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Abstract— A generalized small–gain theorem, suitable for the
analysis of practical stability, is proved in the framework of ℓ1
control. The result is combined with a practical stabilization
technique based on a generalized small–gain theorem in H∞ .
The resulting mixed H∞/ℓ1 approach allows us to provide
systematic tools for the control synthesis and the closed loop
analysis in the practical stabilization of linear systems under
assigned input quantization. A numerical example is reported.

I. INTRODUCTION

Quantized input systems are dynamical systems controlled
by discrete variables. Quantization is a characteristic arising
in many control applications as well as it is the origin of a
number of significant theoretical issues. A renewed interest
in quantized systems has been spurred by the pioneering pa-
per [4] . Much attention of the scientific community has been
addressed to the problem of control under communication
constraints (see [14] and references therein) . Other works
deal with the digital implementation of controllers and, more
generally, with the control of systems with discrete sensors
and/or actuators [13], [20], [16] .
As clarified in [4] , the stabilization problem for systems
under quantized control has to be formulated in terms of
practical stability properties. Basically, the goal consists
of designing a controller, taking values in a quantized set,
so that the closed loop trajectories are eventually confined
within sufficiently small neighborhoods of the equilibrium.
We are interested in the practical stabilization of linear
systems under arbitrarily assigned input quantization (i.e.,
the control set U is fixed and, besides being quantized,
there is not any further assumption on its structure) . A plant
actuated by a static quantized controller can be modelled as
the feedback interconnection of an ideal (i.e., non–quantized)
closed loop dynamics with a static nonlinearity taking the
quantization effect into account. In this way, the control
synthesis for stabilization can be carried out by designing
a controller having robustness properties with respect to
quantization. This approach is not new, see e.g., [13], [9],
[3] . However, classical robust control techniques are often
tailored to asymptotic, instead of practical, stabilization.
In [15] , a control synthesis method is proposed, which is
based on a generalized small–gain theorem in H∞ and
provides systematic tools to solve the practical stabilization
problem. In the present paper, those results are supplemented
with a generalized small–gain theorem in the framework of
ℓ1 control, which enables us to obtain a less conservative
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steady–state analysis of the closed loop dynamics. Thus, a
mixed H∞/ℓ1 approach to the stabilization problem is pro-
vided which joins the powerful control synthesis tools offered
by the H∞ theory with the effectiveness of the ℓ1 analysis.
A mixed H∞/ℓ1 control synthesis is also proposed. The
latter formulation appears to be particularly promising to deal
with the special class of positive systems [8] : in this case, in
fact, it is shown that the H∞ and the ℓ1 norms coincide.
Moreover, the interpretation in terms of ℓ1 control is offered
of recently published results on the practical stabilization of
quantized systems [17] .
Notation: The i–th component of x ∈ R

n is xi ; x′ is the
transpose of x . The (i, j)–th entry of M ∈ R

h×k, is Mi,j .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Norm of signals and systems

A signal is a function ~v : N → R
h×k ; v(t) denotes its

value at time t . Let the space of bounded signals in R
p be

ℓ∞(Rp) :=
{

~v : N → R
p | sup

t∈N

‖v(t)‖∞ < +∞
}

,

where the infinity norm of a constant vector or matrix, say

M ∈ R
h×k, is given by ‖M‖∞ = max

i=1,...,h

∑k
j=1 |Mi,j | .

The space ℓ∞(Rp) is endowed with the norm

‖~v ‖∞ := sup
t∈N

‖v(t)‖∞ .

Consider a discrete–time linear system

Σ(A,B, C) :=







x(t + 1) = Ax(t) + Be(t)
y(t) = Cx(t)
x ∈ R

n, e ∈ R
m, y ∈ R

q, t ∈ N ,
(1)

let ~g be its impulse response, namely

g(t) =

{

0 if t = 0
CAt−1B if t ≥ 1 ,

and G(z) :=
∑+∞

t=0 g(t)z−t = C(zI − A)−1B be the
system transfer matrix. System (1) is BIBO–stable iff ∀ ~e ∈
ℓ∞(Rm) one has ~g ∗ ~e ∈ ℓ∞(Rq) , where (~g ∗ ~e )(t) :=
∑t−1

τ=0 g(t − τ)e(τ) . In this case, the linear operator

G : ℓ∞(Rm) → ℓ∞(Rq)
~e 7→ ~g ∗ ~e

is bounded and its induced operator norm is such that

‖G‖∞ := sup
~e∈ℓ∞(Rm)\{~0}

‖~g ∗ ~e‖∞
‖~e‖∞

(a)
= max

i=1,...,q

m
∑

j=1

+∞
∑

τ=0

|gi,j(τ)|

(see [5]) . The operator G is referred to as the input/output

operator associated to system (1) and ‖G‖∞ is called the

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB11.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2868



ℓ∞–gain of the system . Thanks to equality (a) , system (1)
is BIBO–stable if and only if ~g ∈ ℓ1(R

q×m) , where

ℓ1(R
q×m) := {~g : N → R

q×m | ∑+∞
τ=0 ‖g(τ)‖∞ < +∞} .

