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Abstract— In this paper we discuss an intuitive observer
design approach that is suitable for large-scale systems, such
as power systems. In arriving at this approach we drew
inspiration from the field of linear structured systems, where
qualitative statements (e.g., solvability of the fault detection
and identification (FDI) problem [1], controllability) about the
system are made by analyzing the structure of the system.
Our emphasis is design and we use information regarding
the structure of the system as well as the actual values of
specific entries in the system matrices to design observer-based
monitors. These monitors can estimate the state of the system or
detect and identify specific occurrences of faults in the system,
all in the presence of disturbances and uncertainty. In this paper
we demonstrate our design approach by designing observer-
based monitors for electromechanical dynamics on a small 3-
bus and an intermediate-sized 179-bus power system model.

Index Terms— System-Wide Monitoring, Observers, State
Estimation, Fault Detection and Isolation

I. INTRODUCTION

In this paper we are concerned with designing real-time

observer-based monitors for: dynamic state estimation; and

centralized FDI for large-scale power systems. Intercon-

nected power systems can span continents, with numerous

power generators, loads/consumers, transmission and distri-

bution systems.

In light of the lack of economically viable large-scale

energy storage, system operators have to assure that an

electricity-supply chain remains balanced (i.e., supply equals

demand) in real-time. In order to maintain this balance a

system operator relies heavily on local-level protection and

control, system-wide state estimation, and human operators

that take supervisory control actions. Power system state

estimation in the traditional sense has mainly focused on

static estimation from redundant measurements [2] using

Weighted Least Squares. There also exists literature in the

power system field on dynamic-state estimation, which deals

with: recursive processing of measurements, but with no

dynamics in the state [3]; or slow-speed state dynamics

induced by load variations, and these dynamics are estimated

on-line in various ways using load forecasting ideas [3], [4].

In the examples presented in this paper we confine our

attention to the so-called “swing-model” (i.e., electrome-

chanical dynamics) of a power system. The swing model

is Newton’s second law in rotational format, i.e., every

generator in the network has an input mechanical power

and it supplies electrical power to the loads through the
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network. If there is a mismatch between these two powers

at a generator bus the machine will accelerate or decelerate.

Various FDI schemes are already employed in power

systems. These schemes rely on extensive placement of local

monitoring devices such as relays that provide information

to devices such as switches to help in isolating the fault or

protect a piece of equipment. These relays are designed to act

in real time, however this local information is generally not

communicated to a centralized control center where system-

wide state estimation is executed. In this paper we illustrate

how the same observer structure can be used either as a

state estimator or as a FDI filter, located at a centralized

location. We do not propose that the existing and important

power system FDI schemes be discarded, our aim is rather

to illustrate the potential of realizing power system dynamic

state estimation and real-time FDI at a centralized location

using similar observer-based filters.

Observer design for large-scale systems can be very chal-

lenging. In [5] DAE-H∞ observers were designed for state

estimation using Linear Matrix Inequalities. In this works

it was discussed how computational intensive such a design

is for an intermediate-sized power systems. This challenge

prompted us to devise an alternative design approach, which

is the focus of this paper.

In the next few sections we will show how one can design

unknown-input observers by creating a desired directed graph

of the associated linear-structured1 error dynamics. What

makes our novel (to the best of our knowledge) observer-

design approach attractive is the fact that the designed gain

matrix can easily be updated by extracting select values from

linearized system matrices, making it feasible to realize an

on-line Linear-Parameter-Varying observer (observer’s model

is linearized along the observer’s system trajectory).

The rest of the paper is organized as follows. In Section

II, we briefly discuss the swing model of a power system, as

well as the two monitoring tasks mentioned earlier. Section

III discusses the novel (to the best of our knowledge) graphi-

cal observer design technique. In Section IV, we illustrate the

working of our observer-based monitors. In Section V, we

summarize our results and discuss additional design issues.

