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Abstract— In this paper, we present a comparison theorem

for the solutions of two generalized algebraic Riccati equations

(GAREs) coming from two different systems. We show that the

so-called strong solutions, whose related matrix pencils have all

their finite eigenvalues in the closed left half plane, are maximal.

The results obtained generalize the existing monotonicity results

of algebraic Riccati equations. As an application of the above

results, we provide a parameterization of all strong solutions

of the GARE related to the singular spectral factorization of a

proper transfer function with finite and infinite imaginary axis

zeros.

I. INTRODUCTION

We consider the following generalized algebraic Riccati

equation (GARE), which arises from an infinite-horizon

linear-quadratic optimal control problem of descriptor sys-

tems ([13], [17], and [21]) or from the spectral factorization

of a proper transfer function with finite and infinite imaginary

axis zeros in [12],
{

ET X = XT E,

AT X + XT A − XT RX + Q = 0,
(1)

where E, A, R and Q are n × n real matrices with R =

RT ≥ 0, Q = QT , and −sE + A is a regular pencil, i.e.,

|−sE+A| is not identically zero. E is usually not invertible.

Note that for an infinite-horizon linear-quadratic optimal

control problem of descriptor systems, [13], [17], and [21]

proposed the notion of admissible solution, that is, the real

solution such that −sE +A−RX is regular, impulsive-free

and its finite eigenvalues are in the open left half plane. With

the admissible solution, the optimal control problem satisfy-

ing certain assumptions has been solved. Note that for the

case of E being an identity matrix, the admissible solution is

nothing but the stabilizing solution for an algebraic Riccati

equation.

On the other hand, for the spectral factorization of a proper

transfer function with finite and infinite imaginary axis zeros,

[12] studied the so-called strong solutions X+, that is, the

real solution such that −sE + A−RX+ are regular and all

their finite eigenvalues are in the closed left half plane. [12]

proposes a method to find a strong solution of the GARE

via solving a generalized eigenvector problem.

In this paper, we clarify some properties of the strong

solution of (1). Before we proceed further, we will briefly
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review some related results in the literature. Consider the

case of E being an identity matrix for (1). In this case, X =

XT must hold and GARE (1) is reduced to a usual ARE

which has been studied extensively, to name a few, see [5],

[9], [11], [19], and the references therein. Note that the notion

of strong solution was first presented in [2] for a discrete

ARE. Several existence conditions and properties such as

uniqueness for the strong solution were provided in [3] and

[4]. Under the assumption of controllability of (A,R), [9]

presents the existence and uniqueness theorems for an ARE.

Under assumption of stabilizability of (A,R), [5] shows the

existence and properties of maximal solutions; [19] obtains

a comparison theorem for the solutions of two AREs and the

monotonicity results of AREs, which shows that any solution

of the ARE yielding A−RX with eigenvalues in the closed

left half plane, that is, the strong solution, is maximal; and

[11] gives some improvements on [5] and [19].

The strong solution for GARE (1) has not been investi-

gated much yet in comparison with its state-space counter-

part. For example, the uniqueness of the strong solution has

not been reported. In this paper, under the assumption of the

stabilizability of (E,A,R) (see Section II for the definition),

we investigate the properties of uniqueness and maximum of

the strong solutions of GARE (1). To this end, we develop a

comparison theorem for the solutions of two GAREs coming

from two different systems. We show that the strong solutions

are maximal in the way defined later. Thus the monotonicity

of maximal solutions of GARE (1) is proved. The results

obtained in this paper contain those of [19] as a special case

of E = I . As an application of the above results to the strong

solutions of the GARE in [12], we give a direct answer to

the question of the uniqueness without needing to explore

the algorithm involving the generalized eigenvalue problem

in [12]; we also provide the parameterization of all strong

solutions for the GARE.

For the infinite-horizon linear-quadratic optimal control

problem of descriptor systems, Q in (1) is usually assumed

to be Q ≥ 0, and the solutions studied there are admissible

ones. In this paper, Q is just assumed to be symmetric,

and −sE + A − RX is allowed to have eigenvalues on the

finite imaginary axis and to have impulsive modes. These are

essence differences. See Remark 1 for further discussion.

