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Abstract— This paper proposes a new mathematical model
for the transition control problem in plane Poiseuille flow. Most
of the previously proposed models are based on pseudospectral
approaches and are valid only for a single spatial wave number.
In this work we propose a new model which is based on a
finite difference approach in streamwise direction and a spectral
approach in wall normal direction. The model obtained is valid
for all spatial frequencies and can be used for the synthesis
of controllers for flow control problems, using some recently
developed ideas for spatially interconnected systems. Since these
controllers are designed in physical domain they are simple to
implement using MEMS arrays. The model is compared with
results obtained with previously proposed models and is found
to be in good agreement with them. To illustrate its usefulness,
a stabilizing dynamic output feedback controller is designed for
a Reynolds number of 6000.

I. INTRODUCTION

In many engineering applications the process of laminar-

turbulence transition in plan Poiseuille flow is of particular

importance. Laminar flow exhibits less drag and heat transfer,

whereas turbulent flow is required for thorough mixing. The

use of linear control theory for controlling flow instabilities,

which cause the transition, is a fairly new approach. Earlier

work related to this field mostly concentrates on superim-

posing anti-phase modes to cancel sinusoidal disturbances.

The underlying control scheme has an array of sensors

which measure stream-wise and span-wise skin friction.

The actuators are mounted on the walls which can change

the boundary condition on the wall normal component of

velocity. A detailed exposition of the problem can be found

in [1].

In order to synthesize a controller for flow transition, using

modern control approaches, one requires a mathematical

model. The dynamical behavior of laminar flow is governed

by Navier-stokes equations (NSE). Which are nonlinear

coupled partial differential equations. In order to model

the transition from laminar to turbulent these are linearized

around the laminar flow. If the standard linearized NSE are

used, the final state space representation results in a singular

system. In order to avoid this singularity, three possible

formulations of NSE can be used [2], which are: a velocity-

vorticity formulation, a stream wise function formulation

and a velocity-pressure formulation. Spectral methods are

then used to approximate the dynamics of the system for a

particular spatial frequency and time evolution of velocities

away from boundaries. This approach is used to model the

plane Poiseuille flow transition in [3], [4], [5], [6], [7]. The

model so obtained is parameterized with Reynolds number

and spatial wave numbers. However, controllers designed on

using these models are hard to implement as they work in

Fourier domain, which requires online Fourier transformation

and inverse Fourier transformation of inputs and outputs.

In this paper we propose a combined pseudospectral

and finite difference approach to model the flow transition,

where finite difference is used in the direction of flow and

Chebyshev basis functions are employed for the wall normal

direction. The case presented here is for two dimensional

flow only, however, one can easily extend the approach for

the three dimensional case also. A similar approach has

been proposed in [8]. However, our approach is different

in a number of aspects from the model used in [8]. These

differences can be summarized as follows:

• The model is based on a velocity-vorticity formulation.

There are many advantages in using this formulation,

as discussed in [9] and the references therein.

• The model has different inputs and outputs, compared

with previously proposed models. Here, each actuator

can produce either a blowing or suction effect rather

then coupled blowing and suction and the output is not

shear force but change in shear force in x-direction.

• The model proposed here is independent of the length

of the spatial chain, unlike the model presented in [8],

which is only applicable to vibrating ribbon problems.

Since in the proposed model the number of states

increases by N (number of Chebyshev polynomials

used) each time a new element is included in the chain.

• The model presented here can be used to synthesize

controllers using efficient techniques like the one pre-

sented in [10], [11],[12],[13], thus avoiding the heuristic

curve fitting approach , which is required in the model

proposed in [8] to reduce the model order.

The paper is organized as follows: In section 2 the NSE

and its velocity-vorticity formulation are reviewed. These

will be used for modeling the flow transition control problem

in section 3. Section 4 presents a comparison of the spatially

distributed model obtained here with results from previously
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presented models. In section 5 the model is used for the

synthesis of a full order dynamic output feedback stabilizing

controller for a Reynolds number of 6000, which is known

to be spatially unstable [3]. In the last section conclusions

are drawn and some future directions are presented.