II. OBSERVER-BASED MONITORS FOR POWER SYSTEM

SWING MODELS

The linearized form of a power system’s swing model can

be expressed as the following structure-preserving Differen-

1A linear system is considered structured when each entry of the system
matrices is either a fixed zero, a free parameter, or a fixed nonzero parameter
[1], [6].
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tial Algebraic Equation model

Mẋ = Ax + Bu + Ew (1)

y = Cx + Du, (2)

with: internal variables x; measurements y; known inputs

u; and subject to unknown inputs w. The differential states

of the system are mainly attributed to the generation sites

and the algebraic internal variables are associated with the

loads in the system. The singular M contains the inertia

information of the synchronous generators, and A contains

the network information.

We propose to use an observer of the form

M ˙̂x = Ax̂ + Bu + L(y − ŷ) (3)

ŷ = Cx̂ + Du, (4)

where x̂ is the estimate of x, L is the designed-observer gain,

and ŷ is the estimated version of y. Defining e = x − x̂ the

resulting DAE-error system for this estimation problem has

the form

Mė = (A − LC)e + Ew (5)

r = QCe, (6)

where r is defined as residuals and we use (M, A−LC, E, I)
as shorthand notation for the DAE-error system, and (M, A−
LC, E, QC) for the DAE-residual system.

Sources of Unknown Signals w: Various perturbations

and uncertainties in the power system can be modeled in

the form Ew. Perturbations such as load/generation changes,

generator outages, line flow perturbations (e.g., line outages

or short circuits) as well as uncertainties of line parameters

and generator inertias.

An unknown line change occurring on line h will impact

the entries in A associated with the contributions of line

h. In [5], we show that each line change (or uncertain line

parameter) will have an associated rank one perturbation

matrix Ãh in (1), for which we can model Ãhx = Ew.

Another source of w can be changes in adjacent unmod-

eled power systems. In this case our study area is given by

(1) and the influences from the rest of the network on our

study area can be thought of as w signals. We can thus make

our estimator insensitive to changes in adjacent networks, or

make it sensitive to indicate that a neighbor is experiencing

problems.

Before discussing our observer design method we high-

light the types of monitors studied in this paper.

State-Estimation Monitor: The purpose of the state-

estimation monitor is to have x̂ be an estimate of x, forcing

e to tend to zero in the presence of nonzero unknown signals

w and for nonzero initial conditions e(0) = x(0) − x̂(0). In

this paper we assume that e(0) = 0 and we are interested in

forcing as many entries in Gew(s) = I(sM −A + LC)−1E

to zero as s tends to zero. Here Gew(s) is the transfer

function matrix from unknown signals w to errors e. In

order to achieve this requirement we have L available for

design. Observer design in the presence of unknown signals

is challenging, but the design method we introduce in the

next section provides an intuitive approach to accomplish

this task.

FDI Monitor: We partition w to distinguish between

faults α (to identify) and disturbances β (to attenuate), and

accordingly form Eα and Eβ from E. The objectives of the

FDI monitor are to have have Grα(s) = QC(sM − A +
LC)−1Eα be upper triangular — to aid with FDI — and

have Grβ(s) = QC(sM − A + LC)−1Eβ be identical to

zero for all s [1]. This will insure that the filter’s residuals

r will be significantly nonzero when α is nonzero, and r

will not be impacted by nonzero β’s. In [1], the authors

provide necessary and sufficient conditions the system (M =
I, A, E, C) has to satisfy in order for the FDI problem to be

generically solvable.

III. GRAPHICAL OBSERVER DESIGN

For the linear structured system (M, A − LC, E, QC)
given by Equations (5) and (6) we have e ∈ R

n; w ∈
R

m; and r ∈ R
p. We can associate a directed graph

G(V,Z) with this system. V denotes the set of vertices

of the directed graph and is obtained by forming V =
E∪W∪R, where E,W,R are the sets {e1, e2, · · · , en},

{w1, w2, · · · , wm}, {r1, r2, · · · , rp} respectively. Hence

the variables of the system description form the vertices of

the directed graph.