This is the reason why the ℓ∞–gain of a BIBO–stable system
is also referred to as the ℓ1 –norm of the system.
Remark 2.1: Script symbols denote input/output operators.
The norm ‖G‖∞ should not be confused with ‖G‖∞ : the
latter is the H∞–norm of the transfer matrix G(z) and,
actually, is the ℓ2–gain of the system [12] .

B. Problem formulation

Definition 2.1: A set U ⊂ R
m is said to be quantized iff it

is closed and discrete (i.e., all its points are isolated) .
This is equivalent to say that any bounded subset of R

m

contains only a finite number of elements of U .
We are interested in the stabilization problem for quantized
input systems of the type:

{

x(t + 1) = Ax(t) + Bu(t)
x ∈ R

n, u ∈ U ⊂ R
m, t ∈ N ,

(2)

where the pair (A,B) is supposed to be stabilizable and U
is an assigned quantized set containing 0 .
If the system is open loop unstable and U is quantized,
then neither stabilization nor confinement of the trajectories
within arbitrarily small neighborhoods of the origin can be
achieved [4] . We hence consider practical stability notions:
Definition 2.2: Consider a dynamical system of the type

x(t + 1) = f
(

x(t)
)

, x ∈ R
n. (3)

ı) A set Ω ⊆ R
n is said to be positively invariant for

system (3) iff ∀x(t) ∈ Ω , x(t + 1) ∈ Ω .
Let Ω , X0 and X1 be bounded neighborhoods of the origin
in R

n such that Ω ⊆ X1 and X0 ⊆ X1 :
ıı) system (3) is (X0,X1, Ω)–stable iff ∀x(0) ∈ X0 , x(t) ∈
X1 ∀ t ≥ 0 and ∃ t̄ ∈ N such that ∀ t ≥ t̄ , x(t) ∈ Ω ;
ııı) system (3) is (X0, Ω)–stable iff both X0 and Ω are
positively invariant and ∀x(0) ∈ X0 ∃ t̄ ∈ N such that
∀ t ≥ t̄ , x(t) ∈ Ω .
Remark 2.2: [(X0,X0,Ω)–stability vs (X0,Ω)–stability] If
system (3) is (X0, Ω)–stable, then it is (X0,X0, Ω)–stable.
In general, the contrary is not true because the set Ω is not
guaranteed to be positively invariant.
We consider static state feedback laws of the type u(x) =
qU(Kx) , where K ∈ R

m×n and the input quantizer qU :
R

m → U are to be designed (whilst U is assigned) . We
provide systematic tools to find K and qU so that practical
stabilization is ensured, and to analyze the practical stability
properties of the resulting closed loop dynamics.
For a given control law u(x) = qU(Kx) , with the quantiza-

tion error qe : R
m → R

m defined by qe(y) := qU(y) − y ,
the closed–loop dynamics is

x(t + 1) = (A + BK)x(t) + Bqe

(

Kx(t)
)

= (4a)

= Fx(t) + Bψ
(

x(t)
)

, (4b)

where F := A + BK and ψ := qe ◦ K . Accordingly,
system (4) can be alternately seen as the feedback inter-
connection of the linear system Σ(A + BK, B, K) with
the nonlinearity qe , or of system Σ(F,B, I) with ψ . In
both cases, small–gain conditions [12] can be used for the

analysis of the system. In [15] , a generalized version of the
small–gain theorem is proposed in the framework of H∞

theory, which is based on a generalized notion of gain and,
consistently, it is suitable to deal with the control synthesis
for practical stabilization. Here, that result is combined with
analysis tools based on a small–gain theorem involving
generalized ℓ∞–gains and ℓ1 theory.
Note that, since the control values do not accumulate towards
0 , the quantization error does not vanish for t → +∞ and
it has to be treated as a signal in ℓ∞ by means of ℓ1 theory.
The H∞ space, instead, is isomorphic to the space of the
operators between signals in ℓ2 , hence vanishing for t →
+∞ . For this reason, while H∞ theory provides suitable
control synthesis tools to ensure convergence properties,
the right approach to the steady–state analysis is the ℓ1
theory. Indeed, the ℓ1 based analysis allows us to prove the
convergence of the trajectories to a smaller neighborhood
of the equilibrium than that built on the H∞ theory. This
result has a counterpart in the minimality properties holding
for invariant hypercubes and recently proved in [17] .

