titative analysis of periodic responses to periodic excitations
for a class of nonlinear systems is presented in [7], [8]. In
these papers the machinery of integral quadratic constraints
is used to identify conditions under which a nonlinear system
exhibits a unique periodic response (not necessarily stable)
to a periodic excitation. Some quantitative characteristics of
such periodic responses are then estimated. For the class of
convergent systems [9], [10], periodic responses to periodic
excitations are unique and globally asymptotically stable.
Moreover, for harmonic excitations of all frequencies and
amplitudes, these responses are uniquely characterized by
one function, which can be found by solving certain partial
differential equation (PDE), [11]. From this function one
can determine all the necessary quantitative data on the
corresponding periodic responses. Yet, solving this PDE is
a nontrivial task by itself. Alternatively, one can simply
simulate a convergent system with a periodic excitation from
an arbitrary initial condition until its response converges to
the globally asymptotically stable periodic response. Despite
its simplicity, this approach is very computationally ineffi-
cient, especially if one needs to compute the responses for
a wide range of excitations and (controller) parameters. To
alleviate this computational burden, in certain situations one
can approximate the periodic responses using the describing
function method [12], which is much faster, but less accurate.
Alternatively, one can exploit period solvers, such as the
finite difference method, the shooting method or the colloca-
tion method, possibly in combination with a path-following
technique, to determine these periodic responses [13], [14].
This method has been used in [15]. Drawbacks of such
methods are, firstly, the fact that generally relatively accurate
initial guesses for the periodic solutions need to be available
in order for convergence to occur and, secondly, the fact that
these are computationally rather expensive. The latter fact is
especially prohibitive when one needs to compute periodic
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solutions for a large set of periodic excitations.
In this paper we present an iterative numerical procedure

for fast computation of periodic responses to periodic ex-
citations for Lur’e-type nonlinear systems. The procedure
has guaranteed convergence for an arbitrary initial guess of
the periodic response. In this procedure, periodic responses
are represented in terms of their Fourier coefficients. A
periodic response of a nonlinear system contains, in general,
an infinite number of harmonics, while only a finite number
of them can be stored in the computer memory. For this
reason we present an estimate of the error in the output
of this iterative procedure which appears due to truncation
of the corresponding Fourier series at each iteration step.
The efficiency of the method is based on performing linear
operations in the frequency domain, where they can be done
in a computationally inexpensive way, nonlinear operations
in the time domain, and transforming signals between the
time and frequency domain using fast Fourier transform
algorithms. This method allows us to compute periodic
responses to harmonic excitations for a whole range of
excitation frequencies and amplitudes (frequency response
functions) in a very efficient manner. The fast computational
time makes estimations of periodic responses obsolete, since
for the studied class of systems they can be easily computed

with any given accuracy. At the same time, in computing
periodic responses to periodic excitations this method ap-
pears to be more reliable, fast and accurate than the methods
mentioned above. To illustrate the efficiency of the method,
we compute frequency response functions of a periodically
excited nonlinear mechanical system in closed loop with a
disturbance attenuation controller.

The paper is organized as follows. In Section II we present
the notations and preliminaries used in the paper. Section III
contains a result on existence and uniqueness of a periodic
response to a periodic excitation for a class of Lur’e systems.
An iterative algorithm for computing this periodic response
is presented in Section IV. Numerical implementation of
this algorithm is discussed in Section V. Application of this
algorithm to the computation of frequency response functions
is discussed in Section VI and illustrated with an example
in Section VII. Conclusions are presented in Section VIII.

II. NOTATIONS AND MATHEMATICAL PRELIMINARIES

Throughout the paper we will use the following notations.
By Z we denote the set of integer numbers; i :=

√
−1. By

L2(T ) we denote the space of piecewise-continuous real-
valued T -periodic scalar functions y(t) satisfying ‖y‖L2

<

+∞, where ‖y‖2
L2

:= 1

T

∫ T

0
|y(t)|2dt. By l2 we denote

the space of complex-valued sequences V = {V [m]}m∈Z

satisfying ‖V ‖l2 < +∞, where ‖V ‖2
l2

=
∑

m∈Z
|V [m]|2.