The arc set Z is obtained by forming the union of

Ew = {(wi, ej)|Eji 6= 0}, Ee = {(ei, ej)|Aji 6= 0},

Em = {(ei, ej)|Mji 6= 0}, Er = {(ei, rj)|Qj,:C:,i 6= 0}, and

El = {(ei, ej)|Lj,:C:,i 6= 0} (where Qj,: and Lj,: represents

rows j of Q and L respectively, and C:,i represents column i

of C). The above edge weights are obtained from the system

matrices, except for El, which we will design. In the studies

discussed in [1], [6], the authors view the edge weights

of the arcs as free parameters and are not concerned with

the quantitative information contained in these weights. We

will use these weights, which are a function of the current

operating point, for observer design.

Reinschke [6] investigated generic controllability of linear

structured DAE systems and from his work it is evident

that additional arcs are associated with entries in the M

matrix. For the swing model considered in this thesis, these

additional arcs help us to distinguish between differential

and algebraic variables, but do not provide us with additional

insight during the observer design process. We will elaborate

on this observation when we introduce an example.

Due to the diagonal structure of M the set Em will consists

of self-cycles at the differential variable vertices [6]. These

additional loops do not provide us with extra insight into

observer design for the swing model, and they will not

be drawn in the directed graph example that will follow.

Also, for the figures illustrated in this paper we we will not

explicitly draw the Er edges.

We will demonstrate our design approach on a three-bus

power system example, which consists of one generator and

two loads as shown in Figure 1. This system has three bus an-

gles, one generator speed and M = diag
([

1 1 0 0
])

.

We assume that the system is subject to an unknown

load change at bus 3, i.e., E =
[

0 0 0 1
]′

, and
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e1 = θ1 − θ̂1

e2 = ω1 − ω̂1

e3 = θ2 − θ̂2

e4 = θ3 − θ̂3

Fig. 1. Three-bus system and the definition of the elements ei in E.

that we measure the voltage angle at bus 2, i.e., C =[
0 0 1 0

]
. The system matrix A is given as

A =




0 1 0 0
−b1 − b2 −d b1 b2

b1 0 −b1 − b3 b3

b2 0 b3 −b2 − b3


 .

The unassigned observer gain is given as L =[
l1 l2 l3 l4

]′
, and we can now write

A−LC =




0 1 −l1 0
−b1 − b2 −d b1 − l2 b2

b1 0 −b1 − b3 − l3 b3

b2 0 b3 − l4 −b2 − b3


 .

Design Approach: We highlight our design approach here,

and the interested reader is referred to [5] for more details:
1) Draw G(V,Z) of the error dynamical system (M, A−

LC, E, I). See Figure 2(a) for the design setup.

2) Eliminate forward paths (by choosing the values of L

appropriately) in G(V,Z) from the e-vertex where the

El arcs originate (i.e., the measured variable), except

the forward path to the e-vertex directly impacted by

w. (This latter edge has a weight of ξ = b3 − l4.) For

our example we choose l1 = 0, l2 = b1, and l3 =
−b1 − b3. See Figure 2(b) for the design result. From

this figure we notice that some signal flow paths in

G(V,Z) were eliminated.

3) ξ can now be chosen in order to realize the two types

of monitors for:
• state estimation by choosing ξ to be large in

order to attenuate the effect of disturbance w.

Gew(s) =
[

0 0 1
ξ

0
]′

.

• FDI by choosing ξ small in order to amplify the

effect of fault w. Grw(s) = 1
ξ
.

The above design approach does not cover all possible

cases. For instance, when we are dealing with a line-flow

perturbation (i.e., two e vertices are dependently affected

by the same perturbation), the two high-gain arcs we insert

between the measurement site and these two e-vertices will

necessarily end up being related to one another. One such

example will be considered at the end of this section.

