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Strong Solutions and Maximal Solutions of

Generalized Algebraic Riccati Equations

Xin Xin

Abstract—In this paper, we present a comparison theorem
for the solutions of two generalized algebraic Riccati equations
(GAREs) coming from two different systems. We show that the
so-called strong solutions, whose related matrix pencils have all
their finite eigenvalues in the closed left half plane, are maximal.
The results obtained generalize the existing monotonicity results
of algebraic Riccati equations. As an application of the above
results, we provide a parameterization of all strong solutions
of the GARE related to the singular spectral factorization of a
proper transfer function with finite and infinite imaginary axis
Zeros.

I. INTRODUCTION

We consider the following generalized algebraic Riccati
equation (GARE), which arises from an infinite-horizon
linear-quadratic optimal control problem of descriptor sys-
tems ([13], [17], and [21]) or from the spectral factorization
of a proper transfer function with finite and infinite imaginary
axis zeros in [12],

{ ETX =XTE,

ATX + XTA-XTRX +Q =0, M

where E, A, R and () are n X n real matrices with R =
RT>0,Q=QT,and —sE+ Ais a regular pencil, i.e.,
| —sE+ A| is not identically zero. E is usually not invertible.

Note that for an infinite-horizon linear-quadratic optimal
control problem of descriptor systems, [13], [17], and [21]
proposed the notion of admissible solution, that is, the real
solution such that —sFE + A — RX is regular, impulsive-free
and its finite eigenvalues are in the open left half plane. With
the admissible solution, the optimal control problem satisfy-
ing certain assumptions has been solved. Note that for the
case of E being an identity matrix, the admissible solution is
nothing but the stabilizing solution for an algebraic Riccati
equation.

On the other hand, for the spectral factorization of a proper
transfer function with finite and infinite imaginary axis zeros,
[12] studied the so-called strong solutions X, that is, the
real solution such that —sE + A — RX are regular and all
their finite eigenvalues are in the closed left half plane. [12]
proposes a method to find a strong solution of the GARE
via solving a generalized eigenvector problem.

In this paper, we clarify some properties of the strong
solution of (1). Before we proceed further, we will briefly
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review some related results in the literature. Consider the
case of F being an identity matrix for (1). In this case, X =
XT must hold and GARE (1) is reduced to a usual ARE
which has been studied extensively, to name a few, see [5],
[9], [11], [19], and the references therein. Note that the notion
of strong solution was first presented in [2] for a discrete
ARE. Several existence conditions and properties such as
uniqueness for the strong solution were provided in [3] and
[4]. Under the assumption of controllability of (4, R), [9]
presents the existence and uniqueness theorems for an ARE.
Under assumption of stabilizability of (A4, R), [5] shows the
existence and properties of maximal solutions; [19] obtains
a comparison theorem for the solutions of two AREs and the
monotonicity results of AREs, which shows that any solution
of the ARE yielding A — RX with eigenvalues in the closed
left half plane, that is, the strong solution, is maximal; and
[11] gives some improvements on [5] and [19].

The strong solution for GARE (1) has not been investi-
gated much yet in comparison with its state-space counter-
part. For example, the uniqueness of the strong solution has
not been reported. In this paper, under the assumption of the
stabilizability of (E, A, R) (see Section II for the definition),
we investigate the properties of uniqueness and maximum of
the strong solutions of GARE (1). To this end, we develop a
comparison theorem for the solutions of two GAREs coming
from two different systems. We show that the strong solutions
are maximal in the way defined later. Thus the monotonicity
of maximal solutions of GARE (1) is proved. The results
obtained in this paper contain those of [19] as a special case
of ' = I. As an application of the above results to the strong
solutions of the GARE in [12], we give a direct answer to
the question of the uniqueness without needing to explore
the algorithm involving the generalized eigenvalue problem
in [12]; we also provide the parameterization of all strong
solutions for the GARE.