Both L2(T ) and l2 are Banach spaces.
The sequence of Fourier coefficients of y ∈ L2(T ) is

denoted by Y . The elements of the sequence are given by

Y [m] =
1

T

T
∫

0

y(t)e−iωmtdt, m ∈ Z,

where ω := 2π/T . The inverse Fourier transform is given
by

y(t) =
∑

m∈Z

Y [m]eimωt.

For any y ∈ L2(T ) and its Fourier coefficients Y the
Parseval’s equality holds:

‖y‖L2
= ‖Y ‖l2 . (1)

For a linear single-input-single-output system

ẋ = Ax + Bu (2)

y = Cx,

excited by a T -periodic input u(t), u ∈ L2(T ), if the matrix
A has no eigenvalues at imω, for ω := 2π

T and all m ∈ Z,
there exists a unique T -periodic solution xu(t) with the
corresponding output yu(t) (yu ∈ L2(T )). Hence system (2)
defines a linear operator Gyu : L2(T ) → L2(T ) according
to Gyuu(t) = yu(t). In the frequency domain we define

the linear operator Ĝyu : l2 → l2 that maps the Fourier
coefficients U of the function u(t) to the Fourier coefficients

YU of the function yu(t), i.e. ĜyuU := YU . It is known that
(

ĜyuU
)

[m] = Gyu(imω)U [m], m ∈ Z, (3)

where Gyu(s) := C(sI − A)−1B is the transfer function
of system (2) from input u to output y. Due to (3) it is
straightforward to verify that

‖ĜyuU‖l2 ≤ sup
m∈Z

|Gyu(imω)|‖U‖l2, (4)

and, by the Parseval’s equality (1), we also conclude that

‖Gyuu‖L2
≤ sup

m∈Z

|Gyu(imω)|‖u‖L2
. (5)

III. PERIODIC RESPONSES OF PERIODICALLY EXCITED

LUR’E-TYPE SYSTEMS

In this section we consider systems of the form

ẋ = Ax + Bu + Dv(t) (6)

y = Cx,

u = ϕ(y), (7)

where x ∈ R
n is the state, y ∈ R is the output, ϕ : R → R is

a continuous nonlinearity and v(t) is a scalar piecewise con-
tinuous input. Let Gyu(s) := C(sI−A)−1B and Gyv(s) :=
C(sI − A)−1D denote the transfer functions from u to y
and from v to y respectively. The next theorem formulates
the conditions under which system (6), (7) exhibits a unique
T -periodic response to a T -periodic excitation v(t).

Theorem 1

Consider system (6), (7) excited by a T -periodic input v(t).
Suppose

A1 the matrix A has no eigenvalues at imω, for ω := 2π
T and

m ∈ Z,
A2 the nonlinearity ϕ(y) satisfies ϕ(0) = 0 and is Lipschitz

with Lipschitz constant L, i.e.

|ϕ(y1)− ϕ(y2)| ≤ L|y1 − y2|, ∀ y1, y2 ∈ R, (8)

A3 the transfer function Gyu(s) satisfies

sup
m∈Z

|Gyu(imω)| =: γ <
1

L
. (9)
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Then system (6), (7) has a unique T -periodic solution x̄(t)
with the corresponding periodic output ȳ(t) satisfying

‖ȳ‖L2
≤ 1

1 − γL
sup
m∈Z

|Gyv(imω)|‖v‖L2
. (10)

Proof. Due to condition A1, system (6) defines the linear
operators Gyu : L2(T ) → L2(T ) and Gyv : L2(T ) →
L2(T ) that map T -periodic inputs to T -periodic outputs (see
Section II). Due to linearity of system (6), its periodic output
y ∈ L2(T ) corresponding to the inputs u ∈ L2(T ) and
v ∈ L2(T ) equals

y = Gyuu + Gyvv. (11)

Notice that since Gyu is a linear operator, Gyuu1 −Gyuu2 =
Gyu(u1 − u2). Applying (5) and (9) to the last equality, we
conclude that

‖Gyuu1 − Gyuu2‖L2
≤ γ‖u1 − u2‖L2

, (12)

for any u1, u2 ∈ L2(T ).
Next consider the nonlinear operator F : L2(T ) → L2(T )

defined as Fy(t) := ϕ(y(t)). Since ϕ(y) is Lipschitz (see
condition A2), the operator F is also Lipschitz:

‖Fy1 −Fy2‖L2
≤ L‖y1 − y2‖L2

. (13)

From (12) and (13) we conclude that the operator Gyu ◦ F :
L2(T ) → L2(T ) is also Lipschitz. Namely,

‖Gyu ◦ Fy1 − Gyu ◦ Fy2‖L2
≤ γ‖Fy1 −Fy2‖L2

≤ γL‖y1 − y2‖L2
.