The following notations are used in this paper. The open

left complex plane, open right half complex plane and open

complex plane are denoted by C−, C+, and C, respectively.
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The jω−axis and jω−axis with infinity are denoted by Ω

and Ωe, respectively. R
n denotes the real space of dimension

n. R
m×r denotes the set of all m× r constant real matrices.

Ir denotes the identity matrix of size r× r. Im A and Ker A

denote the image space and the null space of matrix A,

respectively. |A| denotes the determinant of A. σf (−sE+A)

denotes the set of finite eigenvalues of regular pencil −sE +

A. We denote G∼(s) := GT (−s) and we use the notation

C(sI − A)−1B + D :=

[
A B

C D

]
.

II. BASIC KNOWLEDGE OF DESCRIPTOR

SYSTEMS

In this section, we will review some basic knowledge

about the descriptor systems [1] and [16].

The finite eigenvalues of a regular pencil −sE+A of size

n×n (which are the roots of |−sE +A| = 0) are called the

finite dynamic modes of −sE+A. The infinite eigenvalues of

−sE+A are defined to be the zero eigenvalues of −sA+E.

The infinite eigenvalues corresponding to grade-one infinite

generalized eigenvectors, v1
i , that satisfy Ev1

i = 0 are called

the nondynamic modes of−sE +A. The infinite eigenvalues

corresponding to the grade-k (k ≥ 2) infinite generalized

eigenvectors, vk
i , that satisfy Evk

i = Avk−1
i are called the

impulsive modes of −sE + A. Let r = rankE and m =

deg | − sE + A|. Then, −sE + A has m finite dynamic

modes, r−m impulsive modes, and n−r nondynamic modes.

−sE + A is said to be impulsive free if it has no impulsive

modes, i.e., r = m.

The following statement will be found useful in this paper:

−sE+A is impulse-free if and only if there exist nonsingular

matrices M1 and V1 such that

M−1
1 (−sE + A)V1 =

[
−sI + Af 0

0 I

]
. (2)

For regular −sE + A, triple (E,A,R) is said to be

stabilizable 1 if

rank
[
−sE + A R

]
= n, ∀s ∈ C+ ∪ Ωe, (3)

which at s = ∞ means that

Im E + AKer E + Im R = R
n. (4)

III. COMPARISON THEOREM, STRONG

SOLUTION AND MAXIMAL SOLUTION

First, we present the following inertia result with its proof

given in Appendix A.

Theorem 1: Suppose E, A, R, and Q are in R
n×n such

that −sE +A is regular, λf (−sE +A) ∈ C−∪Ω, (E,A,R)

1The definition of (E, A, R) is stabilizable in this paper is equivalent to

that (E, A, R) is finite dynamics stabilizable and impulsive controllable in

[15].

is stabilizable, and R = RT ≥ 0, Q = QT ≥ 0. If X is a

real solution of
{

ET X = XT E,

AT X + XT A + XT RX + Q = 0,
(5)

then

ET X ≥ 0. (6)

Note that the sign of the quadratic term of GARE (5) is

opposite to that in GARE (1). In addition, in Theorem 1,

Q ≥ 0 and λf (−sE + A) ∈ C− ∪ Ω are also assumed for

GARE (5).

Next, using Theorem 1, we can obtain a comparison

theorem for two different GAREs.

Theorem 2: Suppose E, A, R, and Q are in R
n×n such

that −sE + A is regular, (E,A,R) is stabilizable, and R =

R
T ≥ 0, Q = QT . Let X+ ∈ R

n×n be a strong solution of

GARE (1) such that −sE + A − RX+ is regular and

λf (−sE + A − RX+) ⊂ C− ∪ Ω. (7)

Let X1 be any real solution of another GARE
{

ET X1 = XT
1 E,

AT
1 X1 + XT

1 A1 − XT
1 R1X1 + Q1 = 0,

(8)

where A1, R1 = RT
1 , Q1 = QT

1 are in R
n×n. Define

H :=

[
A −R

−Q −AT

]
, H1 :=

[
A1 −R1

−Q1 −AT
1

]
, (9)

J :=

[
0 −In

In 0

]
. (10)

If

J(H − H1) =

[
Q − Q1 (A − A1)

T

A − A1 R1 − R

]
≥ 0, (11)

then

ET X+ ≥ ET X1. (12)

Proof: Let ∆ := X+ − X1. Take the difference of (1)

with X+ and (8), we obtain





ET ∆ = ∆T E,

(A − RX+)T ∆ + ∆T (A − RX+) + ∆T R∆

+
[

I XT
1

]
J(H − H1)

[
I

X1

]
= 0.

