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Graphical Observer Design Suitable for Large-scale DAE Power Systems

E. Scholtz!, and B. C. Lesieutret

Abstract—1In this paper we discuss an intuitive observer
design approach that is suitable for large-scale systems, such
as power systems. In arriving at this approach we drew
inspiration from the field of linear structured systems, where
qualitative statements (e.g., solvability of the fault detection
and identification (FDI) problem [1], controllability) about the
system are made by analyzing the structure of the system.
Our emphasis is design and we use information regarding
the structure of the system as well as the actual values of
specific entries in the system matrices to design observer-based
monitors. These monitors can estimate the state of the system or
detect and identify specific occurrences of faults in the system,
all in the presence of disturbances and uncertainty. In this paper
we demonstrate our design approach by designing observer-
based monitors for electromechanical dynamics on a small 3-
bus and an intermediate-sized 179-bus power system model.

Index Terms— System-Wide Monitoring, Observers, State
Estimation, Fault Detection and Isolation

I. INTRODUCTION

In this paper we are concerned with designing real-time
observer-based monitors for: dynamic state estimation; and
centralized FDI for large-scale power systems. Intercon-
nected power systems can span continents, with numerous
power generators, loads/consumers, transmission and distri-
bution systems.

In light of the lack of economically viable large-scale
energy storage, system operators have to assure that an
electricity-supply chain remains balanced (i.e., supply equals
demand) in real-time. In order to maintain this balance a
system operator relies heavily on local-level protection and
control, system-wide state estimation, and human operators
that take supervisory control actions. Power system state
estimation in the traditional sense has mainly focused on
static estimation from redundant measurements [2] using
Weighted Least Squares. There also exists literature in the
power system field on dynamic-state estimation, which deals
with: recursive processing of measurements, but with no
dynamics in the state [3]; or slow-speed state dynamics
induced by load variations, and these dynamics are estimated
on-line in various ways using load forecasting ideas [3], [4].

In the examples presented in this paper we confine our
attention to the so-called “swing-model” (i.e., electrome-
chanical dynamics) of a power system. The swing model
is Newton’s second law in rotational format, i.e., every
generator in the network has an input mechanical power
and it supplies electrical power to the loads through the
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network. If there is a mismatch between these two powers
at a generator bus the machine will accelerate or decelerate.

Various FDI schemes are already employed in power
systems. These schemes rely on extensive placement of local
monitoring devices such as relays that provide information
to devices such as switches to help in isolating the fault or
protect a piece of equipment. These relays are designed to act
in real time, however this local information is generally not
communicated to a centralized control center where system-
wide state estimation is executed. In this paper we illustrate
how the same observer structure can be used either as a
state estimator or as a FDI filter, located at a centralized
location. We do not propose that the existing and important
power system FDI schemes be discarded, our aim is rather
to illustrate the potential of realizing power system dynamic
state estimation and real-time FDI at a centralized location
using similar observer-based filters.

Observer design for large-scale systems can be very chal-
lenging. In [5] DAE-H, observers were designed for state
estimation using Linear Matrix Inequalities. In this works
it was discussed how computational intensive such a design
is for an intermediate-sized power systems. This challenge
prompted us to devise an alternative design approach, which
is the focus of this paper.

In the next few sections we will show how one can design
unknown-input observers by creating a desired directed graph
of the associated linear-structured' error dynamics. What
makes our novel (to the best of our knowledge) observer-
design approach attractive is the fact that the designed gain
matrix can easily be updated by extracting select values from
linearized system matrices, making it feasible to realize an
on-line Linear-Parameter-Varying observer (observer’s model
is linearized along the observer’s system trajectory).

The rest of the paper is organized as follows. In Section
II, we briefly discuss the swing model of a power system, as
well as the two monitoring tasks mentioned earlier. Section
III discusses the novel (to the best of our knowledge) graphi-
cal observer design technique. In Section IV, we illustrate the
working of our observer-based monitors. In Section V, we
summarize our results and discuss additional design issues.