For the infinite-horizon linear-quadratic optimal control
problem of descriptor systems, @) in (1) is usually assumed
to be Q > 0, and the solutions studied there are admissible
ones. In this paper, @) is just assumed to be symmetric,
and —sE + A — RX is allowed to have eigenvalues on the
finite imaginary axis and to have impulsive modes. These are
essence differences. See Remark 1 for further discussion.

The following notations are used in this paper. The open
left complex plane, open right half complex plane and open
complex plane are denoted by C_, C,, and C, respectively.
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The jw—axis and jw—axis with infinity are denoted by (2
and €., respectively. R™ denotes the real space of dimension
n. R™*" denotes the set of all m x r constant real matrices.
I,. denotes the identity matrix of size » X . Im A and Ker A
denote the image space and the null space of matrix A,
respectively. | A| denotes the determinant of A. o¢(—sE+A)
denotes the set of finite eigenvalues of regular pencil —sE +
A. We denote G~(s) := GT(—s) and we use the notation

C(sI —A)"'B+D:= [%‘i} .

II. BASIC KNOWLEDGE OF DESCRIPTOR
SYSTEMS

In this section, we will review some basic knowledge
about the descriptor systems [1] and [16].

The finite eigenvalues of a regular pencil —sF + A of size
n X n (which are the roots of | — sE + A| = 0) are called the
finite dynamic modes of —sF+ A. The infinite eigenvalues of
—sFE 4+ A are defined to be the zero eigenvalues of —sA+ E.
The infinite eigenvalues corresponding to grade-one infinite
generalized eigenvectors, vl-l, that satisfy Evl-1 = 0 are called
the nondynamic modes of—sE + A. The infinite eigenvalues
corresponding to the grade-k (k > 2) infinite generalized
eigenvectors, v¥, that satisfy Evf = AvF~! are called the
impulsive modes of —sE + A. Let r = rank £ and m =
deg| — sE + A|. Then, —sE + A has m finite dynamic
modes, —m impulsive modes, and n—r nondynamic modes.
—sE + A is said to be impulsive free if it has no impulsive
modes, i.e., 7 = m.

The following statement will be found useful in this paper:
—sE+ A is impulse-free if and only if there exist nonsingular
matrices M, and V7 such that

2

MY (—sE+ AV, = [ —sI+Af 0O } .

0 1

For regular —sE + A, triple (E, A, R) is said to be
stabilizable ! if

rank[fsEJrA R}:n, Vse CLUQe, (3

which at s = oo means that
ImE + AKer E + Im R = R™. 4)

III. COMPARISON THEOREM, STRONG
SOLUTION AND MAXIMAL SOLUTION

First, we present the following inertia result with its proof
given in Appendix A.

Theorem 1: Suppose E, A, R, and @) are in R™*" such
that —sE+ A is regular, Ay (—sE+A) € C_UQ, (E, A, R)

IThe definition of (E, A, R) is stabilizable in this paper is equivalent to
that (E, A, R) is finite dynamics stabilizable and impulsive controllable in
[15].

TuA16.5

is stabilizable, and R = RT > 0, Q= QT >0.If Xisa
real solution of

ETX = XTE,
T T T ®)
ATX + XTA+ XTRX +Q =0,
then
ETX >0. (6)

Note that the sign of the quadratic term of GARE (5) is
opposite to that in GARE (1). In addition, in Theorem 1,
@ >0and A\f(—sE+ A) € C_ U are also assumed for
GARE (5).

Next, using Theorem 1, we can obtain a comparison
theorem for two different GAREs.