Next we state a more general result than what the above

design approach and examples suggest. The dual problem,

disturbance rejection using full-state feedback control, is

discussed by Reinschke in [7]. Our theorem is not the dual

extension of Reinschke’s work, although his work served as

inspiration.

Assumptions: We will first consider the case where the

number of measurements, p, is larger than the number

e2 e1

e3

e4

w
1

1

−b1 − b2

b1

b2

b3

b1

b3

b2

−d

−b1 − b3

−b2 − b3

−l3

−l1−l2

−l4

(a) Design Setup

e2 e1

e3

e4

w
1

1

−b1 − b2

b1

b2

ξ b3

b2

−b2 − b3

−d

(b) Design Result

Fig. 2. Graphical Observer Design with C =
[

0 0 1 0
]
.

of unknown inputs, m, (i.e., p ≥ m). We assume that

the e-vertices of system are enumerated in order to yield

E =

[
0
F

]
, where F ∈ R

q×m and q is defined as

the number of e-vertices that are one hop away from an

unknown input. Initially we assume that q ≥ m. The

case where q < m is discussed in [5] and will not be

elaborated on here. We will focus on systems for which C

may be written as C =

[
CE

Cλ

]
=

[
0 CE,b 0

Cλ,a Cλ,b Cλ,c

]
,

where CE ∈ R
m×n and Cλ ∈ R

(p−m)×n. We have that[
Cλ,a Cλ,c

]
∈ R

(p−m)×(n−m) and CE,b ∈ R
m×m. The

observer gain matrix is given by L =
[

LE Lλ

]
=[

L0,E L0,λ

L1,E L1,λ

]
, where LE ∈ R

n×m, Lλ ∈ R
n×(p−m),

L0,E ∈ R
(n−q)×m, L1,E ∈ R

q×m, L0,λ ∈ R
(n−q)×(p−m),

and L1,λ ∈ R
q×(p−m).

Let A = sM − A + LC, which we split up into A =
AE +Aλ. We define AE = sM−A+LECE and accounting

for the partitioning of E and CE , we can express

AE =

[
A0,a L0,b A0,c

A1,a L1,b A1,c

]
.

Here L0,b = (sM0,b − A0,b + L0,ECE,b) ∈ R
(n−q)×m and

L1,b = (sM1,b − A1,b + L1,ECE,b) ∈ R
q×m, where M =[

M0,a M0,b M0,c

M1,a M1,b M1,c

]
and A =

[
A0,a A0,b A0,c

A1,a A1,b A1,c

]
.

This choice of AE leads to

Aλ = LλCλ =

[
L0,λCλ,a L0,λCλ,b L0,λCλ,c

L1,λCλ,a L1,λCλ,b L1,λCλ,c

]
.

The general idea is that the blocks L0,b and L1,b will be

used to attenuate the impact of the unknown inputs on the
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e-variables. The matrix Aλ will be used to move the poles of

the closed-loop error system, after achieving the desired level

of unknown input attenuation, and hence Aλ provides us with

extra degrees of freedom. We can now state the following

theorem.

Theorem 1: For a system (M, A − LC, E, I) satisfying

all the assumptions given in the preceding paragraphs, the

following structure can be enforced on Gew(0):

Gew(0) = I(sM − A + LC)−1E|s=0 =




0
Gb(0)

0


 ,(7)

if we have:

(a) L0,b|s=0Gb(0) = 0;

(b) ker

[
A0,a + L0,λCλ,a A0,c + L0,λCλ,c

A1,a + L1,λCλ,a A1,c + L1,λCλ,c

]
|s=0 = ∅;

(c)

[
L0,λ

L1,λ

]
Cλ,b = 0.

(d) L1,b|s=0Gb(0) = F .