II. OBSERVER-BASED MONITORS FOR POWER SYSTEM
SWING MODELS

The linearized form of a power system’s swing model can
be expressed as the following structure-preserving Differen-

A linear system is considered structured when each entry of the system
matrices is either a fixed zero, a free parameter, or a fixed nonzero parameter

(11, [6].
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tial Algebraic Equation model

Axr + Bu + Ew )
Cz + Du, 2)

Mz =
y:

with: internal variables z; measurements y; known inputs
u; and subject to unknown inputs w. The differential states
of the system are mainly attributed to the generation sites
and the algebraic internal variables are associated with the
loads in the system. The singular M contains the inertia
information of the synchronous generators, and A contains
the network information.
We propose to use an observer of the form

Mz = AZ+ Bu+ L(y—7) 3)
7 = CZ+ Du, )

where Z is the estimate of x, L is the designed-observer gain,
and ¥ is the estimated version of y. Defining e = x — T the
resulting DAE-error system for this estimation problem has
the form

Mé = (A-LC)e+ Ew 5)
r = QCe, 6)

where r is defined as residuals and we use (M, A—LC, E, I)
as shorthand notation for the DAE-error system, and (M, A—
LC,E,QC) for the DAE-residual system.

Sources of Unknown Signals w: Various perturbations
and uncertainties in the power system can be modeled in
the form Fw. Perturbations such as load/generation changes,
generator outages, line flow perturbations (e.g., line outages
or short circuits) as well as uncertainties of line parameters
and generator inertias.

An unknown line change occurring on line A will impact
the entries in A associated with the contributions of line
h. In [5], we show that each line change (or uncertain line
parameter) will have an associated rank one perturbation
matrix Ay in (1), for which we can model Apz = Fw.

Another source of w can be changes in adjacent unmod-
eled power systems. In this case our study area is given by
(1) and the influences from the rest of the network on our
study area can be thought of as w signals. We can thus make
our estimator insensitive to changes in adjacent networks, or
make it sensitive to indicate that a neighbor is experiencing
problems.

Before discussing our observer design method we high-
light the types of monitors studied in this paper.

State-Estimation Monitor: The purpose of the state-
estimation monitor is to have T be an estimate of z, forcing
e to tend to zero in the presence of nonzero unknown signals
w and for nonzero initial conditions e(0) = z(0) — Z(0). In
this paper we assume that e(0) = 0 and we are interested in
forcing as many entries in Gey,(s) = I[(sM — A+ LC)™'E
to zero as s tends to zero. Here G.y,(s) is the transfer
function matrix from unknown signals w to errors e. In
order to achieve this requirement we have L available for
design. Observer design in the presence of unknown signals
is challenging, but the design method we introduce in the
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next section provides an intuitive approach to accomplish
this task.

FDI Monitor: We partition w to distinguish between
faults « (to identify) and disturbances 3 (to attenuate), and
accordingly form E, and Eg from E. The objectives of the
FDI monitor are to have have G,4(s) = QC(sM — A +
LC)~'E, be upper triangular — to aid with FDI — and
have G,3(s) = QC(sM — A + LC)~'E3 be identical to
zero for all s [1]. This will insure that the filter’s residuals
r will be significantly nonzero when « is nonzero, and r
will not be impacted by nonzero (’s. In [1], the authors
provide necessary and sufficient conditions the system (M =
1, A, E,C) has to satisfy in order for the FDI problem to be
generically solvable.

ITI. GRAPHICAL OBSERVER DESIGN

For the linear structured system (M,A — LC,E,QC)
given by Equations (5) and (6) we have e € R™; w €
R™; and r € RP. We can associate a directed graph
G(V,Z) with this system. V denotes the set of vertices
of the directed graph and is obtained by forming V =
EUWUR, where E, W R are the sets {e1, ea, -+, en},
{w1, we, -+, W}, {r1, re, ---, rp} respectively. Hence
the variables of the system description form the vertices of
the directed graph.

The arc set Z is obtained by forming the union of
Ew = {(wi,ej)|Eji # 0}, & = {(ei ;)[4 # 0},
Em = {(ei,e5)|Mj; # 0}, & = {(ei,74)]Q;..C.i # 0}, and
& ={(ei,€;)|L;,.C.; # 0} (where Q; . and L; . represents
rows j of () and L respectively, and C. ; represents column ¢
of C). The above edge weights are obtained from the system
matrices, except for &, which we will design. In the studies
discussed in [1], [6], the authors view the edge weights
of the arcs as free parameters and are not concerned with
the quantitative information contained in these weights. We
will use these weights, which are a function of the current
operating point, for observer design.