Theorem 2: Suppose E, A, R, and ) are in R"*" such
that —sFE + A is regular, (E, A, R) is stabilizable, and R =
RT >0, Q = QT. Let X, € R™ " be a strong solution of
GARE (1) such that —sFE + A — RX is regular and

Af(—sE+A—-RX,;)CcC_uUQ. 7
Let X, be any real solution of another GARE

ETX, = XTE,
AT T T 3
1 X1+ XA - X{ R Xy +@Q1=0,
where Ay, Ry = RY, Q; = QT are in R"*". Define
. A 7R L Al 7R1
H._[_Q _AT], Hl._[_Ql —A?]’ ©)
0 _In
J = [ Lo ] (10)
If
Q—-Q1 (A-ANT
— e >
J(H — Hy) [ @ VoA ze ay
then
ETX, > ETX,. (12)

Proof: Let A := X, — X;. Take the difference of (1)
with X and (8), we obtain

ETA=ATE,
(A—RX)TA+AT(A- RX,)+ATRA

+[1 X{ ]J(H—Hl)[)gl } =0.

Since EYA = ATE holds obviously, we just show the
second equation in (13). From (1) and eqn:garea, we obtain

ATA+ATA - XTRX, + X{RX1 +Q =0,

13)

where }

Q:=ATX, + XTA-XTRX, +Q. (14)
Using X{ RX; = (X1 — A)TR(X; — A) = XTRX, —
ATRX, — XTRA + ATRA and

Q

(1 XlT}JH{;l}

(1 xt “(H_Hl)ul ] (15)
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we prove the second equation in (13).

Since X is a strong solution of GARE (1), then —sF +
A— RX, isregular and of(—sE+ A— RX;) e C_UQ.
Moreover, since (F, A, R) is stabilizable, so is (F, A —
RX,,R). From (l11), since the constant matrix of (13)
is positive semidefinite, together with R > 0, applying
Theorem 1 for GARE (13) shows E7A > 0. This completes
the proof of Theorem 2. [ ]

The following result is a direct consequence of Theorem 2
about the uniqueness and maximum of the strong solutions of
GARE (1). Here, we say that a real solution X,,, is maximal
if ETX,, > ETX for any other real solution of GARE (1).

Theorem 3: Suppose F, A, R and @ are in R™*™ such
that —sFE + A is regular, (F, A, R) is stabilizable, and R =
RT >0, Q = Q. Let X, be a strong solution of GARE
(1). Then ET X, is maximal among all the real solutions of
GARE (1), i.e., X is maximal. Moreover, ETX+ is unique.

Proof: Let H = H; in (9). According to Theorem 2,
ETX, is maximal among all the real solutions of GARE
(1). Moreover, ET X | is unique. Indeed, let X, and )?Jr be
two strong solutions of GARE (1), then ET X > ET)?+
and ETX, > ETX,, it follows that ETX, = ETX,. m

IV. APPLICATION AND EXAMPLE

A. Application to the GARE related to Singular Factoriza-
tion

We present an application of the comparison theorem to
the GARE related to the spectral factorization of a proper
transfer function with infinite and finite jw-axis zeros. Such
factorization and its related GARE are useful to solve the
H, control problem with finite and infinite imaginary axis
zeros [20].

Consider the m X p proper system

- [242]

where A € R"** B ¢ R*"*P, C' € R™*" and D € R™*P,
The following assumptions are made:

Al (A, B) is stabilizable and (C, A) is detectable;
A2 A has no eigenvalues in open right half plane;
A3 The system matrix associated to G(s), defined by

re=|

has full normal column rank n + p.

(16)

a7

From assumption A3, m > p, i.e., G(s) is a tall or square
system but D is not necessarily full column rank and G(s)
may have invariant zeros on the jw-axis.

The main objective of [12] is to solve the spectral factor-
ization for

O(s) = G™(s)G(s), (18)
i.e., to find a spectral factor I1(s) such that
D(s) = 1™ (s)T1(s) (19)
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and II(s) has neither poles nor zeros in C_ U Q. Define

I, 0 _[A B
o O E A B

[ Onxp _[cTc ™D
Be ‘_[ -1, } Qa:= { pTCc DTD -1,

B |

} .2

We recall the following result from [12]:
Lemma 1: [12] Consider the proper system with its sta-
bilizable and detectable realization given in (17) which
satisfies the assumptions A1-3. Then there exists a spectral
factorization of the spectral density matrix ®(s) satisfying
(19) such that II(s) has neither poles nor zeros in C_ U €.