II. NSE FOR FLOW TRANSITION CONTROL

Consider a two-dimensional steady state plane channel

flow with maximum velocity U0 and channel half-width δ
as shown in Figure 1.

x

y

+1

−1

Fig. 1. Plane Poiseuille flow, 2D case

The standard NSE can be linearized by first normalizing

all velocities about the centreline velocity U0 and half height

δ. Then, assuming laminar flow, the NSE can be linearized

around the mean velocity profile in the streamwise direction

(x). For laminar flow the mean velocity profile can be

written as U(y) = 1 − y2 on the domain y ∈ [−1, 1]. The

equation governing small, incompressible, three-dimensional

perturbations {u, v, p} are then given by the linearized NSE

and the continuity equations,

∂u

∂t
+ U

∂

∂x
u +

dU

dy
v = −

∂p

∂x
+

1

Re
∆u

∂v

∂t
+ U

∂

∂x
v = −

∂p

∂y
+

1

Re
∆v

∂u

∂x
+

∂v

∂y
= 0 (1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2 and Re is the Reynolds

number, u and v are velocities in x and y-directions and p is

the pressure. The set of equations (1) forms a system of three

linear partial differential equations in three flow variables

(u, v, p). Among these the last equation (continuity equation)

has no time derivative. Hence, if algebraic equations are

constructed by discretization, the system of equations will

be singular.

To overcome this singularity, the velocity-vorticity formu-

lation will be used. Vorticity is defined as ω = ∇ × u,

where, u is the perturbation in velocity vector; since in

the 2D case there is no spanwise variation, the vorticity

equation decouples from wall normal velocity and hence may

be discarded. Thus, for the 2D case the velocity-vorticity

formulation is given as [2],

∆v̇ =

{

−U
∂

∂x
∆ +

d2U

dy2

∂

∂x
+

∆2

Re

}

v (2)

with homogeneous boundary conditions

v(x, y = ±1, t) = 0 (3)

∂v(x, y = ±1, t)

∂y
= 0 (4)

If control inputs are applied at the lower boundary (y = −1),

this changes the homogenous boundary conditions into non-

homogeneous ones. However, the problem can be converted

into a non-homogeneous PDE with homogeneous boundary

conditions by a change of variables [14]. For this, let us

consider,

v(x, y, t) = φ(x, y, t) + q(t)w(x)f(y) (5)

where, the function w(x) is a weighting (it represents the

effect of control action along x-direction). The function f(y)
represents the effect of boundary control on the wall normal

velocity profile at location y.

Any function f(y) can be used here provided it fulfills

the boundary conditions. However, here we will use the one

presented by [4], which is given as,

f(y) =
2y4 + y3 − 4y2 − 3y + 4

4
(6)

such that

f(−1) = 1, f(1) = 0,
df

dy

∣

∣

∣

∣

±1

= 0. (7)

In terms of the new variable φ the homogeneity in boundary

conditions can be recovered. Thus the modified boundary

value partial differential equation is given as

∆φ̇ + q̇∆(wf) = −qU
∂

∂x
∆(wf) + qf

d2U

dy2

∂w

∂x

+q
∆2

Re
(wf) − U

∂

∂x
∆φ

+
d2U

dy2

∂φ

∂x
+

∆2

Re
φ (8)

with the Neumann and Dirichlet (ND) boundary conditions

given as

φ(x, y = ±1, t) = 0,
∂φ(x, y = ±1, t)

∂y
= 0 (9)

III. COMBINED FINITE DIFFERENCE-SPECTRAL

MODELING

Equation (8) is a partial differential equation in streamwise

(x), wall normal (y) and time (t) variables. In this section we

will apply finite difference approximation in x, y-directions.

While Chebyshev polynomials will be used to approximate

the temporal behavior of the wall normal velocity. The

approach is most appropriate for controller synthesis since

we have sensors and actuators mounted on the discrete

locations at boundaries only.
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(S1 + S−1
1 − 2)φ̇i +

∂2φ̇i

∂y2
+ q̇i

∂2f

∂y2
= qi

1

Re

∂4f

∂y4
− U(S2

1 − 2S1 + 2S−1
1 − S−2

1 )φi/2 − U(S1 − S−1
1 )

(

∂2φi

2∂y2

)

+
d2U

dy2
(S1 − S−1

1 )φi/2 +
1

Re
(S2

1 − 4S1 − 4S−1
1 + S−2

1 + 6)φi

+
2

Re
(S1 + S−1

1 − 2)

(

∂2φ

∂y2

)

+
1

Re

∂4φi

∂y4
(10)