Reinschke [6] investigated generic controllability of linear
structured DAE systems and from his work it is evident
that additional arcs are associated with entries in the M
matrix. For the swing model considered in this thesis, these
additional arcs help us to distinguish between differential
and algebraic variables, but do not provide us with additional
insight during the observer design process. We will elaborate
on this observation when we introduce an example.

Due to the diagonal structure of M the set &,,, will consists
of self-cycles at the differential variable vertices [6]. These
additional loops do not provide us with extra insight into
observer design for the swing model, and they will not
be drawn in the directed graph example that will follow.
Also, for the figures illustrated in this paper we we will not
explicitly draw the &, edges.

We will demonstrate our design approach on a three-bus
power system example, which consists of one generator and
two loads as shown in Figure 1. This system has three bus an-
gles, one generator speed and M = diag ([ 1100 D

We assume that the system is subject to an unknown
load change at bus 3, ie., E = [0 0 0 1 ]/, and
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e =0, — 0,
e = wy — Wy
63292—52
es = 03 — 03

Fig. 1.

Three-bus system and the definition of the elements e; in E.

that we measure the voltage angle at bus 2, ie., C =
[ 0 010 } The system matrix A is given as

0 1 0 0
A | it —d b by

by 0 —by—bs b

by 0 by —by— b

The unassigned observer gain is given as L =
! .
[l Iz I3 Iy |, and we can now write

0 1 ! 0

o mbi—be —d| bl by

A-LC = by 0 | =by—bs—1I3 bs
b2 0 b3 - l4 _b2 - b3

Design Approach: We highlight our design approach here,
and the interested reader is referred to [5] for more details:
1) Draw G(V, Z) of the error dynamical system (M, A—
LC,E,I). See Figure 2(a) for the design setup.

2) Eliminate forward paths (by choosing the values of L
appropriately) in G(V, Z) from the e-vertex where the
&) arcs originate (i.e., the measured variable), except
the forward path to the e-vertex directly impacted by
w. (This latter edge has a weight of & = b3 — l4.) For
our example we choose 1 = 0, Iy = by, and I3 =
—by — bs. See Figure 2(b) for the design result. From
this figure we notice that some signal flow paths in
G(V,Z) were eliminated.

3) £ can now be chosen in order to realize the two types
of monitors for:

o state estimation by choosing ¢ to be large in
order to attenuate the effect of disturbance w.
Gew(s)=[0 0 £ 07

o FDI by choosing ¢ small in order to amplify the
effect of fault w. G, (s) = L.

The above design approach does not cover all possible
cases. For instance, when we are dealing with a line-flow
perturbation (i.e., two e vertices are dependently affected
by the same perturbation), the two high-gain arcs we insert
between the measurement site and these two e-vertices will
necessarily end up being related to one another. One such
example will be considered at the end of this section.

Next we state a more general result than what the above
design approach and examples suggest. The dual problem,
disturbance rejection using full-state feedback control, is
discussed by Reinschke in [7]. Our theorem is not the dual
extension of Reinschke’s work, although his work served as
inspiration.

Assumptions: We will first consider the case where the
number of measurements, p, is larger than the number

WeB13.4

—by — b3
(b) Design Result

(a) Design Setup

Fig. 2. Graphical Observer Design with C' = [ 0 0 1 0 ]

of unknown inputs, m, (i.e., p > m). We assume that
the e-vertices of system are enumerated in order to yield

E = 2 , where F' € R?*™ and ¢ is defined as
the number of e-vertices that are one hop away from an
unknown input. Initially we assume that ¢ > m. The
case where ¢ < m 1is discussed in [5] and will not be

elaborated on here. We will focus on systems for which C'

. N CE _ 0 CE,b 0
may be written as C' = [ o | = [ Ona Ons Ooo |’
where Cp € R™*™ and C) € RP~™)*"_ We have that

[ Cra Chre | € RE=m*(=m) and O, € R™*™. The

observer gain matrix is given by L = [ Lg | Ly ] =
Lo | Lox | Grere Ly € RP*™, Ly € Ro<(—m),
Lig | L1

Log € R(n*q)xm, Lip € R*™ Loy € R(n*q)X(p*m),
and Ly, € RI*(P—m),

Let A = sM — A+ LC, which we split up into A =
Ag+Ay. We define Ap = sM — A+ LpCg and accounting
for the partitioning of F and Cg, we can express