(14)

Since γL < 1 (see A3), Gyu ◦ F is a contraction mapping.
Applying the Banach fixed point theorem (see e.g. [16]) we
conclude that there exists a unique ȳ ∈ L2(T ) satisfying

ȳ = Gyu ◦ F ȳ + Gyvv. (15)

This implies that ȳ(t) is the unique T -periodic output of
system (6), (7). The corresponding periodic solution x̄(t) is
the unique periodic solution of the linear system (6) with the
input u(t) = ϕ(ȳ(t)).

It remains to show that inequality (10) holds. Since ȳ
satisfies (15), it holds that

‖ȳ‖L2
≤ ‖Gyu ◦ F ȳ‖L2

+ ‖Gyvv‖L2
. (16)

Applying inequality (14) for y1 = ȳ and y2 = 0 and
expressing ‖ȳ‖L2

, we obtain

‖ȳ‖L2
≤ 1

1 − γL
‖Gyvv‖L2

. (17)

Finally, application of inequality (5) gives (10). �

Although a similar result on existence and uniqueness
of periodic solutions can be found in [7], it is the proof
of Theorem 1 that will allow us to develop an efficient
numerical procedure for computing periodic response.

IV. ITERATIVE COMPUTATION OF PERIODIC RESPONSES

WITH CONVERGENCE AND ACCURACY GUARANTEES

The proof of existence and uniqueness of the periodic
response in Theorem 1 is based on the Banach fixed point
theorem, which also provides a method for iterative compu-
tation of the periodic response ȳ(t). It can be found as the
limit of the iterative process yk+1 = Gyu ◦Fyk +Gyvv with
an arbitrary initial value y0 ∈ L2(T ). The convergence of
this process is characterized by the inequality

‖yk − ȳ‖L2
≤ (γL)k‖y0 − ȳ‖L2

,

where γL < 1 is the measure of contraction of Gyu ◦F (see
the proof of Theorem 1 and conditions A2, A3 of this the-
orem). Since γL < 1, this iteration converges exponentially.
To implement this iterative process, we decompose it into
the following equivalent one:

uk+1 = Fyk (18)

yk+1 = Gyuuk+1 + Gyvv. (19)

According to the definition of the operator F (see the proof
of Theorem 1), given a function yk ∈ L2(T ), uk+1 ∈ L2(T )
can be computed according to

uk+1(t) = ϕ(yk(t)). (20)

As follows from the definition of the linear operators Gyu

and Gyv (see Section II), yk+1(t) computed at step (19) is
the periodic output of the linear time-invariant system (6)
with the T -periodic inputs v(t) and u(t) = uk+1(t).

It is possible to implement both steps (18) and (19) in
the time domain with any given accuracy. For (18) we can
use (20), while the periodic solution of the linear system (6)
excited by T -periodic inputs v(t) and u(t) = uk+1(t) can be
found using the Cauchy formula for the general solution of a
linear system with the boundary condition x(T ) = x(0). Yet,
it has been noticed that such a method is not computationally
efficient. For example, when the periodic solution of the
nonlinear system (6), (7) is globally asymptotically stable,
one can simply simulate the system with a given input v(t)
until its solution converges to the periodic solution. The
computational time of this simple simulation-based method
is comparable to the computational time of a time-domain
implementation of the iterative algorithm (18), (19). For this
reason we have opted not to proceed with the time-domain
implementation of (18), (19).