III. SMALL–GAIN IN ℓ1 FOR PRACTICAL STABILITY

For a given ψ : R
n → R

m , let us introduce some quantities
which are useful for our analysis. For Ω ⊆ R

n , let

E (Ω) := sup
x∈Ω

‖ψ(x)‖∞ .

Along the paper, the function ψ is supposed to be regular,
namely if Ω ⊂ R

n is bounded, then E (Ω) < +∞ .
Consider the closed hypercube of edge length ∆ :

Qn(∆) :=
[

−∆
2 , ∆

2

]n
, ∆ ≥ 0 .

In this case, we use the notation

E (∆) := sup
x∈Qn(∆)

‖ψ(x)‖∞ .

The function E (∆) is non–decreasing, we can hence define
the right continuous function E

+(∆) := limǫ→0+ E (∆+ǫ) .
Definition 3.1: For ∆ > 0 , let the generalized ℓ∞–gain of
the function ψ be defined by1

γe(∆) :=
E

+(∆)

∆/2
.

Theorem 3.1: [Small–gain in ℓ1 ] Consider the system

x(t + 1) = Fx(t) + Bψ
(

x(t)
)

, (5)

where F ∈ R
n×n is a Schur matrix and ψ : R

n → R
m.

Assume that the system is (X0,X1, Ω)–stable. Denote by
G(I) the input/state operator associated to system Σ(F,B, I)
and let ∆1 := 2‖G(I)‖∞E (Ω) . Then,
ı) ∀∆ > ∆1 , system (5) is

(

X0,X1, Qn(∆)
)

–stable.
Let γe(∆) be the generalized ℓ∞–gain of the function ψ :
ıı) if

‖G(I)‖∞ · γe(∆1) < 1 ,

then the following is well–defined

∆inf :=











max
{

∆ < ∆1 | ‖G(I)‖∞ · γe(∆)= 1
}

if
{

∆ < ∆1 | ‖G(I)‖∞ · γe(∆)= 1
}

6= ∅
0 otherwise ,

(6)

and ∀∆⋆ > ∆inf , system (5) is
(

X0,X1, Qn(∆⋆)
)

–stable.

1 E +(∆) is divided by ∆/2 because x ∈ Qn(∆) ⇔ ‖x‖∞ ≤ ∆/2 .
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The proof of the Theorem is based on the following
Lemma 3.1: Consider x(0) ∈ R

n and its evolution under
system (5) . If S ⊆ R

n is such that E (S) < +∞ and ∃ t̂ ≥
0 so that ∀ t ≥ t̂ , x(t) ∈ S , then ∀∆ > 2‖G(I)‖∞E (S) ,
∃ t1 ≥ 0 such that ∀ t ≥ t1 , x(t) ∈ Qn(∆) .

Proof: To prove the result it is sufficient to show that

lim supt→+∞ ‖x(t)‖∞ ≤ ‖G(I)‖∞E (S) .

Denote by σ the shift operator, where σ~v is defined by
σv(t) := v(t+1) , and by στ its τ–th iteration. For x(0) ∈
R

n and ~e defined by e(t) := ψ
(

x(t)
)

, it holds that

∀ t ≥ 0 and ∀ k ≥ 0 , x(t+ k) = F kx(t)+ (~g (I) ∗σt~e )(k) ,

where ~g (I) is the impulse response associated to system
Σ(F, B, I) . Since ∀ t ≥ t̂ , x(t) ∈ S , then ∀ t ≥ t̂ ,

‖e(t)‖∞ ≤ E (S) or, equivalently, ‖σt̂~e ‖∞ ≤ E (S) . Thus,

lim supt→+∞ ‖x(t)‖∞ = lim supk→+∞ ‖x(t̂ + k)‖∞ ≤
≤ lim supk→+∞

(

‖F kx(t̂)‖∞ + ‖(~g (I) ∗ σt̂~e )(k)‖∞
)

≤
(b)

≤ ‖(~g (I) ∗ σt̂~e )‖∞ ≤ ‖G(I)‖∞‖σt̂~e ‖∞ ≤ ‖G(I)‖∞E (S) ,

where (b) holds because limk→+∞ ‖F kx(t̂)‖∞ = 0 .
Proof: [of Theorem 3.1] To prove part ı , apply

Lemma 3.1 with S = Ω . The iteration of the same argument
allows one to prove also the

(

X0,X1, Qn(∆⋆)
)

–stability.
All the technical details can be found in [19] .
Theorem 3.1 can be used to supplement the practical stability
analysis of a dynamics that has been proved to be practically
stable through some other technique. Since system (5) is both
(X0,X1, Ω)–stable and

(

X0,X1, Qn(∆⋆)
)

–stable, then it

is
(

X0,X1, Ω ∩ Qn(∆⋆)
)

–stable: thus the theorem enables
one to prove the convergence of the trajectories to within a
smaller neighborhood of the equilibrium.