AE_[Ao,a Loy Ao,c]
Ara Lip Aie |-

Here Lo, = (sMoy — Aoy + Lo,eCryp) € R"0X™ and
Lip = (sMyp— Arp + L1 gCpp) € RT™, where M =

Moo Moy Mo, Aoa Aop Ao
’ ' ' and A = ' ’ .
Mg My M, Ara Aip Al
This choice of Ag leads to
LoaCxra LoaCxp LoxChe
Ay =L)Cy = A A A A ATAC
A AT [ L12Cha L1xChp LipCx.

The general idea is that the blocks Lo and L; ; will be
used to attenuate the impact of the unknown inputs on the
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e-variables. The matrix A will be used to move the poles of
the closed-loop error system, after achieving the desired level
of unknown input attenuation, and hence A provides us with
extra degrees of freedom. We can now state the following
theorem.

Theorem 1: For a system (M,A — LC,E,I) satisfying
all the assumptions given in the preceding paragraphs, the
following structure can be enforced on Ge,, (0):

0
Conl0) = I(sM — A+ LO) Bl = | G4(0) | D)
0
if we have:
(@) Lo,p|s=0Gs(0) = 0;
Aoa + LoaCra  Ao,e + LoaChc o
(6) keer [ Ava +L13Cha Aiec+ LinCre lo=0 = 0;
Lo,
’ Cyhp =0.
(c) { Lia \b

(d) L1p]s=0Gp(0) = F.

Proof: Pre-multiplying both sides of the expression
Gew(s) = TAT'E by A = sM — A + LC yields the
following set of linear equations:

AGew(s) = E. (8)

With the partitioning Gew(9) =

[ Gl(s) Gy(s) G.(s) ]’ and developing the submatrix
multiplications in the preceding equation the following sets
of linear equations are obtained:

[ Ao+ LorCra Ao,e + LoaChc } { Ga(s) } n
Bo ~————

(Lop + LoACrp) Gp(s) = 0; 9)

G,
[ Al,a +L1,)\C)\,a Al,c"'Ll,)\O)\,c } |: G Ejg :| +
B N———
G()(S)

(L1,p + L1ACxp) Gp(s) = F, (10)

where By € R("~9*(n=m) and B; € R@*(»=™) We group
(9) and (10) together to form:

B |+ [ 20 s

|12 Joweo-[ 7]

Investigating conditions (a), (¢) and (d), we notice that we
need to evaluate (11) at s = 0 due to our restriction that the
observer gain elements remain real.

Accounting for conditions (a), (c) and (d) from the theo-
rem statement and evaluating Equation (11) at s = 0 yields:

[ g(l) } ls=0Go(0) = { 8 } ;

and from condition (b) we conclude that Go(0) = 0,
I

implying that G, (0)=[ 0 G,(0) 0] .

Y

12)
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Discussion: Requirement (a) in the theorem statement
can be satisfied if we set Lopls=0 = (sMop — Aop +
Lo.5CEp)ls=0 = 0. This implies that we eliminate all
the entries in this matrix and thus set Lo pCgp = Aop.
Interpreting this action graphically on the directed graph of
(M,A — LC,E,I) translates to cutting the forward paths
from the measurement site to all the e-vertices that are not
directly influenced by unknown inputs (i.e., the O block of

E).
To obtain £, we partition F' = [

ingly L1 = [ ﬁ?
matrix is in R™*™ and the Z subscript implies R(2—7)xm
From condition (d) of Theorem 1 we have Lg|s—oGy(0) =
Fr, and by defining the desired level of attenuation for
the elements of G(0) we can find the elements of Lg|s—g
(note that Gy(s) is invertible). To find Lz|s—¢ we use the
relationship £7|s=0Gs(8)|s=0 = Fz, and for Fr invertible
we have Lz]s—¢ = FZF§1£R|S:0.

Ilustrative Example: We will investigate the 3-bus power
system example we discussed at the beginning of this section.