Moreover, GARE
{ XTE, = ETX,

XTAg+ ATX — XTB,BTX + Q, =0 22)

always has a strong solution X given by

Xll 0 nxn
X = |: X1 Xoo :|’ Xll:XlTleR X ) X22€Rp><p7
(23)
and the spectral factor is given by
—sI+ A ‘ B
II(s) = . (24)
() [ —Xo1 ‘Ip_X22

We present the following remark about GARE (22).

Remark 1: In comparison with the GARE arising from
LQ optimal for descriptor systems, the following differences
can be observed. If D is not of full column rank, @), in (22)
is not positive semidefinite, also there exists no solution such
that —sE, + A, — B, BT X is impulsive free. Furthermore, if
G(s) has invariant zeros on the finite imaginary axis, —sF,+
Aa — BoBT X has eigenvalues on the finite imaginary axis
for any solution of GARE (22). Thus, GARE (22) may not
have an admissible solution under the assumptions A1-3.

In [12], the existence of a strong solution of GARE (22)
is shown by providing a solution via solving a generalized
eigenvector problem. However, whether the strong solution
X in Lemma 1 is unique or not is not discussed.

Here, we show that the strong solution X is not unique,
but EF' X is unique. Moreover, we give a parameterization
of all the solutions to GARE (22). By applying Theorems 2
and 3, we have the following results.

Theorem 4: With the quantities as defined in Lemma 1.

Suppose that
X1 0 }
X =
[ Xo1 Xa2

is a strong solution of GARE (22). Then

(i) ET X is unique and EX' X > 0, i.e., X1; is unique and
X1 >0.

(7i) Every strong solution of the GARE is

X1 0
7 25
[ VXor I, — V(I — Xa2) } (25)

530



47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

where V' € RP*P is any unitary matrix, i.e., VTV = I,
Proof: (i) From (20) and (21), we obtain

—-sl,+A B 0 0

0 I, 0 —I,
Hence, the stabilizability of (A,B) implies that of
(Ea, Ag, —BoBI'). Since X is a strong solution of (22), by
using Theorem 3, we know that

X11 0
0 O

[ sB+ A, —BBT ]= [

EEX:{

is unique, i.e., X717 is unique. It is easy to see that

| Oaxn O
A
is a solution of

ET'X, = XTE,,
ATXy + XTA, — XTB,BT X1 + Qa1 = 0,

where
| Oaxn O
Qal = |: 0 _Ip :| .

Since only the constant matrices in GARE (26) and GARE
(22) are different, and @), — QY41 > 0, then condition (11) in
Theorem 2 holds for the above two GARESs, thus

X1 0 0 0
T 11 T
E, X = { } > E [ 0 I, ] = 0n+p)x (ntp)-

(26)

0 0 @

(#4) Since Xi; is unique, the freedom of X (if it has) is
contained only in X715 and Xs,. It follows from (22) that

XA+ ATX +CTC = XT Xo,

BTX11 + DTC = —(Ip — XQQ)TX217 27
DD = (Ip - X22)T(Ip - X22)>
which follows that
I XA+ ATX +CTC Xy B+CTD 28)
o BT Xy, + DTC DTD
is unique and
L=UTU >0, (29)
where
Ui=[ ~Xo1 I, — Xp | € RPX(FP), (30)

From the assumption A3, the system matrix associated to
II(s), defined by

—sl+ A B
—Xo1 I, — X

has full normal rank n + p. Hence, together with (29) we
obtain

rank L = rank U = rank [ —Xo1 I, — Xo ] =p.
(€29)
Let x 0
g | An ! }
{ Xo1 Xa2
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be any another strong solution and let
ﬁ = |: *5(:21 Ip — 5(:22 € RPX(ner).
" Then,
L=U0T0=U"U (32)

Thus, Ker U = Ker ﬁ and ImUT = Im fj T Therefore, there
exists a V € RPXP such that U7 = UTVT. From (32), we
have UT(I — VT'V)U = 0. Since U has full row rank, it
follows that V'V = I,,. We obtain from U= VU that