{

(S1 + S−1
1 − 2)IN+1Γ + Γ′′

}

ȧ + q̇b1 = qb2 −
U

2
(S2

1 − 2S1 + 2S−1
1 − S−2

1 )IN+1Γa

−U(S1 − S−1
1 )IN+1

1

2
Γ′′a +

d2U

dy2
(S1 − S−1

1 )IN+1
1

2
Γa

+
1

Re
(S2

1 − 4S1 − 4S−1
1 + S−2

1 + 6)Γa

+
2

Re
(S1 + S−1

1 − 2)IN+1Γ
′′a +

1

Re
Γ′′′′a (19)

A. Streamwise Discretization

To obtain a finite dimensional approximation of the above

PDE, a finite difference scheme is used in streamwise di-

rections. Assuming that the x-direction is discretised into

regular spaced samples, one can use a symmetric finite

difference approximation of the partial derivatives ∂k

∂xk . In

this approach we have w = 1 for each grid point (i) in x-

direction. Then introducing the operators S and S−1, which

represent a spatial shift to the right and left of the ith grid

point, respectively, (8) can be written as (10).

B. Temporal Dynamics

For each grid point (i), in x-direction the time evolution

is modeled using a pseudo-spectral approach that was first

proposed in [3]. Approximating the free temporal response

of the wall normal velocity by truncated Chebyshev polyno-

mials as

φi(t) =
N

∑

m=4

am(t)Γm(yk) (11)

Since, the use of ordinary Chebyshev basis functions will

not enforce the boundary conditions, these needed to be

modified. Here, we will use the modified polynomials defined

as [7],

ΓM
1 = Γ1

ΓM
2 = Γ2

ΓM
3 = Γ3 − Γ1

ΓM
4 = Γ4 − Γ2

ΓM
m>4,odd = (Γm − Γ1) −

(m − 1)2(Γm−2 − Γ1)

(m − 3)2

ΓM
m>4,even = (Γm − Γ2) −

((m − 1)2 − 1)(Γm−2 − Γ2)

((m − 3)2 − 1)
(12)

Then,

φ̇i =
N

∑

m=4

˙ami(t)Γm(yk)

∂2φ̇i

∂y2
=

N
∑

m=4

˙ami(t)
∂2Γm(yk)

∂y2

∂φi

∂y
=

N
∑

m=4

ami(t)
∂Γm(yk)

∂y

∂2φi

∂y2
=

N
∑

m=4

ami(t)
∂2Γm(yk)

∂y2
(13)

∂4φi

∂y4
=

N
∑

m=4

ami(t)
∂4Γm(yk)

∂y4
(14)

C. Wall-normal Direction

To discretize in wall normal-direction, we can make a grid

of N + 1 Chebyshev-Gauss-Lobatto points, yk, where

yk = cos(πk/N),∀ k = 1, ..., N .

Let us now define the following matrices:

a =







a4

...

aN






(15)

Γ =







Γ4(y2) . . . ΓN (y2)
...

...
...

Γ4(yN−2) . . . ΓN (yN−2)






(16)

Γ′ =







∂Γ4

∂y
|y2

. . . ∂ΓN

∂y
|y2

...
...

...
∂Γ4

∂y
|yN−2

. . . ∂ΓN

∂y
|yN−2






(17)

b1 =









∂2f
∂y2 |y2

...
∂2f
∂y2 |yN−2









b2 =









1
Re

∂4f
∂y4 |y2

...
1

Re
∂4f
∂y4 |yN









(18)
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Similarly we define Γ′′ and Γ′′′′. Then, we can write (10) in

matrix form as (19). Note that the first four basis functions

do not fulfil the ND boundary conditions. This suggests that

one should eliminate columns of Γ, Γ′, Γ′′ and Γ′′′′ corre-

sponding to these. In order to make the resulting matrices

square, one can eliminate the two rows corresponding to the

upper and lower walls and the two next to these, as the wall

normal velocity near walls must either be zero or very small.

Here, the index i is dropped for clarity of notation.