0 010 /
Let C = 100 0 andE:[OOﬁl Iig},

hence we have m = 1, ¢ = 2, and p = 2. The structure of F
is indicative of a line-flow perturbation. We split .A up into

Fgr

Fy } and correspond-

]. The R subscript implies that the

S -1 ‘ l11 0
by +by s+d —b1 + 11 —by
p— d
As b 0 | +bitbstim | —bs |0
—ba 0 —b3 + lay ba + b3
lio 01010
| e 0f0]o0
A= 17, 0707(0
laio 01010

In order to satisfy condition (a) of Theorem 1 we set
Lo,b|s=0 = 0, by choosing 11 = 0 and la; = by.
Testing condition (b) of Theorem 1, we construct

s+ 1o -1 0
[Bo]_ b1 +by+1lao s+d —bsy
B | —b1 + 32 0 —bs3 ’
—bo + 142 0 bo + b3

from which we see that the nullspace of the above matrix is
empty at s = 0 when:

o l1o # 0, lag # —2by — by, I3o # by — b3, lyo # 2by +b3;

o l1o #0, loo # —by, I3 # by + b3, lya # —b3;

e O 122 }é —bl — b2 — 112d, 132 7§ bl, l42 }é bQ.

Thus we have placed modest restrictions on the values that
L) can take.

Condition (c) of is also satisfied and L\C) , = 0.

In order to complete the unknown-input attenuation design
we need to find £1 p|s—¢. By Setting G;(0) = bl-l-lfﬁ we
deduce that Lr = by + b3 + I31 and that L = mgnfl(bl +
bs + l31). However, Lz = —bs + l41, from which we can
back out what we need [4; to be as a function of 37 (our
design parameter used to manipulate G,(0)).
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—by— b3

—by — b3

(a) Design Setup (b) Design Result

Fig. 3. Graphical Observer Design with C' = { (1) 8 (1) 8 }

Thus, in order to enforce Gey($) =

K1 .
[0 0 e 0 ],b we needlto set I;7 = 0O,
lon = b1, lu 12 tby (rafha) hals (note we did not

K1
require s = 0, because we measured an algebraic variable).

From this example we also note that we still have four
degrees of freedom (I, 22, l32 and l42) to move the poles
of (M, A — LC), however, we have some restrictions on
what these values can be.

In Figure 3(a) the directed graph of (M, A— LC,E,I) is
shown before we assigned the values of Lg. In Figure 3(b)
we show the directed graph of (M, A — LC, E,I) after Lg
was designed to achieve unknown-input attenuation. Notice
that we cut the forward paths from es to other e-vertices not
directly influenced by w (i.e., forward paths from e3 to e;
and es). In this figure we show the high-gain arcs from ej
to es, namely Lg, and from e3 to e4, namely L.

IV. MONITOR EXAMPLES FOR AN 179-BUS SYSTEM

In this section we study an 179-bus aggregated version
of the Western States Coordinating Council (WSCC) power
system?. The one-line diagram of this system is shown in
Figure 4. The system consists of 29 generators and 150 load
buses and the DAE model of form (1) for this system has 208
internal variables with 58 state variables and 150 algebraic
variables. In Figure 4 we indicate the locations of angle
measurements we will use for observer design: y; = 67,
y2 = Os9, y3 = O3, and y4 = Os.

In Figure 4, we also indicate the locations where unknown
power injections/extractions w; to w4 can occur. In our
example we assume that occurrences of these unknown
inputs are in the form of pulses as described in Table I.

2We would like to thank Professors A. G. Phadke (VPISU), and V. Vittal
at (ASU) for sharing the aggregated WSCC 179 bus model.
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wy = Pg7 | wa =Py | wz = Pioo | wg = Pss
Per Unit [p.u.] -1 1 1.5 -1.5
ta [s] 1, 3] [2.5,5] | [0.001,7] | [0.001,7]
TABLE I

AMPLITUDE AND DURATION OF PERTURBATIONS AND FAULTS.

In this section we will illustrate the functioning of the two
types of monitors we discussed in Section II.

In all of the following simulations we assume that the
generators are uncontrolled. We introduce parametric model
uncertainty into the system model, by assuming that the pa-
rameters of the system are randomly perturbed by 10% (using
an uniform distribution) around their nominal values. We use
these nominal values in the realization of the observer. In
this paper we do not design the observer to be robust to
these introduced parameter uncertainties, because we want
to demonstrate how well the observer performs even in the
presence of moderate parametric model uncertainty.