Alternatively, one can implement the algorithm (18), (19)
in the frequency domain by representing the T -periodic
functions uk(t), yk(t) and v(t) by their respective Fourier
coefficients Uk, Yk and V , and substituting the operators Gyu,

Gyv and F by their frequency domain counterparts Ĝyu, Ĝyv

and F̂ , respectively. Then the algorithm (18), (19) takes the
form

Uk+1 = F̂Yk (21)

Yk+1 = ĜyuUk+1 + ĜyvV. (22)

Using inequalities (12), (13) and (14) and taking into account

Parseval’s equality (1), one can show that the operator Ĝyu◦F̂
is a contraction on l2 and by the Banach fixed point theorem
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the iterative process (21), (22) will exponentially converge
to the unique solution Ȳ of the equation

Ȳ = Ĝyu ◦ F̂ Ȳ + ĜyvV. (23)

The main advantage of such a frequency domain implemen-
tation is the fact that step (19), which is the most com-
putationally demanding in the time-domain implementation
is now substituted by the computationally cheap step (22),
see (3). The difficulties arising in this case are twofold.

First of all, due to the nonlinear operator F̂ , the number of
nonzero entries in Uk+1 will, in general, always be infinite
despite of the fact that the number of non-zero entries in
V (the spectrum of the excitation v(t)) may be finite. This
would require the storage of an infinite number of Fourier
coefficients Uk and Yk , which is impossible. So, we need
to truncate Uk+1 at each step. Another argument for trunca-
tion stems from the difficulty in the implementation of the

nonlinear operator F̂ corresponding to the nonlinearity ϕ(y).
For a general nonlinearity ϕ(y) it is impossible to find an

analytic expression for the implementation of F̂ . Therefore
it is suggested to firstly transform the Fourier coefficients Yk

to the periodic function yk(t) in the time domain, compute
uk+1(t) = ϕk+1(t) and then apply the Fourier transform to
transform uk+1(t) into Uk+1. Numerical implementation of
this algorithm can be done very efficiently using Fast Fourier
Transform algorithms, but such an operation will always
imply a truncation of Uk+1. Thus the algorithm becomes

Uk+1 = (F̂Yk)N (24)

Yk+1 = ĜyuUk+1 + ĜyvV, (25)

where (·)N denotes a truncation operation:

(U)N [m] =

{

U [m], for |m| ≤ N
0, for |m| > N,

(26)

and N > 0 is a truncation parameter. In general, introduction
of truncation in such an iterative algorithm can cause large
errors in the limit solution and even prevent the convergence
of the algorithm. However, in the next theorem we prove
that, in fact, under the conditions of Theorem 1, the iterative
sequence (24), (25) will converge for any value of the
truncation parameter N . Moreover, we obtain an estimate
on the accuracy of the algorithm with truncation.

Theorem 2

Under the conditions of Theorem 1, for any N > 0 there is a

unique limit Ȳ N for the sequence Yk, k = 1, 2, . . ., resulting
from the iterative process with truncation (24), (25). Moreover

‖Ȳ N−Ȳ ‖l2 ≤ sup
|m|>N

|Gyu(imω)| sup
m∈Z

|Gyv(imω)| L‖V ‖l2

(1 − γL)2
.

(27)

Proof. Notice that, as follows from (3), for any U ∈ l2 it

holds that Ĝyu(U)N = (Ĝyu)NU , where (Ĝyu)N : l2 → l2
is a linear operator defined as

(Ĝyu)NU [m] =

{

Gyu(imω)U [m], for |m| ≤ N
0, for |m| > N.

(28)

Hence, instead of (24), (25) one can consider the equivalent
iterative process

Ũk+1 = F̂Yk (29)

Yk+1 = (Ĝyu)N Ũk+1 + ĜyvV, (30)

which is of the similar form as (21), (22). So, in order to
prove its convergence we only need to show that (Ĝyu)N ◦F̂
is a contraction mapping from l2 to l2.

It is straightforward to verify that

‖(Ĝyu)NU‖l2 ≤ sup
|m|≤N

|Gyu(imω)|‖U‖l2.

Taking into account (9), we obtain ‖(Ĝyu)NU‖l2 ≤ γ‖U‖l2.
From this and from the linearity of (Ĝyu)N we conclude that
for any U1, U2 ∈ l2 it holds that

‖(Ĝyu)NU1 − (Ĝyu)NU2‖l2 ≤ γ‖U1 − U2‖l2 . (31)

Using Parseval’s equality (1) and (13) we conclude that

‖F̂Y1 − F̂Y2‖l2 ≤ L‖Y1 − Y2‖l2 , (32)

for any Y1, Y2 ∈ l2. In the same way as in (14), inequalities
(31) and (32) imply

‖(Ĝyu)N ◦ F̂Y1 − (Ĝyu)N ◦ F̂Y2‖l2 ≤ γL‖Y1 − Y2‖l2 .