(13)

Since ET ∆ = ∆T E holds obviously, we just show the

second equation in (13). From (1) and eqn:garea, we obtain

AT ∆ + ∆T A − XT
+RX+ + XT

1 RX1 + Q̃ = 0,

where

Q̃ := AT X1 + XT
1 A − XT

1 RX1 + Q. (14)

Using XT
1 RX1 = (X+ − ∆)T R(X+ − ∆) = XT

+RX+ −
∆T RX+ − XT

+R∆ + ∆T R∆ and

Q̃ =
[

I XT
1

]
JH

[
I

X1

]

=
[

I XT
1

]
J(H − H1)

[
I

X1

]
, (15)
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we prove the second equation in (13).

Since X+ is a strong solution of GARE (1), then −sE +

A − RX+ is regular and σf (−sE + A − RX+) ∈ C− ∪ Ω.

Moreover, since (E,A,R) is stabilizable, so is (E,A −
RX+, R). From (11), since the constant matrix of (13)

is positive semidefinite, together with R ≥ 0, applying

Theorem 1 for GARE (13) shows ET ∆ ≥ 0. This completes

the proof of Theorem 2.

The following result is a direct consequence of Theorem 2

about the uniqueness and maximum of the strong solutions of

GARE (1). Here, we say that a real solution Xm is maximal

if ET Xm ≥ ET X for any other real solution of GARE (1).

Theorem 3: Suppose E, A, R and Q are in R
n×n such

that −sE + A is regular, (E,A,R) is stabilizable, and R =

RT ≥ 0, Q = QT . Let X+ be a strong solution of GARE

(1). Then ET X+ is maximal among all the real solutions of

GARE (1), i.e., X+ is maximal. Moreover, ET X+ is unique.

Proof: Let H = H1 in (9). According to Theorem 2,

ET X+ is maximal among all the real solutions of GARE

(1). Moreover, ET X+ is unique. Indeed, let X+ and X̂+ be

two strong solutions of GARE (1), then ET X+ ≥ ET X̂+

and ET X̂+ ≥ ET X+, it follows that ET X+ = ET X̂+.

IV. APPLICATION AND EXAMPLE

A. Application to the GARE related to Singular Factoriza-

tion

We present an application of the comparison theorem to

the GARE related to the spectral factorization of a proper

transfer function with infinite and finite jω-axis zeros. Such

factorization and its related GARE are useful to solve the

H∞ control problem with finite and infinite imaginary axis

zeros [20].

Consider the m × p proper system

G(s) =

[
A B

C D

]
, (16)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n, and D ∈ R

m×p.

The following assumptions are made:

A1 (A,B) is stabilizable and (C,A) is detectable;

A2 A has no eigenvalues in open right half plane;

A3 The system matrix associated to G(s), defined by

Γ(s) :=

[
−sI + A B

C D

]
(17)

has full normal column rank n + p.

From assumption A3, m ≥ p, i.e., G(s) is a tall or square

system but D is not necessarily full column rank and G(s)

may have invariant zeros on the jω-axis.

The main objective of [12] is to solve the spectral factor-

ization for

Φ(s) = G∼(s)G(s), (18)

i.e., to find a spectral factor Π(s) such that

Φ(s) = Π∼(s)Π(s) (19)

and Π(s) has neither poles nor zeros in C− ∪ Ω. Define

Ea :=

[
In 0

0 0p×p

]
, Aa :=

[
A B

0 Ip

]
, (20)

Ba :=

[
0n×p

−Ip

]
, Qa :=

[
CT C CT D

DT C DT D − Ip

]
. (21)

We recall the following result from [12]:

Lemma 1: [12] Consider the proper system with its sta-

bilizable and detectable realization given in (17) which

satisfies the assumptions A1–3. Then there exists a spectral

factorization of the spectral density matrix Φ(s) satisfying

(19) such that Π(s) has neither poles nor zeros in C− ∪ Ω.