We also assume that z:(0) is equal to Z(0) in order to avoid
solving the power flow problem for the perturbed system
before commencing the dynamic simulation. This approach
limits the impact of transients due to a large nonzero e(0),
which is not the included in the design objective of this paper.
In practice we can limit the effect of nonzero ¢(0) on the
desired monitoring task by using additional measurements to
move the eigenvalues of the (M, A — LC') system to force
transient trajectories of e, driven by nonzero e(0), to decay
to zero.

State Estimation: As part of the observer design we

associate each measurement with an unknown signal w. In
this example we associate y; with w; for i € [1,---, 4].
In this example all w;’s given in Table I are seen as
disturbances, and each &; (as defined in Section III) is set
large (i.e., 1 x 10%). We also found that by choosing the
&’s to be 1 x 10* we had ||A|2 = ||A — LC||2. The other
nonzero entries in L are obtained from extracting entries
from A as discussed in Section III. After constructing L we
check whether (M, A — LC) is stable, and if this is indeed
the case we use L in the realization of (3).
N In liigure 5, 99 —B.; is compared to its observer eﬁtimate
99 —0.0:°. This plot was selected by evaluating ||6; —6;||- for
each of the 179 bus angles and then choosing the one with the
the maximum norm. Even in this instance we notice that the
observer’s estimate track the trend of the system trajectory
satisfactorily.

FDI: For this example y; and ys are used to detect the
occurrences of w; and wsy respectively. We use y3 and ya
to attenuate the effect of nonzero ws and w, disturbances.
From Section III we know that if w; is a fault we want to
detect, we set & to be very small, and if wy, is a disturbance,
&y is set very large. For our current example we set £; = 50,
& =50, & = 1x 104, and &4 = 1 x 10*. After constructing
L we check whether (M, A — LC) is stable, and if so we
use L in the realization of (3).

3In this figure the system angle fgg is expressed relative to the evolution
of the center-of-inertia angle Oc0i. The observer angles Ogg is expressed
relative to the observer’s 0.q;.
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O
16
2 13 o

Fig. 4. One-line diagram of an aggregated WSCC network, illustrating
fault, disturbance and measurement locations.

-

-201

Time [s]

Fig. 5. 099 — Ocoi vs. §99 - é\coi

In Figure 6, the response of the designed observer-based
monitor is shown in response to the events described in Table
I. We note that the monitor attenuates the occurrence of
disturbances w3 and wy, as well as detects and isolates the
occurrences of w; and ws that occur separately as well as
simultaneously. We notice that z3 and z4, which are driven
by the disturbances, stay approximately zero and can be left
out of the FDI monitor by choosing Q) = [ Ir 0 ]

V. CONCLUSIONS
In this paper we demonstrated how observer-based mon-
itors can readily be designed for an 179-bus power system
model by using a novel graphical observer-design technique
developed in [5]. We discussed the design of two types of
observer-based monitors, i.e., the state-estimation monitor

WeB13.4

FDI Monitor: 179 Bus; 2 Faults, 2 Distrubances

0.5
‘o
o
asf 0 h [ d
Q, \‘ 1 ¢ Y]
-os5f ! : ]
: 1 =
, 200
I
R ]
1 ,| ~ \ |
l‘ ) i, \" \Jl
15 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time [s]
Fig. 6.  Output of observer-based monitor in response to the events

described in Table 1. Here 2 = y — 3y and r = Q=.

and the fault-detection-and-isolation monitor. We demon-
strated the design and performance of a fault-detection-and-
isolation monitor on an 179-bus power system model.

This graphical observer-design technique is powerful in
designing the steady-state output of a monitor, but it provides
no stability guarantees for the monitoring system. For a
system where the number of measurements are equal to the
number of disturbances plus faults then there is no degrees of
freedom left to move the eigenvalues of (M, A— LC). If the
filter is unstable, extra measurements can be added in order
to move the eigenvalues of the (M, A—LC') system. For such
situations we propose a dual design approach, where we first
identify the unknown inputs, then use specific measurements
to achieve the desired monitoring task. In the second step we
use additional measurements for the sole purpose of moving
the eigenvalues of the filter, to ensure that the monitor will
be stable whenever the monitored system is stable.

In this paper we focussed on the swing dynamics of a
power system, but the ideas presented here can be extended
to include other power system dynamic phenomena (such as
voltage dynamics).
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