(33)

Since γL < 1 (see condition A3 in Theorem 1), the operator

(Ĝyu)N ◦ F̂ is a contraction. By the Banach fixed point
theorem, there exists a unique Ȳ N ∈ l2 satisfying

Ȳ N = (Ĝyu)N ◦ F̂ Ȳ N + ĜyvV, (34)

and this solution Ȳ N can be found as a limit of the iterative
sequence (29), (30) or, equivalently, of the sequence (24),
(25).

It remains to show that (27) holds. From (23) and (34),
we conclude that

‖Ȳ − Ȳ N‖l2 = ‖Ĝyu ◦ F̂ Ȳ − (Ĝyu)N ◦ F̂ Ȳ N‖l2

≤ ‖(Ĝyu)N ◦ F̂ Ȳ − (Ĝyu)N ◦ F̂ Ȳ N‖l2

+‖(Ĝyu)res
N ◦ F̂ Ȳ ‖l2 ,

where (Ĝyu)res
N := Ĝyu − (Ĝyu)N . Taking into account (33),

we obtain

‖Ȳ − Ȳ N‖l2 ≤ γL‖Ȳ − Ȳ N‖l2 + ‖(Ĝyu)res
N ◦ F̂ Ȳ ‖l2 .

Since γL < 1, it follows that

‖Ȳ − Ȳ N‖l2 ≤ 1

1 − γL
‖(Ĝyu)res

N ◦ F̂ Ȳ ‖l2 . (35)

Notice that (Ĝyu)res
N is defined as

(Ĝyu)res
N U [m] =

{

Gyu(imω)U [m], for |m| > N
0, for |m| ≤ N.

(36)

Hence it can be easily verified that

‖(Ĝyu)res
N U‖l2 ≤ sup

|m|>N

|Gyu(imω)|‖U‖l2. (37)
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Since F̂ is Lipschitz with the Lipschitz constant L and F̂0 =
0 (this follows from the condition that ϕ(0) = 0) we obtain

‖F̂ Ȳ ‖l2 ≤ L‖Ȳ ‖l2 . (38)

Uniting (35), (37), (38) and (10) with the Parseval’s equality
(1) we obtain (27). �

Remark 1

Using the Parseval’s equality (1), in the time domain the
accuracy estimate (27) takes the form

‖ȳN−ȳ‖L2
≤ sup

|m|>N

|Gyu(imω)| sup
m∈Z

|Gyv(imω)| L‖v‖L2

(1 − Lγ)2
.

(39)

From (39) we see that for a given input function v(t) and
a given tolerance ε > 0 one can always choose the truncation
parameter N such that ‖ȳN − ȳ‖L2

≤ ε. Namely, the
transfer function Gyu(s) is strictly proper and for this reason
one can always choose N sufficiently large to minimize
sup|m|>N |Gyu(imω)| to a desired level.

Notice that if V has a finite number of non-zero elements
(i.e. the excitation v(t) has a finite spectrum), one can
always choose N large enough such that V [m] = 0 for
|m| > N . In this case, at each iteration step of the algorithm
(24), (25) the sequences Uk and Yk satisfy Uk[m] = 0,
Yk[m] = 0 for |m| > N . Therefore, at each step we need to
store only two complex-valued 2N + 1-dimensional vectors
corresponding to non-zero entries of Uk and Yk. Moreover,
if the transfer function Gyu(s) has good filtering properties,
the number N characterizing the dimension of these vectors
can be chosen rather small without significant deterioration
of the algorithm accuracy. This is definitely a benefit for
numerical implementation of this algorithm since smaller N
implies smaller number of operations at each iteration of the
algorithm.