D. Measurement

Let the stream-wise shear stress component at a point in

x-direction on the lower wall be given by [5]

zi =
1

Re

(

∂u

∂y
+

∂v

∂x

)

y=−1,x=xi

(20)

Since ∂v/∂x is known, as it is set by the controller, the

measurement vector can be selected as

zi =
1

Re

(

∂u

∂y

)

y=−1,x=xi

(21)

If we subtract the shear stress of two neighboring elements

Sxi and S−1xi, we will get

y = 2
(S − S−1)

2Re

(

∂u

∂y

)

y=−1

(22)

The control system will then look like Figure 2, where Gi

and Ki represent flow dynamics and controller at the ith

location in x-direction. From the continuity equation we have

∂2u

∂x∂y
= −

∂2v

∂y2
(23)

Hence

y = −2
1

Re

(

∂2v

∂y2

)

y=−1

(24)

Applying change of variables (5) and using (13), we obtain

y = −2
1

Re

{

(Γ′′)(N−2)throwa + qw

(

∂2f

∂y2

)

y=−1

}

(25)

ui

GiGi−1 Gi+1

KiKi−1 Ki+1

Fig. 2. Flow control system

Then, combining (19) and (25), the linearized dynamics

of the flow at the ith grid point in x-direction can be written

in state space representation as




ẋt

Sxs

y



 =





Ātt Āts B̄t
0

Āst Āss B̄s
0

C̄t
0 C̄s

0 D̄00









xt

xs

u



 (26)

where xt = a, u =
[

qT q̇T
]T

and xs contains the

signals which are entering the ith system from left and right.

Correspondingly Sxs are the signals exiting the right and left

neighbors.

IV. DISCUSSION

In this section we compare the model constructed here

with previously proposed models. The model proposed here

has different inputs and outputs, and we will try to give some

physical interpretation of the resulting features.

A. Model order

The order of the model is chosen considering two nu-

merical issues: accuracy and conditioning of the resulting

matrices. In the spectral approaches, increasing the number

of basis functions leads to a more accurate representation

of the actual behavior. However, increasing the number of

basis functions may make the matrices ill conditioned [7].

Hence, the inversion may lead to considerable numerical

errors. Under these considerations the order of the model

is chosen as 30.

The model so obtained has a total of 120 states. The model

is reduced to 50 states by eliminating states with a small

Hankel singular value [15]. It has been observed that this

elimination does not produce any significant effect on the

system dynamics for low Re and at high Re it still capture

the large resonance peak , as shown in Figure 3, where the

solid curve shows the frequency response of the full order

model.

10
−1

10
0

−45

−40

−35

−30

−25

Fig. 3. Maximum singular value plot of flow model at Re = 104 ’o’ and
Re = 5 × 103 ’*’

B. Comparison of model inputs and outputs

The shape of control action for the models which are

based on spectral discretization of the streamwise direction

is shown in Figure 4.a. The model of [8] has control input as

shown in Figure 4.b. These control inputs result in control

action where blowing and suction are coupled. Hence, at

each time instant the controller generates blowing as well

as suction. However, the control input considered here has a

general shape as shown in Figure 4.c, which results in either

blowing or suction at a particular time. Thus, if a disturbance
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is applied at the ith point it will effect the complete length of

the channel with little delay, compared with the propagation

delay in other models. Also, the model output is not the shear

force but ∂Fs/∂x, where, Fs is the shear force.

i + π

2

Flow direction

ii − 1 i + 1

a)

b)

c)

i

Fig. 4. Control action at the i
th node.

C. Comparison with Orr-Sommerfeld equation

The Orr-Sommerfeld equation which governs linear dis-

turbances in 2D parallel flow predicts that at Re = 10000
the flow transition occurs in the range w ≈ [0.17, 0.27] [8].

This transition from laminar to turbulent flow is generally

linked to the presence of an unstable mode which appears

in the solution of Orr-Sommerfeld equation for Re > 5772.

However, it has been pointed out in [16], [17], [5] and [18]

that there is no real significance to the unstable mode, as

it is not responsible for the transition but it is the transient

energy which causes the transition, since the system may

invalidate assumptions about linearity. A good measure of

transient energy is the L2-norm of the transfer function from

disturbance to output [1]. Thus, for large Reynolds numbers

the L2-norm must get larger to predict the transition.

It can be seen in Figure 3 that the input to output

gain grows in a band of w = [0.17, 0.27], with a large

resonant peak at 0.2 and 0.23 rad/sec for Re = 104 and

5000, respectively. Which is the same as predicted by Orr-

Sommerfeld. However, no unstable mode is observed for

Re > 5772. However, the L2-norm gets larger, as can be

seen in Figure 3, which predicts the transition due to poorly

damped oscillations.