A. Single–input reachable systems

In Theorem 3.1 , system (5) is assumed to be (X0,X1, Ω)–
stable and, by a small–gain condition in ℓ1 , the
(

X0,X1, Qn(∆⋆)
)

–stability is deduced. A stronger result
can be proved for single–input reachable systems: taking
advantage of the canonical controller form, the positive
invariance of hypercubes can be derived by a small–gain con-
dition in ℓ1 without a priori stability assumptions. Moreover,
the stronger notion of (X0, Ω)–stability is ensured.
Proposition 3.1: [Small–gain in ℓ1 : single–input systems]

Consider system (5) where F ∈ R
n×n is a Schur matrix and

ψ : R
n → R . Denote by γe(∆) the generalized ℓ∞–gain of

the function ψ . If the pair (F, B) is in the controller form,
with zn − fnzn−1 − · · · − f2z − f1 being the characteristic
polynomial of F , and f :=

∑n
i=1 |fi| < 1 , then:

ı) ∀∆ > 0 such that
γe(∆)
1−f ≤ 1 , Qn(∆) is positively

invariant;
ıı) if ∆0 > 0 is such that

γe(∆0)

1 − f
< 1 , (7)

then the following is well–defined

∆inf :=











max
{

∆ < ∆0 | γe(∆)
1−f = 1

}

if
{

∆ < ∆0 | γe(∆)
1−f = 1

}

6= ∅
0 otherwise ,

and ∀∆⋆ > ∆inf , the system is
(

Qn(∆0), Qn(∆⋆)
)

–stable.

Proof: See [19] .

Remark 3.1: The ℓ∞–gain of the input/state operator G(I)

associated to system (5) does not appear in condition (7) .

Nevertheless,
γe(∆0)
1−f < 1 is a small–gain condition in ℓ1

because it can be shown that ‖G(I)‖∞ ≤ 1
1−f (see [18]) .

IV. A MIXED H∞/ℓ1 APPROACH TO THE STABILIZATION

OF QUANTIZED INPUT LINEAR SYSTEMS

Let us illustrate how the combination of H∞ theory with
the proposed results on the small–gain theorem in ℓ1 allows
one to deal with the practical stabilization of system (2) .
To this end, let us recall a generalized notion of gain in ℓ2 .
By ‖ · ‖2 , we denote either the Euclidean norm of a vector
or the corresponding induced matrix norm.

Definition 4.1: [15] Let ̺0 > 0 and γe ≥ 0 . A map ϕ :
R

p → R
m is said to have ̺0–external gain γe iff ∀ y ∈ R

p

such that ‖y‖2 > ̺0 , it holds that ‖ϕ(y)‖2 ≤ γe‖y‖2 .

Theorem 4.1: [Mixed H∞/ℓ1 closed loop analysis (control

synthesis in H∞ )] Consider system (2) , let qU : R
m → U

be such that the corresponding quantization error qe satisfies
the following conditions:

{

qe has ̺0–external gain γe

if ‖y‖2 ≤ ̺0 , then ‖qe(y)‖2 ≤ E0 .
(8)

For γ∞ ≤ 1
γe

, suppose that K ∈ R
m×n is found so that

{

F := A + BK is Schur

‖GK‖∞ < γ∞ ,

(9a)

(9b)

where, according to (4a) , GK(z) := K(zI−A−BK)−1B
is the transfer function of system Σ(A+BK, B, K) . Then:

ı) A matrix R
n×n ∋ P > 0 and a constant r2

i > 0 can be
explicitly determined such that ∀ r2

1 ≥ r2
2 > r2

i the closed
loop system (4) is

(

EP,r2
1
, EP,r2

2

)

–stable, with EP,r2 := {x ∈
R

n |x′Px ≤ r2} . It holds that:

r2
i = R2

(

λmax(P − S) + λmin(S)
)

, (10)

where P is the unique positive definite solution of the
following discrete–time algebraic Riccati equation

X = F ′XF + F ′XB(γ2I −B′XB)−1B′XF + C ′C + Q ,
(11)

with γ > ‖GK‖∞ so that γ ·γe < 1 and R
n×n ∋ Q > 0 is

any matrix such that ‖GK‖∞+‖Q1/2(zI−F )−1B‖∞ < γ ;

S = F ′PB(γ2I − B′PB)−1B′PF + C ′C + Q ;

R = E0

λmin(S) α(P ) ;

α(P ) = ‖F ′PB‖2 +
√

‖F ′PB‖2
2+ λmin(S)‖B′PB‖2 .