V. NUMERICAL IMPLEMENTATION OF THE ITERATIVE

COMPUTATION OF PERIODIC RESPONSES

For a numerical implementation of (24), (25) we need to
have the following assumptions and initial data. First of all,
it is assumed that V contains a finite number of nonzero
entries. Moreover, it is assumed that the truncation parameter
N is chosen in accordance with (27) to guarantee a desired
accuracy of the algorithm. Moreover, it is assumed that the
nonzero entries of V correspond to indexes within [−N, N ].
In addition to this we will introduce a parameter ǫreltol > 0
for stopping the iterative process (24), (25) if

‖Yk − Yk−1‖l2

‖Yk−1‖l2

< ǫreltol. (40)

Let us also choose a number M = 2b for some positive
integer b and satisfying M ≥ 2N . This parameter will be
used in the direct and inverse Fast Fourier Transforms. In
general, M needs to be chosen large enough to guarantee
sufficient accuracy of the transformations. To initiate the
algorithm, we need an initial guess Y0 containing Fourier
coefficients corresponding to frequencies from −Nω to Nω.
Notice that under these assumptions at each step of the
iterative process (24), (25) the sequences Yk and Uk have

non-zero elements only for indexes from −N to N corre-
sponding to the frequencies from −Nω to Nω. Therefore
in this section we consider Yk and Uk as complex-valued
vectors of dimension 2N + 1.

At step k + 1 we firstly compute Uk+1 according to (24).
To do this, we transform Yk to the time domain, perform the
nonlinear operation uk+1(t) = ϕ(yk(t)), transform uk+1(t)
into frequency domain Uk+1 and then truncate the elements
Uk+1[m] with indexes satisfying |m| > N . This operation
can be implemented in the following way. First, define a
vector Y ext

k with the entries Y ext
k [m] = Yk[m] for |m| ≤ N

and Y ext
k [m] = 0 for N < |m| ≤ M . Then transform this

vector of Fourier coefficients to the time domain using the
inverse discrete Fourier transform for sampled signals:

yk(tl) =
1

T

M/2
∑

m=−M/2

Y ext
k [m]e

2πilm

M , l = 0, 1, . . .M −1,

(41)

nonlinear operation

uk+1(tl) = ϕ(yk(tl)), l = 0, 1, . . .M − 1. (42)

Then transform the function uk+1(t) into frequency domain
using discrete Fourier transform given by the formula

Uext
k+1[m] =

1

M

M−1
∑

l=0

uk+1(tl)e
− 2πilm

M , m = 0,±1, . . .±M

2
.

(43)

Finally, the resulting Uk+1 is obtained by taking only the
elements of Uext

k+1 with the indexes within |m| ≤ N , i.e.

Uk+1[m] = Uext
k+1[m], for |m| ≤ N . Thus we obtain Uk+1.

Next we compute Yk+1 given by (25). As follows from (3),

Yk+1[m] = Gyu(imω)U [m]+Gyv(imω)V [m], |m| ≤ N.

(44)

These operations are continued until condition (40) is satis-
fied. Notice that since Yk is a (2N + 1)-dimensional vector,
the l2 norm in (40) becomes simply the second vector norm.

In (43) and (41) we approximate the direct and inverse
Fourier transforms for continuous signals by discrete Fourier
transform for sampled signals. The inaccuracy introduced
by this approximation is not accounted for in the analysis
in Section IV, but it can be reduced by increasing the
parameter M . Precise analysis of the errors introduced by
this approximation is left for future work.

The direct and inverse discrete Fourier transforms (43)
and (41) can be computed very efficiently using Fast Fourier
Transform (FFT) algorithms, while (44) requires only a
relatively small number of summations and multiplications.
This makes the algorithm very efficient, as will be illustrated
by an example in Section VII.

VI. COMPUTATION OF FREQUENCY RESPONSE

FUNCTIONS

A particular application of the numerical algorithm pre-
sented in the previous section is to compute periodic re-
sponses to harmonic excitations of the form v(t) = a sinωt
for a whole range of amplitudes a and frequencies ω given
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One-sided support

Flexible beam

ucv(t) = a sin(ωt)

Fig. 1: Perturbed flexible beam system with a one-sided flexible
support.

by a certain grid. In this case the efficiency of the algorithm
can be enhanced further by choosing the initial guess Y0

in a smart way. In particular, if one has computed the
limit Ȳ N for a particular amplitude and frequency (a, ω)
on the grid, this Ȳ N can be used as the initial guess Y0 for
computing the limit solution corresponding to the excitations
with the amplitude and frequency given by (a + ∆a, ω)
or (a, ω + ∆ω), where ∆a and ∆ω are the increments
corresponding to the neighboring points in the grid. Such a
choice of the initial guess allows one to significantly reduce
the number of iterations in the algorithm presented in the
previous section. Such a procedure is often referred to as
sequential continuation [17].