Moreover, GARE
{

XT Ea = ET
a X,

XT Aa + AT
a X − XT BaBT

a X + Qa = 0
(22)

always has a strong solution X given by

X =

[
X11 0

X21 X22

]
, X11 = XT

11 ∈ R
n×n, X22 ∈ R

p×p,

(23)

and the spectral factor is given by

Π(s) =

[
−sI + A B

−X21 Ip − X22

]
. (24)

We present the following remark about GARE (22).

Remark 1: In comparison with the GARE arising from

LQ optimal for descriptor systems, the following differences

can be observed. If D is not of full column rank, Qa in (22)

is not positive semidefinite, also there exists no solution such

that −sEa+Aa−BaBT
a X is impulsive free. Furthermore, if

G(s) has invariant zeros on the finite imaginary axis, −sEa+

Aa − BaBT
a X has eigenvalues on the finite imaginary axis

for any solution of GARE (22). Thus, GARE (22) may not

have an admissible solution under the assumptions A1–3.

In [12], the existence of a strong solution of GARE (22)

is shown by providing a solution via solving a generalized

eigenvector problem. However, whether the strong solution

X in Lemma 1 is unique or not is not discussed.

Here, we show that the strong solution X is not unique,

but ET
a X is unique. Moreover, we give a parameterization

of all the solutions to GARE (22). By applying Theorems 2

and 3, we have the following results.

Theorem 4: With the quantities as defined in Lemma 1.

Suppose that

X =

[
X11 0

X21 X22

]

is a strong solution of GARE (22). Then

(i) ET
a X is unique and ET

a X ≥ 0, i.e., X11 is unique and

X11 ≥ 0.

(ii) Every strong solution of the GARE is
[

X11 0

V X21 Ip − V (Ip − X22)

]
, (25)
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where V ∈ R
p×p is any unitary matrix, i.e., V T V = Ip.

Proof: (i) From (20) and (21), we obtain

[
−sEa + Aa −BaBT

a

]
=

[
−sIn + A B 0 0

0 Ip 0 −Ip

]
.

Hence, the stabilizability of (A,B) implies that of

(Ea, Aa,−BaBT
a ). Since X is a strong solution of (22), by

using Theorem 3, we know that

ET
a X =

[
X11 0

0 0

]

is unique, i.e., X11 is unique. It is easy to see that

X1 :=

[
0n×n 0

0 Ip

]

is a solution of
{

ET
a X1 = XT

1 Ea,

AT
a X1 + XT

1 Aa − XT
1 BaBT

a X1 + Qa1 = 0,
(26)

where

Qa1 :=

[
0n×n 0

0 −Ip

]
.

Since only the constant matrices in GARE (26) and GARE

(22) are different, and Qa −Qa1 ≥ 0, then condition (11) in

Theorem 2 holds for the above two GAREs, thus

ET
a X =

[
X11 0

0 0

]
≥ ET

a

[
0 0

0 Ip

]
= 0(n+p)×(n+p).

(ii) Since X11 is unique, the freedom of X (if it has) is

contained only in X12 and X22. It follows from (22) that





X11A + AT X11 + CT C = XT
21X21,

BT X11 + DT C = −(Ip − X22)
T X21,

DT D = (Ip − X22)
T (Ip − X22),

(27)

which follows that

L :=

[
X11A + AT X11 + CT C X11B + CT D

BT X11 + DT C DT D

]
(28)

is unique and

L = UT U ≥ 0, (29)

where

U :=
[
−X21 Ip − X22

]
∈ R

p×(n+p). (30)

From the assumption A3, the system matrix associated to

Π(s), defined by
[

−sI + A B

−X21 Ip − X22

]

has full normal rank n + p. Hence, together with (29) we

obtain

rankL = rankU = rank
[
−X21 Ip − X22

]
= p.

(31)

Let

X̂ =

[
X11 0

X̂21 X̂22

]

be any another strong solution and let

Û :=
[
−X̂21 Ip − X̂22

]
∈ R

p×(n+p).

Then,

L = ÛT Û = UT U (32)

Thus, Ker U = Ker Û and Im UT = Im ÛT . Therefore, there

exists a V ∈ R
p×p such that ÛT = UT V T . From (32), we

have UT (I − V T V )U = 0. Since U has full row rank, it

follows that V T V = Ip. We obtain from Û = V U that

X̂21 = V X21, (33)

X̂22 = Ip − V (Ip − X22). (34)

On the other hand, it is easy to check that (25) is a strong

solution of GARE (22) for any unitary matrix V . This

completes the proof.