Proof: Pre-multiplying both sides of the expression

Gew(s) = IA−1E by A = sM − A + LC yields the

following set of linear equations:

AGew(s) = E. (8)

With the partitioning Gew(s) =[
G′

a(s) G′

b(s) G′
c(s)

]′
, and developing the submatrix

multiplications in the preceding equation the following sets

of linear equations are obtained:

[
A0,a + L0,λCλ,a A0,c + L0,λCλ,c

]
︸ ︷︷ ︸

B0

[
Ga(s)
Gc(s)

]

︸ ︷︷ ︸
G0(s)

+

(L0,b + L0,λCλ,b)Gb(s) = 0; (9)

[
A1,a + L1,λCλ,a A1,c + L1,λCλ,c

]
︸ ︷︷ ︸

B1

[
Ga(s)
Gc(s)

]

︸ ︷︷ ︸
G0(s)

+

(L1,b + L1,λCλ,b)Gb(s) = F, (10)

where B0 ∈ R(n−q)×(n−m) and B1 ∈ R(q)×(n−m). We group

(9) and (10) together to form:
[

B0

B1

]
G0(s) +

[
L0,b

L1,b

]
Gb(s)+

[
L0,λ

L1,λ

]
Cλ,bGb(s) =

[
0
F

]
(11)

Investigating conditions (a), (c) and (d), we notice that we

need to evaluate (11) at s = 0 due to our restriction that the

observer gain elements remain real.

Accounting for conditions (a), (c) and (d) from the theo-

rem statement and evaluating Equation (11) at s = 0 yields:
[

B0

B1

]
|s=0G0(0) =

[
0
0

]
, (12)

and from condition (b) we conclude that G0(0) = 0,

implying that Gew(0) =
[

0 G′

b(0) 0
]′

.

Discussion: Requirement (a) in the theorem statement

can be satisfied if we set L0,b|s=0 = (sM0,b − A0,b +
L0,ECE,b)|s=0 = 0. This implies that we eliminate all

the entries in this matrix and thus set L0,ECE,b = A0,b.

Interpreting this action graphically on the directed graph of

(M, A − LC, E, I) translates to cutting the forward paths

from the measurement site to all the e-vertices that are not

directly influenced by unknown inputs (i.e., the 0 block of

E).

To obtain L1,b we partition F =

[
FR

FZ

]
and correspond-

ingly L1,b =

[
LR

LZ

]
. The R subscript implies that the

matrix is in R
m×m and the Z subscript implies R

(q−m)×m.

From condition (d) of Theorem 1 we have LR|s=0Gb(0) =
FR, and by defining the desired level of attenuation for

the elements of Gb(0) we can find the elements of LR|s=0

(note that Gb(s) is invertible). To find LZ |s=0 we use the

relationship LZ |s=0Gb(s)|s=0 = FZ , and for FR invertible

we have LZ |s=0 = FZF−1
R LR|s=0.

Illustrative Example: We will investigate the 3-bus power

system example we discussed at the beginning of this section.

Let C =

[
0 0 1 0
1 0 0 0

]
and E =

[
0 0 κ1 κ2

]′
,

hence we have m = 1, q = 2, and p = 2. The structure of E

is indicative of a line-flow perturbation. We split A up into

AE =




s −1 l11 0
b1 + b2 s + d −b1 + l21 −b2

−b1 0 +b1 + b3 + l31 −b3

−b2 0 −b3 + l41 b2 + b3


 , and

Aλ =




l12 0 0 0
l22 0 0 0
l32 0 0 0
l42 0 0 0


 .

In order to satisfy condition (a) of Theorem 1 we set

L0,b|s=0 = 0, by choosing l11 = 0 and l21 = b1.