VII. EXAMPLE

In this section, we apply the proposed algorithm for the
computationally efficient determination of periodic responses
to a controlled mechanical system. More specifically, we
consider a flexible steel beam with a one-sided flexible
support (modelled as a one-sided linear spring), see Figure 1.
A harmonic force v(t) = a sin(ωt) is applied to the middle
of the beam, where ω is the excitation frequency and a is the
amplitude of the excitation force. An actuator is mounted on
the beam in order to control the beam dynamics by means
of an actuator force uc.

The dynamics of the system is described by a four degree-
of-freedom (DOF) model [18], [19]:

Mrq̈ + Br q̇ + Krq + fnl(q) = h1 v(t) + h2 uc, (45)

where h1 = [1 0 0 0]T , h2 = [0 1 0 0]T and q =
[qmid qact qξ,1 qξ,3]

T are the generalised coordinates.
Herein, qmid is the displacement of the middle of the beam
and qact is the displacement of the point where the actuator
is mounted at the beam, see Figure 1. The variables qξ,1 and
qξ,2 reflect the contribution of two eigenmodes of the beam
that occur at 21Hz and 55Hz, respectively. Mr, Br and Kr

are the mass, damping and stiffness matrices of the reduced
model, respectively. The numerical values of the matrices
Mr [kg], Kr [N/m] and Br [Ns/m] are:

Mr =





3.38062 1.2961 2.0957 −0.4958
1.2961 38.6548 16.3153 −14.6109
2.0957 16.3153 8.6864 −6.2413
−0.4958 −14.6109 −6.2413 6.5893



 ,

Kr = 106





2.4151 0.0521 1.1445 −0.0199
0.0521 6.3914 2.6420 −2.4342
1.1445 2.6420 1.6270 −1.0107
−0.0199 −2.4342 −1.0107 1.0542



,

Br =





109.3370 25.8569 61.4792 −9.8913
25.8569 294.2009 128.7864 −108.5757
61.4792 128.7864 85.1265 −49.2662
−9.8913 −108.5757 −49.2662 55.5620



.

Moreover, in (45) fnl is the restoring force of the
one-sided spring: fnl(q) = knl h1 min(0, hT

1 q) =
knl h1 min(0, qmid), where knl = 1.6 ·105 N

m is the stiffness
of the one-sided spring.

Here, we apply a state-feedback controller of
the form uc = −K1q

T − K2q̇, with K1 =
[

−7524.4 4831.3 −16196.0 499.03
]

and K2 =
[

26.791 54.566 −236.63 −0.2323
]

, to achieve
disturbance attenuation. Note that, in general the entire
state can not be measured for such mechanical systems and
output-feedback design should be considered. Therefore,
in [19] observer-based output-feedback control designs are
proposed for the system under study here. For the sake
of simplicity we limit ourselves to the state-feedback case
here.

In state-space form, the model of the beam system can be
written as a Lur’e-type system of the form (6), (7) with

A =

"

04×4 I4×4

−M−1
r

“

Kr + h2K1 + knl

2
h1hT

1

”

−M−1
r (Br + h2K2)

#

D =

»

04×1

M−1
r h1

–

, B = −D,

C = [1 0 0 0 0 0 0 0] ,

(46)

ϕ(y) = −knl

2
| y | and where x = [qT q̇T ]T ∈ R

8

represents the system state.
Now let us apply Theorem 1 to this system. Clearly, the

nonlinearity ϕ as defined above satisfies condition A2 with
L = knl

2
= 8×104 N/m. Condition A1 is satisfied since ma-

trix A is Hurwitz. Moreover, since γ = supω∈R
|Gyu(iω)| =

1.127 × 10−5 < 1

L = 2

knl

= 1.25 × 10−5 m/N, condition
A3 for the controlled beam system is satisfied for any ω.
Consequently, we can conclude, based on Theorem 1, that
system (6), (7), (46) has a unique T -periodic response for
every excitation v(t) = a sinωt, with T = 2π/ω.