ıı) Consider the operator G(I) associated to system (4b) and
ψ = qe ◦ K . For r2

2 ≥ r2
i , let E (r2

2) := E (EP,r2
2
) and

∆1 := inf
r2
2>r2

i

2‖G(I)‖∞E (r2
2) . (12)

Then, ∀ r2
1 > r2

i and ∀∆ > ∆1 , system (4) is
(

EP,r2
1
, EP,r2

1
, Qn(∆)

)

–stable.

ııı) Let γe(∆) be the generalized ℓ∞–gain of ψ : if

‖G(I)‖∞ · γe(∆1) < 1 , (13)
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then ∀∆⋆ > ∆inf , system (4) is
(

EP,r2
1
, EP,r2

1
, Qn(∆⋆)

)

–
stable, where ∆inf is defined in equation (6) .

Proof: Part ı : see [15] . Parts ıı and ııı directly follow
by Theorem 3.1.ı and Theorem 3.1.ıı , respectively.

Remark 4.1: [Mixed H∞/ℓ1 control synthesis] The control
synthesis stage of Theorem 4.1 can be modified so that,
not only the small–gain condition (9b) in H∞ is met, but
also the ℓ∞–gain of the closed loop input/state operator is
minimized

(

so that the size of the final hypercube Qn(∆⋆)
is reduced

)

. Namely, Theorem 4.1 can be restated with
problem (9) replaced by the following mixed H∞/ℓ1 control

problem: given γ∞ ≤ 1
γe

, find

K = argmin
X ∈ R

m×n such that
{

A + BX is Schur
‖GX‖∞ < γ∞

‖G(I)

X ‖∞ , (14)

where GX(z) = X(zI − A − BX)−1B and G(I)

X is the
input/state operator of system Σ(A + BX,B, I) .

To apply Theorem 4.1, the following problems must be faced:

1) Design the input quantizer qU and analyze the corre-
sponding quantization error in terms of properties (8) ;

2) Solve problem (9)
(

or problem (14) if the mixed

H∞/ℓ1 control synthesis approach is taken
)

;
3) Evaluate the ℓ∞–gain of the input/state operator G(I)

associated to the closed loop dynamics;
4) Determine E (r2) and the generalized ℓ∞–gain of ψ .

Problem 1) For a given input quantizer qU , the analysis
of qe consists of two steps: first, in order to determine a
̺0–external gain (for fixed positive values of ̺0) one has

to find an upper bound for sup
‖y‖2>̺0

‖qe(y)‖2

‖y‖2
; secondly, in

order to evaluate E0 , one has to find an upper bound for
sup

‖y‖2≤̺0

‖qe(y)‖2 . This study, at least theoretically, can be

done for any input quantizer qU : R
m → U .

Example 1: [The logarithmic quantization of R] Let u0 >
0 and θ > 1 . A logarithmic quantization of R with

parameters (u0, θ) is a map qU : R → U , where

U = {0} ∪ {±u0θ
h |h ∈ N}

and ∀ y ∈ R , qU(y) is an element of U minimizing the
distance from y (i.e., qU is a nearest neighbor quantizer) .
The corresponding quantization error qe(y) = qU(y) − y is
such that conditions (8) are satisfied with

̺0 = u0(θ+1)
2θ , γe = θ−1

θ+1 and E0 = u0

2 (15)

(it follows by elementary computations, see [19]) . ♣
The analysis of other types of quantizers, including multi–
input ones, is reported in [15], [19] .

Problem 2) The one in (9) is an instance of the state feedback

H∞ control problem (see [11], [6]) known as the “actuator
disturbance” case [2] . The following is a particularization to
our case of a solution of the general state feedback problem:

Lemma 4.1: If A is unmixed (i.e., the eigenvalues of A
are so that |λ(A)| 6= 1 ) , then ∃K ∈ R

m×n such that A +
BK is Schur and ‖GK‖∞ < γ∞ if and only if there exists

R
n×n ∋ P ∗ ≥ 0 such that the following conditions hold:

P ∗=A′
(

P ∗−γ2
∞

−1
γ2
∞

P ∗B
(

I+
γ2
∞

−1
γ2
∞

B′P ∗B
)−1

B′P ∗
)

A (16a)

(

I − BB′
(

I +
γ2
∞

−1
γ2
∞

P ∗BB′
)−1

P ∗
)

A is Schur (16b)

γ2
∞

I − B′P ∗B > 0 . (16c)

A feasible choice for K is the central H∞ controller:

Kc(γ∞) := −B′
(

I +
γ2
∞

−1
γ2
∞

P ∗BB′
)−1

P ∗A . (17)

Proof: See e.g., [21] .
In [11] , also the case where A is not unmixed is treated.
Problem 3) It is a standard analysis problem in the ℓ1
functional space: efficient numerical algorithms to evaluate
‖G(I)‖∞ are available (see [1], [10]) and a simple analytical
approach has been recently proposed in [18] .
Problem 4) It is essentially a geometric study that, in
principle, can be carried out for any ψ . However, for general
input quantizers and large dimension of the input space, this
analysis may be quite involved.
Example 2: [Analysis of ψ : logarithmic quantization of R]

Let qU : R → U be a logarithmic quantization of R with
parameters (u0, θ) and qe be the corresponding quantization
error. Let K ∈ R

1×n and ψ := qe ◦ K : R
n → R .