Xo1 = VXo1, (33)

Xop =1, — V(I, — Xo). (34)

On the other hand, it is easy to check that (25) is a strong
solution of GARE (22) for any unitary matrix V. This
completes the proof. [ ]
B. Numerical Example

Consider the spectral factorization of (18) with

o(s—2) -3 -3 -1]1
G(s) = =l o 1 o]0
s(s —2) 1 -2 00
(s+1)° 1 -2 010

Solving GARE (22), we obtain a solution X expressed in
(23) with

0 0 0
Xn1=10 8 0],
0 0 0
Xan=]-V2, -2v2, 0], Xp=1
We obtain a spectral factor
-3 -3 -1]1
I(s) — 1 0 00| V2(s+2)
=190 1 olo|~ Grip
V2 2v2 0 |0

V. CONCLUSIONS

A comparison theorem for the solutions of two different
GARE:s has been proposed in this paper. It has been shown
that the strong solutions are maximal. The results obtained in
this paper generalize of the existing monotonicity results of
algebraic Riccati equations developed in [19]. As an applica-
tion of the results, a parameterization of all strong solutions
of the GARE related to the singular spectral factorization has
been provided. The results obtained give a new insight into
the solutions of GARE:s.

Appendix A Proof of Theorem 1
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For a given real X, there exist nonsingular matrices M
and N such that

urxn=| "W O , Wl #o.
0 O
Accordingly, define
[ E11 Eia | 1
.— M7'EN,
| Eo1  Eao |
[ A1 Arn | 1
=M AN,
| A1 Az |
[ Ri1 Rio | 1 7
— M'RMT,
| Ry Ra |
Q1T1 812 — NTQN.
12 22 |

Pre-multiplying and post-multiplying two equations in (5)
by N7 and N, respectively, we have

ELW 0 _ WTE;; WTE, Al
ELW 0 0 0 ’
[ A{IW + WTAH + WTR11W + Q11 WTA12 + ng
AL,W + QT Q22
0 0
= { 0 0 ] . (A2)

From (Al) and |W| # 0, we have Ejo = 0 and EL,W =
WTEll, i.e.,

wW-TEL = Wt (A3)

From (A2), we obtain Q5 = 0. Hence, it follows from @) >
0 and NTQN > 0 that Q15 = 0. Consider the block (1,2)
of (A2). Due to |W| # 0, A;2 = 0. Pre-multiplying and
post-multiplying block (1,1) of (A2) by W=7 and W1,
respectively, we obtain

WTAT, + AnW™ = —Ryy, (A4)
where
Ry =Ry +WTQuw='>0 (AS)

due to Ry; > 0 and Q11 > 0. From

ETX = N T'NTETMTMTXNN™!
ELW 0
. -T 11 -1
- N [ W0 ] N
we know that to show ETX > 0 it is equivalently to show

E1T1W > 0. To this end, we need the following results via
two steps:
Step 1 Show that —sFEy; + Aj; is regular and
O'f(—SE11 + A11) € C_ holds.
Step 2 Show that (Ey1, Aqq, En) is stabilizable and
—sE11 + Aqq is impulsive free.

As to Step 1, since E15 =0 and A5 = 0, we have

—sEy + A 0 }

—1/_ _
M7 (=sE+ AN * —8F2 + Aso

TuA16.5

Thus, —sE+ A is regular, so is —sE11+A11; and op(—sE+
A) € C_UQ holds, so does of(—sEq1; + A1) € C_UQ.
On contrary assume that—sFE7; + A1; has a finite imaginary

eigenvalue jw, then there exists £ such that
f*(—wall —|— All) = 0 (A6)

Pre-multiplying and post-multiplying (A4) by &* and &,
respectively, we have

& WAL+ AW = —€ Rug—¢WTQuIWw e,

It follows from (A3) and (A6) that the left hand side of the
above equation is 0. Since Rj; > 0 and Q17 > 0, we have
&*Ry11 = 0. It implies that (Ey1, A11, Rq1) is not stabilizable.