10
−1

−100

−90

−80

−70

−60

−50

−40

−30

−20

Fig. 5. Gain of the system for disturbance applied at i
th node and change in

shear force 2 (dotted), 5 (dashed), 10 (solid) units upstream for Re = 2000

10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

−20

Fig. 6. Gain of the system for disturbance applied at i
th node and change

in shear force 2 (dotted), 5 (dashed), 10 (solid) units downstream for Re =

2000

10
−2

10
−1

10
0

−100

−90

−80

−70

−60

−50

−40

−30

Fig. 7. Gain of the system for disturbance applied at i
th node and change in

shear force 2 (dotted), 5 (dashed), 10 (solid) units upstream for Re = 10000

10
−1

−100

−90

−80

−70

−60

−50

−40

−30

Up Stream

Fig. 8. Gain of the system for disturbance applied at i
th node and change

in shear force 2 (dotted), 5 (dashed), 10 (solid) units downstream for Re =

10000

D. Spatial stability

To further analyze the spatial behavior of the system, the

frequency response between a disturbance applied at the ith

unit and the change in shear force [2, 5, 10] units downstream

and upstream are obtained for Re = [2000, 10000]. These

responses are shown in Figure 5, Figure 6, Figure 7 and

Figure 8. It can be observed in these figures that for large Re
the disturbance can generate poorly damped oscillations both

upstream and downstream, thus causing spatial instability.

Further more, the effect of disturbance is nearly similar

both upstream and downstream. This behavior is due to the

particular shape of disturbance (as shown in Figure 4.c.)

chosen for this model. While a low value of the gain is
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attributed to the fact that the output chosen is not shear force

but its spatial change, as explained earlier.

V. CONTROLLER SYNTHESIS

In order to demonstrate the usage of the proposed model

for designing a controller in physical domain, we designed

a dynamic full order (order equal to the order of the plant)

output feedback controller based on the approach of [10].

For brevity let us define xT =
[

xtT
xsT

]

. Using the

approach of [10] it can be shown that if a system has state

space representation (26), the closed loop system is stable if

the following inequality holds:

Ācl
T
Xcl + XclĀcl < 0 (27)

where Ācl is the A-matrix of the closed loop system, (Ācl)
refers to the application of a bilinear transformation to the

discretized spatial part and Xcl = diag(Xt, Xs). Here Xt is

a symmetric positive definite matrix, and Xs is a symmetric

matrix. Using the double sided projection lemma on (27) we

obtain the following set of LMIs in a reduced number of

decision variables

NR′(ĀT R + RĀ)NR < 0

NQ′(QĀT + ĀQ)NQ < 0
[

Rt I
I Qt

]

< 0 (28)

where NR and NS are matrices whose columns span the

null space of B̄T and C̄, respectively, and R = diag(Rt, Rs)
and Q = diag(Qt, Qs) are block diagonal symmetric matri-

ces. Once a feasible solution to these LMIs is found the

controller matrices can be constructed using the approach

given in [10].

The approach is applied to the flow transition model

obtained in section 3 for a Reynold number of 6000. Using

the above LMIs, a stabilizing controller is synthesized for

this case, thus achieving spatial stability. The controller so

obtained can be used in interconnected form for an infinite

length of channel as shown in Figure 2, where Ki = Ki+1 =
Ki−1.

VI. CONCLUSIONS

In this paper a new model for plane Poiseuille flow is

presented. The model is based on a combined spectral-finite

difference approach. The velocity-vorticity formulation of

the NSE equations is used. It has been demonstrated that

the model predicts the dominating features of the plane

Poiseuille flow. This suggests that it can therefore be used

for synthesizing a controller to control the transition from

laminar to turbulent flow. As a first step towards controller

synthesis, a stabilizing full order dynamic output feedback

controller is designed.

Since finite difference approaches approximate the pseudo

spectra of a non-normal operator better than the spectral

approaches, as discussed in [19] and [20], it is expected

that the model presented here can lead to better controllers

than those based on spectral models. A detailed investigation

and comparison of the pseudo spectra of both models is the

subject of current work. Another topic of future work is to

use the proposed model for the synthesis of low-order and

fixed-structure controllers, based on the approach presented

in [11].
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