Testing condition (b) of Theorem 1, we construct

[
B0

B1

]
=




s + l12 −1 0
b1 + b2 + l22 s + d −b2

−b1 + l32 0 −b3

−b2 + l42 0 b2 + b3


 ,

from which we see that the nullspace of the above matrix is

empty at s = 0 when:

• l12 6= 0, l22 6= −2b2− b1, l32 6= b1− b3, l42 6= 2b2 + b3;

• l12 6= 0, l22 6= −b1, l32 6= b1 + b3, l42 6= −b3;

• or l22 6= −b1 − b2 − l12d, l32 6= b1, l42 6= b2.

Thus we have placed modest restrictions on the values that

Lλ can take.

Condition (c) of is also satisfied and LλCλ,b = 0.

In order to complete the unknown-input attenuation design

we need to find L1,b|s=0. By Setting Gb(0) = κ1

b1+b3+l31
we

deduce that LR = b1 + b3 + l31 and that LZ = κ2κ
−1
1 (b1 +

b3 + l31). However, LZ = −b3 + l41, from which we can

back out what we need l41 to be as a function of l31 (our

design parameter used to manipulate Gb(0)).
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(a) Design Setup (b) Design Result

Fig. 3. Graphical Observer Design with C =

[
0 0 1 0
1 0 0 0

]
.

Thus, in order to enforce Gew(s) =[
0 0 κ1

b1+b3+l31
0

]
, we need to set l11 = 0,

l21 = b1, l41 = b1κ2+b3(κ1+κ2)+κ2l31
κ1

(note we did not

require s = 0, because we measured an algebraic variable).

From this example we also note that we still have four

degrees of freedom (l12, l22, l32 and l42) to move the poles

of (M, A − LC), however, we have some restrictions on

what these values can be.

In Figure 3(a) the directed graph of (M, A−LC, E, I) is

shown before we assigned the values of LE . In Figure 3(b)

we show the directed graph of (M, A − LC, E, I) after LE

was designed to achieve unknown-input attenuation. Notice

that we cut the forward paths from e3 to other e-vertices not

directly influenced by w (i.e., forward paths from e3 to e1

and e2). In this figure we show the high-gain arcs from e3

to e3, namely LR, and from e3 to e4, namely LZ .

IV. MONITOR EXAMPLES FOR AN 179-BUS SYSTEM

In this section we study an 179-bus aggregated version

of the Western States Coordinating Council (WSCC) power

system2. The one-line diagram of this system is shown in

Figure 4. The system consists of 29 generators and 150 load

buses and the DAE model of form (1) for this system has 208

internal variables with 58 state variables and 150 algebraic

variables. In Figure 4 we indicate the locations of angle

measurements we will use for observer design: y1 = θ78,

y2 = θ59, y3 = θ83, and y4 = θ2.

In Figure 4, we also indicate the locations where unknown

power injections/extractions w1 to w4 can occur. In our

example we assume that occurrences of these unknown

inputs are in the form of pulses as described in Table I.

2We would like to thank Professors A. G. Phadke (VPISU), and V. Vittal
at (ASU) for sharing the aggregated WSCC 179 bus model.

w1 = P̃67 w2 = P̃41 w3 = P̃100 w4 = P̃85

Per Unit [p.u.] -1 1 1.5 -1.5
td [s] [1, 3] [2.5, 5] [0.001, 7] [0.001, 7]

TABLE I

AMPLITUDE AND DURATION OF PERTURBATIONS AND FAULTS.

In this section we will illustrate the functioning of the two

types of monitors we discussed in Section II.

In all of the following simulations we assume that the

generators are uncontrolled. We introduce parametric model

uncertainty into the system model, by assuming that the pa-

rameters of the system are randomly perturbed by 10% (using

an uniform distribution) around their nominal values. We use

these nominal values in the realization of the observer. In

this paper we do not design the observer to be robust to

these introduced parameter uncertainties, because we want

to demonstrate how well the observer performs even in the

presence of moderate parametric model uncertainty.