ı) For R
n×n ∋ P > 0 , the function E (r2

2) = E (EP,r2
2
) is

continuous and, with µ1 :=
√

r2KP−1K ′ , one has

E (r2
2) =















µ1 if µ1 < u0

2

max
{

u0

2 , γe
u0(θ+1)

2 θn(µ1) ,

|u0θ
n(µ1)+1 − µ1|

}

otherwise ,

(18)

where γe := θ−1
θ+1 and n(µ) :=

⌊

logθ
2µ

u0(θ+1)

⌋

.

ıı) For ∆ ≥ 0 , the function E (∆) = E
(

Qn(∆)
)

is

continuous and, with µ2 := ‖K‖∞ ∆
2 , it holds that

E (∆) =















µ2 if µ2 < u0

2

max
{

u0

2 , γe
u0(θ+1)

2 θn(µ2) ,

|u0θ
n(µ2)+1 − µ2|

}

otherwise .

(19)

The easy proofs of these facts can be found in [19] . ♣
Problem 2b) As for the variation of the control synthesis
stage proposed in Remark 4.1 , there is some literature on
mixed H∞/ℓ1 control problems (see [7], [22]) . We are
currently investigating the special type of problem proposed
in equation (14) . In Theorem 4.2 below, a relation is proved
between the H∞–norm and the ℓ∞–gain of externally pos-

itive SISO systems which, to the best of our knowledge, has
not been pointed out before. This result provides a useful tool
to deal with problem (14) for this special class of systems.
Definition 4.2: [8] System (1) is said to be externally posi-

tive iff its impulse response ~g is such that ∀ i = 1, . . . , q ,
∀ j = 1, . . . ,m and ∀ t ∈ N , gi,j(t) ≥ 0 .
Theorem 4.2: [Equivalence of H∞ and ℓ1 norms for pos-

itive SISO systems] If system (1) is BIBO–stable, externally
positive, e ∈ R and y ∈ R , then ‖G‖∞ = ‖G‖∞ = |G(1)| .

Proof: It holds that ‖G‖∞ ≤ ‖G‖∞ , in fact:

‖G‖∞ = max
θ∈ [0,2π[

|G(eiθ)| = max
θ∈ [0,2π[

∣

∣

∑+∞
t=0 g(t) · 1

eiθt

∣

∣ ≤
≤ max

θ∈ [0,2π[

∑+∞
t=0 |g(t)| ·

∣

∣

1
eiθt

∣

∣ = ‖G‖∞ .
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0
∆

2
(α − 1)

∆

2
(α + 1)−

∆

2
(α + 1)

−
∆

2
(α − 1)

ρ(∆)

Fig. 1. U(∆) = {u1, u2, u3, u4, u5, u6} : the thick segments are the
intervals where m(∆) and M(∆) satisfy inequalities (20b–c) .

For an externally positive system, ‖G‖∞ = |G(1)|
(see [18]) : since |G(1)| ≤ ‖G‖∞ , the thesis follows.
In [19] , also the way to choose the parameters γ and
R

n×n ∋ Q > 0 involved in the definition of r2
i

(

see

equations (10) and (11)
)

is discussed. All the issues on the
application of Theorem 4.1 are exemplified in Section V and
a comparison between the two proposed approaches (i.e.,
H∞ vs mixed H∞/ℓ1 control synthesis) is presented.

A. Single–input reachable systems

Both the proposed stabilization methods rely on the control
synthesis in H∞ . For single–input reachable systems, a
solution is presented which is entirely built on ℓ1 theory.
Not only this result provides an interpretation in terms of ℓ1
control of the stabilization technique presented in [16] , but
it also extends that approach to a wider class of controllers.
Consider system (2) where m = 1 and the pair (A,B) is
reachable. Assume that the system is in controller form with
zn − anzn−1 − · · ·− a2z− a1 being the characteristic poly-
nomial of A . If K ∈ R

1×n is such that the characteristic
polynomial zn − fnzn−1 − · · · − f2z − f1 of the matrix
F := A + BK satisfies f :=

∑n
i=1 |fi| < 1 , then the

practical stability properties of the closed loop system with
u(x) = qU(Kx) can be analyzed through Proposition 3.1 . A
drawback of this approach is that, in the small–gain condition
γe(∆)
1−f < 1 , both the term 1