However, this is not true which is shown as follows. Thus,
of(—sEn + A1) C C_. (A7)

To show (FEi1, A11, R11) is stabilizable, since (E, A, R)
is stabilizable, we have

rank [ —sE+ A R]

= rank [ M~'(—=sE+ AN M 'RM™T |

~ rank —sEn + An 0 Rii Rip
* —sEy + Ass RT, Rao
_ [ —5FE9 + Ago * RYL, Ra }
= rank
0 —sE11+ A1 Ri1 Rae
= n, VseCLUQ.. (AS8)

Also since R > 0, then rank [ Ry; Ri2 | = rank Ryj.

Hence,
rank [ —sEy1 +A11 Ri ] =7, Vs € C+ U Q, (A9)

where r = rank E. For s = oo, applying (4) to (A8) yields

Ey 0 A 0O ] [En 0 ]
I + Ker
o { Ez1  Ep } { Aoy Ago Ey Ep

Ri1 Rio }
+Im =R".
[ R, Ry

Therefore, we obtain

ImE11 + AllKel‘Ell + ImR11 =R". (AIO)

This shows that (Ey1, Aj1, R11) is stabilizable.
As to Step 2, first, we show that (F11, A11, R11) is also
stabilizable. From (A7), we have

rank | —sEy, + Ay B } —r, Vse Cy UQ. (All)

On the other hand, from (AS5), we obtain Ker FA{H C Ker Rq1.
This yields Im R, D ImRY,. Since R;; and Ry, are
symmetric, Im Ry; D Im Rj;. Thus, it follows from (A10)
that

Im Ey; + A Ker Eyp + Im Ryp = R”. (A12)
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This with (A11) shows that (E11, A11, ﬁll) is also stabiliz-
able.

Next, we prove that —sFy1 + Aq; is impulsive free. The
proof is similar to that in [15]. Without loss of generality, we
assume that Fy; and A, are given by the following form:

I 0 A, 0
E11—-{0 A}’ A11—~[ 0 Iz}’ (A13)

where Ay is strictly stable and A is a nilpotent matrix. It
suffices to show A = 0. Now decompose W-1 and R;; in
accordance with (A13) as

W12 :l D l: le ZlQ

W-
11 Rll —. =
W22 Z12 222

Wt =
[ Wa1

} . (Al4)

From (A3) and (A4), we have

WHAT + AW = =211 <0, Wi =W, (Al5)
Wiy = W5 AT, (A16)
Wah + Way = —Zag <0, WHAT = AWsy.  (AL7)

Now on contrary, assume A # 0. Since A is nilpotent, let
a = min{k |A* =0, k > 2}. Using the stabilizability of
(F11, A11, R11) and (A12)-(A14) gives

ImA + Ker A + Im Zy, = R (A18)

This yields

Im A"t = Im A® 1 Zos. (A19)

Then pre-multiplying and post-multiplying the first equation
of (A17) by A®~! and (AT)*~1, respectively, we obtain

Aa—l(Wg; + W22)(AT>(1—1 — —Aa_1Z22<AT)a_1.

Using the second equation of (A17), it follows that the left
hand side of the above equation satisfies

AWaa(AT)* 72 + A2 Wy (AT)* = 0.

Thus, together with Zy; > 0, we have A“"1Z,, = 0.
Moreover, from (A19), A“~! = 0. This contradicts the
minimality of «. Thus, A = 0.

Finally, we are ready to show E{;W > 0. From (A16),
Wie = 0, then

_ W11 0 :|
W=
{ War Way

implies that Wi, is nonsingular. According to Lyapunov
equation (A15), the stability of Ay leads to Thus Wi; > 0.
Then, by using (A13) with A = 0, we have

—1
ELW = [ Wél 8}>0.

This completes the proof of Theorem 1. [ ]
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