B. Numerical Example

Consider the spectral factorization of (18) with

G(s) =





s(s − 2)

(s + 1)3

s(s − 2)

(s + 1)3



 =





−3 −3 −1 1

1 0 0 0

0 1 0 0

1 −2 0 0

1 −2 0 0




.

Solving GARE (22), we obtain a solution X expressed in

(23) with

X11 =




0 0 0

0 8 0

0 0 0



 ,

X21 =
[
−
√

2, −2
√

2, 0
]
, X22 = 1.

We obtain a spectral factor

Π(s) =





−3 −3 −1 1

1 0 0 0

0 1 0 0√
2 2

√
2 0 0



 =

√
2(s + 2)

(s + 1)3
.

V. CONCLUSIONS

A comparison theorem for the solutions of two different

GAREs has been proposed in this paper. It has been shown

that the strong solutions are maximal. The results obtained in

this paper generalize of the existing monotonicity results of

algebraic Riccati equations developed in [19]. As an applica-

tion of the results, a parameterization of all strong solutions

of the GARE related to the singular spectral factorization has

been provided. The results obtained give a new insight into

the solutions of GAREs.

Appendix A Proof of Theorem 1
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For a given real X , there exist nonsingular matrices M

and N such that

MT XN =

[
W 0

0 0

]
, |W | 	= 0.

Accordingly, define
[

E11 E12

E21 E22

]
:= M−1EN,

[
A11 A12

A21 A22

]
:= M−1AN,

[
R11 R12

RT
12 R22

]
:= M−1RM−T ,

[
Q11 Q12

QT
12 Q22

]
= NT QN.

Pre-multiplying and post-multiplying two equations in (5)

by NT and N , respectively, we have
[

ET
11W 0

ET
12W 0

]
=

[
WT E11 WT E12

0 0

]
, (A1)

[
AT

11W + WT A11 + WT R11W + Q11 WT A12 + Q12

AT
12W + QT

12 Q22

]

=

[
0 0

0 0

]
. (A2)

From (A1) and |W | 	= 0, we have E12 = 0 and ET
11W =

WT E11, i.e.,

W−T ET
11 = E11W

−1. (A3)

From (A2), we obtain Q22 = 0. Hence, it follows from Q ≥
0 and NT QN ≥ 0 that Q12 = 0. Consider the block (1, 2)

of (A2). Due to |W | 	= 0, A12 = 0. Pre-multiplying and

post-multiplying block (1, 1) of (A2) by W−T and W−1,

respectively, we obtain

W−T AT
11 + A11W

−1 = −R̂11, (A4)

where

R̂11 := R11 + W−T Q11W
−1 ≥ 0 (A5)

due to R11 ≥ 0 and Q11 ≥ 0. From

ET X = N−T NT ET M−T MT XNN−1

= N−T

[
ET

11W 0

0 0

]
N−1,

we know that to show ET X ≥ 0 it is equivalently to show

ET
11W ≥ 0. To this end, we need the following results via

two steps:

Step 1 Show that −sE11 + A11 is regular and

σf (−sE11 + A11) ∈ C− holds.

Step 2 Show that (E11, A11, R̂11) is stabilizable and

−sE11 + A11 is impulsive free.

As to Step 1, since E12 = 0 and A12 = 0, we have

M−1(−sE + A)N =

[
−sE11 + A11 0

∗ −sE22 + A22

]
.

Thus, −sE+A is regular, so is −sE11+A11; and σf (−sE+

A) ∈ C− ∪ Ω holds, so does σf (−sE11 + A11) ∈ C− ∪ Ω.

On contrary assume that−sE11 +A11 has a finite imaginary

eigenvalue jω, then there exists ξ such that

ξ∗(−jωE11 + A11) = 0. (A6)

Pre-multiplying and post-multiplying (A4) by ξ∗ and ξ,

respectively, we have

ξ∗(W−T AT
11+A11W

−1)ξ = −ξ∗R11ξ−ξ∗W−T Q11W
−1ξ.

It follows from (A3) and (A6) that the left hand side of the

above equation is 0. Since R11 ≥ 0 and Q11 ≥ 0, we have

ξ∗R11 = 0. It implies that (E11, A11, R11) is not stabilizable.