1−f related with the ℓ∞–gain

of the linear system Σ(F,B, I) and the parameter γe(∆)
taking the quantization error into account are depending on
K . If qU is a nearest neighbor quantizer, it is possible to
obtain a practical stabilization result where the small–gain

condition
γe(∆)
1−f < 1 is replaced by a similar condition but

the dependence on K is restricted to the linear part of the
dynamics. Thus, similarly to Theorem 4.1 , the analysis of
the nonlinearity due to quantization can be carried out apart
from the design of the control gain K .
To state the result, it is useful to introduce the following
notation (see also [16]) . Assume that α :=

∑n
i=1 |ai| ≥ 1

(if α < 1 , the matrix A is Schur) and, for ∆ > 0 , let:

U(∆) := U ∩
[

− ∆
2 (α + 1) , ∆

2 (α + 1)
]

m(∆) := min U(∆) , M(∆) := max U(∆)

and

ρ(∆) :=







sup
{

b − a
∣

∣ ]a, b[⊆ [m(∆), M(∆)] and

]a, b[ ∩ U(∆) = ∅
}

if #U(∆) > 1

+∞ otherwise

be the dispersion of U(∆) (see Fig. 1) .
Theorem 4.3: [ (X0, Ω)–stabilization of single–input sys-

tems] Consider system (2) with u ∈ R . Assume that it
is represented in the controller form coordinates and α =

∑n
i=1 |ai| ≥ 1 . Let K ∈ R

1×n be such that F := A+BK
satisfies f :=

∑n
i=1 |fi| < 1 . Consider ∆0 > 0 such that














ρ(∆0)/∆0

1−f < 1

m(∆0) < −∆0

2 (α − 1)

M(∆0) > ∆0

2 (α − 1) ,

(20a)

(20b)

(20c)

U = U(∆0) holds2 and let qU : R → U(∆0) be a nearest
neighbor quantizer. Then the following is well–defined

∆inf(f) := max
{

∆ < ∆0 | ρ(∆) = (1 − f)∆
}

and ∀∆⋆ > ∆inf(f) , the control law u(x) = qU(Kx) is
(

Qn(∆0), Qn(∆⋆)
)

–stabilizing.
Proof: It is based on Theorem 3.1 : see [19] .

In [19] , it is also shown that the small–gain condition
γe(∆0)
1−f < 1 implies conditions (20) . Thus, the range of ap-

plicability of Theorem 4.3 is wider than that of the technique
which may be directly derived from Proposition 3.1 .

V. EXAMPLE

Consider the following system:






x(t + 1) =

(

0 1
−1 5/2

)

x(t) +

(

1
2

)

u(t)

u ∈ U ⊂ R ,
(21)

where U is a logarithmically quantized set with parameters
(u0, θ) = (1 , 2) . Let us illustrate the two proposed methods
for the practical stabilization (i.e., by means of Theorem 4.1
and the mixed H∞/ℓ1 approach described in Remark 4.1) .
The pair (A,B) is not reachable but it is stabilizable, the
eigenvalues of A are λ1(A) = 1/2 and λ2(A) = 2 .
Let K = ( K1 K2 ) ∈ R

1×2 be such that A+BK is Schur:
the transfer matrix G(I)

K (z) of system Σ(A + BK, B, I) is

G(I)

K (z) =

(

1
z−(2+K1+2K2)

2
z−(2+K1+2K2)

)

and (see [18])

‖G(I)

K ‖∞ =
2

1 − |2 + K1 + 2K2|
. (22)

I (Input quantization)– Consider a nearest neighbor quantizer
qU : by equation (15) , the quantization error qe satisfies
conditions (8) with ̺0 = 3/4 , γe = 1/3 and E0 = 1/2 .
II (Control synthesis in H∞ )– Apply Lemma 4.1 with γ∞ ≤
1/γe = 3 . For single–input systems, problem (9) is feasible
if and only if γ∞ > Πλu(A)∈Su(A)|λu(A)| = 2 , where
Su(A) is the set of the unstable eigenvalues of A (see [9]) .
Solving system (16) with γ∞ = 2.01 , by equation (17) one
obtains K := Kc(2.01) =

(

0.6645 −1.3289
)

.
III (Closed loop analysis: H∞ stage)– It holds that
‖GK‖∞ = 2.0066 . With γ = 2.999 and Q = 0.194 · I ,
equation (11) is solved by

P =

(

0.7990 −0.9630
−0.9630 1.9992

)

.