Let us now apply the algorithm, proposed in Sections V
and VI, to efficiently compute these periodic responses of
system (6), (7), (46) to harmonic excitations v(t) = a sin(ωt)
for a grid of excitation amplitudes and excitation frequen-
cies: a ∈ {amin, amin + ∆a, amin + 2∆a, . . . , amax}, ω ∈
{ωmin, ωmin + ∆ω, ωmin + 2∆ω, . . . , ωmax}, with amin =
1 N, ∆a = 1 N, amax = 10 N, ωmin = 2π rad/s, ∆ω = 2π
rad/s, ωmax = 2π200 rad/s. The parameter N (the number
of harmonics used to characterise the periodic solution) is
taken to be N = 64, while we use M = 2N = 128. The
relative tolerance threshold ǫreltol used in condition (40) is
chosen ǫreltol = 1 × 10−6.

The results of the application of the algorithm are depicted
in Figure 2, which displays the L2-norm of the computed
periodic response ȳ(t): ‖ȳ(t)‖L2

for the grid of excitation
amplitudes and frequencies1. The upper bound on the L2-

1Due to Parseval’s equality, ‖ȳ(t)‖L2
= ‖Ȳ ‖l2

, where Ȳ is the sequence

of Fourier coefficients of ȳ(t). The algorithm provides Ȳ N which is an
approximation of Ȳ with the guaranteed accuracy bound (27).
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Fig. 2: The norm ‖ȳ(t)‖L2
of the computed periodic response to

v(t) = a sin ωt for the grid of excitation amplitudes a and
frequencies ω.

norm of difference between the steady-state solutions ȳ and
ȳN (the steady-state solution evolving from the iterative
procedure including truncation) can readily be computed
from (39), which gives ‖ȳN − ȳ‖L2

≤ 9.3×10−3. Note that
to compute this bound we adopted the worst case scenario,
which related to the minimal excitation frequency ωmin

(then sup|m|>N |Gyu(imω)| is maximal in (39)) and the

maximal amplitude amax (then ‖v‖L2
is maximal in (39)).

This upperbound decreases monotonically with N ; e.g. for
N = 512 it gives ‖ȳN − ȳ‖L2

≤ 3.7 × 10−5. Note that
2000 periodic steady-state solutions corresponding to the har-
monic excitations on this (amplitude, frequency)-grid have
been computed. For the sake of comparison, these periodic
solutions have also been computed using standard numerical
simulation, requiring the same level of accuracy. Both ap-
proaches have been implemented in MATLAB [20] and have
been executed on an Intel Pentium 1.7 GHz processor. The
computational time involved in computing the 2000 periodic
solutions using the algorithm proposed in this paper (with
N = 64) is approximately 5 s, whereas the approach using
standard numerical simulation involves a computational time
of the order of seconds for a single periodic solution,
which indicates the computational efficiency of the proposed
algorithm. It is exactly this computational efficiency that will
be able to support the use of this algorithm in the context of
optimising the controller gains for the performance in terms
of disturbance attenuation.

VIII. CONCLUSIONS

In this paper an efficient iterative numerical method for
computing periodic responses of nonlinear Lur’e-type sys-
tems to periodic excitations is proposed. At each iteration
step the algorithm makes use of both frequency and time
domain methods with the support of fast Fourier transform
for the transition between the domains. This allows us to
significantly reduce the computational costs for computing
the periodic responses. For the case of harmonic excita-
tions, the proposed numerical algorithm makes it possible
to compute the periodic responses for a whole range of

amplitudes and frequencies very efficiently. This is achieved
by further optimization of the initial guess needed for the
iterative algorithm. With this method, quantitative character-
istics of the periodic responses corresponding to harmonic
excitations of a whole range of amplitudes and frequencies
can be established in a fast manner. The efficiency of the
proposed method is clearly illustrated by application to
a mechanical nonlinear system excited by harmonic ex-
citations.This method supports the analysis of frequency
and amplitude dependent steady-state characteristics of the
considered class of nonlinear systems. Moreover, it opens a
way for tuning controller gains for optimizing the frequency-
and amplitude-dependent steady-state performance character-
istics of a closed-loop control system.
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