However, this is not true which is shown as follows. Thus,

σf (−sE11 + A11) ⊂ C−. (A7)

To show (E11, A11, R11) is stabilizable, since (E,A,R)

is stabilizable, we have

rank
[
−sE + A R

]

= rank
[

M−1(−sE + A)N M−1RM−T
]

= rank

[
−sE11 + A11 0 R11 R12

∗ −sE22 + A22 RT
12 R22

]

= rank

[
−sE22 + A22 ∗ RT

12 R22

0 −sE11 + A11 R11 R12

]

= n, ∀s ∈ C+ ∪ Ωe. (A8)

Also since R ≥ 0, then rank
[

R11 R12

]
= rankR11.

Hence,

rank
[
−sE11 + A11 R11

]
= r, ∀s ∈ C+ ∪ Ω, (A9)

where r = rankE. For s = ∞, applying (4) to (A8) yields

Im

[
E11 0

E21 E22

]
+

[
A11 0

A21 A22

]
Ker

[
E11 0

E21 E22

]

+Im

[
R11 R12

RT
12 R22

]
= R

n.

Therefore, we obtain

Im E11 + A11Ker E11 + ImR11 = R
r. (A10)

This shows that (E11, A11, R11) is stabilizable.

As to Step 2, first, we show that (E11, A11, R̂11) is also

stabilizable. From (A7), we have

rank
[
−sE11 + A11 R̂11

]
= r, ∀s ∈ C+ ∪ Ω. (A11)

On the other hand, from (A5), we obtain Ker R̂11 ⊂ Ker R11.

This yields Im R̂T
11 ⊃ Im R

T
11. Since R̂11 and R11 are

symmetric, Im R̂11 ⊃ Im R11. Thus, it follows from (A10)

that

Im E11 + A11Ker E11 + Im R̂11 = R
r. (A12)
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This with (A11) shows that (E11, A11, R̂11) is also stabiliz-

able.

Next, we prove that −sE11 + A11 is impulsive free. The

proof is similar to that in [15]. Without loss of generality, we

assume that E11 and A11 are given by the following form:

E11 =:

[
I 0

0 Λ

]
, A11 =:

[
As 0

0 Il

]
, (A13)

where As is strictly stable and Λ is a nilpotent matrix. It

suffices to show Λ = 0. Now decompose W−1 and R̂11 in

accordance with (A13) as

W−1 =:

[
W11 W12

W21 W22

]
, R̂11 =:

[
Z11 Z12

ZT
12 Z22

]
. (A14)

From (A3) and (A4), we have

WT
11A

T
s + AsW11 = −Z11 ≤ 0, W11 = WT

11, (A15)

W12 = WT
21Λ

T , (A16)

WT
22 + W22 = −Z22 ≤ 0, WT

22Λ
T = ΛW22. (A17)

Now on contrary, assume Λ 	= 0. Since Λ is nilpotent, let

α := min{k |Λk = 0, k ≥ 2}. Using the stabilizability of

(E11, A11, R̂11) and (A12)-(A14) gives

Im Λ + Ker Λ + ImZ22 = R
l. (A18)

This yields

Im Λα−1 = Im Λα−1Z22. (A19)

Then pre-multiplying and post-multiplying the first equation

of (A17) by Λα−1 and (ΛT )α−1, respectively, we obtain

Λα−1(WT
22 + W22)(Λ

T )α−1 = −Λα−1Z22(Λ
T )α−1.

Using the second equation of (A17), it follows that the left

hand side of the above equation satisfies

ΛαWT
22(Λ

T )α−2 + Λα−2W22(Λ
T )α = 0.

Thus, together with Z22 ≥ 0, we have Λα−1Z22 = 0.

Moreover, from (A19), Λα−1 = 0. This contradicts the

minimality of α. Thus, Λ = 0.

Finally, we are ready to show ET
11W ≥ 0. From (A16),

W12 = 0, then

W−1 =

[
W11 0

W21 W22

]

implies that W11 is nonsingular. According to Lyapunov

equation (A15), the stability of As leads to Thus W11 > 0.

Then, by using (A13) with Λ = 0, we have

ET
11W =

[
W−1

11 0

0 0

]
≥ 0.

This completes the proof of Theorem 1.
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