By equation (10) , r2
i = 4.0579 . Therefore, ∀ r2

1 ≥ r2
2 >

4.0579 , system (21) controlled with u(x) = qU(Kx) is

2This is a technical assumption that can be always satisfied simply by
saturating the controller and neglecting the inputs out of U(∆0) .
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Fig. 2. Comparison between the final invariant ellipsoid E
P,r2

i
and the final

hypercube Q2(∆inf) , and representation of the trajectory starting from
x(0) = (−2.48 3.57) , in the two cases of the example in Section V : on
the left, synthesis in H∞ ; on the right, mixed H∞/ℓ1 control synthesis.

(

EP,r2
1
, EP,r2

2

)

–stable.
IV (Closed loop analysis: ℓ1 stage)– Let us compute ∆1
(

see equation (12)
)

. By equation (22) , one has ‖G(I)

K ‖∞ =
2.0133 . As for E (r2

2) , we are in the right framework of
Example 2 : since E (r2

2) is continuous and non–decreasing,

then inf
r2
2>r2

i

E (r2
2) = E (r2

i ) . Hence, by equation (18) ,

E (r2
i ) = 1/2 and ∆1 = 2‖G(I)

K ‖∞E (r2
i ) = 2.0133 .

Part ııı of Theorem 4.1 cannot be applied because the small–
gain condition (13) is not satisfied. In fact: since E (∆) is
continuous (see Example 2) , then E

+(∆) = E (∆) and

γe(∆) = E (∆)
∆/2 . By equation (19) , one computes E (∆1) =

1/2 and γe(∆1) = 1/∆1 , so that ‖G(I)

K ‖∞ · γe(∆1) = 1 .
V (Final result)– With u(x) = qU(Kx) , ∀ r2

1 >
4.0579 and ∀∆ > 2.0133 , the closed loop dynamics is
(

EP,r2
1
, EP,r2

1
, Q2(∆)

)

–stable.
Let us consider the variation proposed in Remark 4.1 :
IIb (Mixed H∞/ℓ1 control synthesis)– Thanks to equa-
tion (22) , problem (14) can be simplified to the following
equivalent form: given γ∞ ≤ 1

γe
, find

K = argmin
X ∈ R

1×2 such that
{

A + BX is Schur

‖G(siso)

X ‖∞ < γ∞

‖G(siso)

X ‖∞ , (23)

where G(siso)

X (z) := 2
z−(2+X1+2X2)

. By Theorem 4.2 , it

holds that ‖G(siso)

X ‖∞ ≤ ‖G(siso)

X ‖∞ . Hence, ∀ γ∞ > 2 , the

constraint ‖G(siso)

X ‖∞ < γ∞ can be removed and, according
to equation (22) , a solution to problem (23) is given by
K = ( 0 − 1 ) which yields ‖G(siso)

K ‖∞ = ‖G(siso)

K ‖∞ = 2 .
III– By proceeding as in the previous case we find that, with

P =

(

3.7165 −1.7587
−1.7587 2.0785

)

and r2
i = 41.7306 , ∀ r2

1 ≥ r2
2 > r2

i , the closed loop system
with u(x) = qU(Kx) is

(

EP,r2
1
, EP,r2

2

)

–stable.
IV– Similarly to the previous case, one computes ∆1 =
2‖G(I)

K ‖∞E (r2
i ) = 7.1457 . The small–gain condition (13)

is satisfied, in fact ‖G(I)

K ‖∞ · γe(∆1) = 0.5598 . To de-

termine ∆inf

(

see equation (6)
)

, we can follow a recur-
sive procedure: indeed the sequence defined by ∆k+1 =

2‖G(I)

K ‖∞E (∆k) converges to ∆inf = 2 (see [19]) .
V (Final result)– With u(x) = qU(Kx) , ∀ r2

1 >
41.7306 and ∀∆⋆ > 2 , the closed loop dynamics is
(

EP,r2
1
, EP,r2

1
, Q2(∆⋆)

)

–stable.
In both cases, Fig. 2 allows one to appreciate the contribution
brought by the application of the ℓ1 theory and the non–
conservativeness of the obtained results. Note that Q2(∆⋆)
is not positively invariant but, eventually, the trajectories are
guaranteed to remain confined therein (see Remark 2.2) .

VI. CONCLUSION

We have introduced a mixed H∞/ℓ1 approach for the stabi-
lization of quantized input linear systems. Among the future
directions of research, we find interesting to study the pe-
culiarities of the proposed technique as for positive systems.
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set receding horizon control, Int. J. of Robust and Nonlinear Control,
14(4); pp. 355–377.

[21] A.A. Stoorvogel (1992) The H∞ control problem: a state space
approach, Prentice-Hall, Englewood Cliffs. Out of print, a pdf version is
available at http://homepage.mac.com/a.a.stoorvogel/

[22] M. Sznaier and J. Bu (1998) Mized l1/H∞ Control of MIMO
Systems via Convex Optimization, IEEE Trans. Autom. Control, 43(9);
pp. 1229–1241.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB11.2

2873