We also assume that x(0) is equal to x̂(0) in order to avoid

solving the power flow problem for the perturbed system

before commencing the dynamic simulation. This approach

limits the impact of transients due to a large nonzero e(0),
which is not the included in the design objective of this paper.

In practice we can limit the effect of nonzero e(0) on the

desired monitoring task by using additional measurements to

move the eigenvalues of the (M, A − LC) system to force

transient trajectories of e, driven by nonzero e(0), to decay

to zero.

State Estimation: As part of the observer design we

associate each measurement with an unknown signal w. In

this example we associate yi with wi for i ∈ [1, · · · , 4].
In this example all wi’s given in Table I are seen as

disturbances, and each ξi (as defined in Section III) is set

large (i.e., 1 × 104). We also found that by choosing the

ξi’s to be 1 × 104 we had ‖A‖2 = ‖A − LC‖2. The other

nonzero entries in L are obtained from extracting entries

from A as discussed in Section III. After constructing L we

check whether (M, A − LC) is stable, and if this is indeed

the case we use L in the realization of (3).

In Figure 5, θ99−θcoi is compared to its observer estimate

θ̂99−θ̂coi
3. This plot was selected by evaluating ‖θi−θ̂i‖2 for

each of the 179 bus angles and then choosing the one with the

the maximum norm. Even in this instance we notice that the

observer’s estimate track the trend of the system trajectory

satisfactorily.

FDI: For this example y1 and y2 are used to detect the

occurrences of w1 and w2 respectively. We use y3 and y4

to attenuate the effect of nonzero w3 and w4 disturbances.

From Section III we know that if wk is a fault we want to

detect, we set ξk to be very small, and if wk is a disturbance,

ξk is set very large. For our current example we set ξ1 = 50,

ξ2 = 50, ξ3 = 1× 104, and ξ4 = 1× 104. After constructing

L we check whether (M, A − LC) is stable, and if so we

use L in the realization of (3).

3In this figure the system angle θ99 is expressed relative to the evolution

of the center-of-inertia angle θcoi. The observer angles θ̂99 is expressed

relative to the observer’s θ̂coi.
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Fig. 4. One-line diagram of an aggregated WSCC network, illustrating
fault, disturbance and measurement locations.
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In Figure 6, the response of the designed observer-based

monitor is shown in response to the events described in Table

I. We note that the monitor attenuates the occurrence of

disturbances w3 and w4, as well as detects and isolates the

occurrences of w1 and w2 that occur separately as well as

simultaneously. We notice that z3 and z4, which are driven

by the disturbances, stay approximately zero and can be left

out of the FDI monitor by choosing Q =
[

I2 0
]
.

V. CONCLUSIONS

In this paper we demonstrated how observer-based mon-

itors can readily be designed for an 179-bus power system

model by using a novel graphical observer-design technique

developed in [5]. We discussed the design of two types of

observer-based monitors, i.e., the state-estimation monitor
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Fig. 6. Output of observer-based monitor in response to the events
described in Table I. Here z = y − ŷ and r = Qz.

and the fault-detection-and-isolation monitor. We demon-

strated the design and performance of a fault-detection-and-

isolation monitor on an 179-bus power system model.

This graphical observer-design technique is powerful in

designing the steady-state output of a monitor, but it provides

no stability guarantees for the monitoring system. For a

system where the number of measurements are equal to the

number of disturbances plus faults then there is no degrees of

freedom left to move the eigenvalues of (M, A−LC). If the

filter is unstable, extra measurements can be added in order

to move the eigenvalues of the (M, A−LC) system. For such

situations we propose a dual design approach, where we first

identify the unknown inputs, then use specific measurements

to achieve the desired monitoring task. In the second step we

use additional measurements for the sole purpose of moving

the eigenvalues of the filter, to ensure that the monitor will

be stable whenever the monitored system is stable.

In this paper we focussed on the swing dynamics of a

power system, but the ideas presented here can be extended

to include other power system dynamic phenomena (such as

voltage dynamics).
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