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Abstract— The attitude control system of three-axis stabilized
geostationary platforms is usually based on a set of reaction
wheels, the operation of which requires periodic desatura-
tion maneuvers in order to dump the angular momentum
accumulated because of external secular disturbance torques.
The need for such maneuvers can be minimized by careful
design of the satellite platform. In this paper, the control issues
associated with the adoption of a magnetic actuator for (partial)
momentum dumping on a geostationary platform are discussed,
with specific reference to the robustness issues arising due to
the highly uncertain space environment at GEO altitude.

I. INTRODUCTION

A number of satellites rely for the generation of attitude
control torques on the use of (rotating) momentum exchange
devices, such as reaction wheels ([1], [2]): wheels are con-
trolled by means of electrical motors in order to absorb
the changes in spacecraft momentum due to the action of
external torques. Typically, a periodic disturbance torque
along one spacecraft axis would result in a cyclic variation
in the angular velocity (momentum) of the wheel directed
along that axis, while a constant (secular) disturbance would
lead to a linear increase in angular velocity (momentum), as
the wheel would be accelerated at a constant rate in order
to transfer to it the excess angular momentum due to the
external disturbance. Clearly, the effect of secular torques
can only be managed up to a certain limit, known as wheel
saturation, which corresponds to the physical limit for the
rotational speed of the device.

In order to prevent this limit from being reached, the so
called desaturation of the wheels must be performed, i.e., an
extra set of actuators, generating external torques, must be
used to dump angular momentum from the spacecraft. The
general approach to this problem consists in performing a
continuous compensation of the effect of external torques on
the wheels’ momentum, based on a suitable control scheme.
The idea is that the continuous compensation of the effect of
(small) secular torques on the reaction wheels should lead to
small side effects on the pointing and stability performance
of the actual attitude control system.

On board small Low Earth Orbit (LEO) spacecraft the ex-
ternal torques necessary for the control of the wheels’ angular
momentum are frequently generated by means of magnetic
coils. The use of magnetic coils for control purposes has
been the subject of extensive study since the early years
of satellite missions (see, e.g., [3]). As is well known, the
operation of magnetic actuators is based on the interaction
with the geomagnetic field ([1], [2]).

Wheel desaturation, however, is not an issue limited to
LEO spacecraft, but has to be taken into account in the design

This paper has been supported by the ESA contract 20172/06/NL/JD.
D. Desiderio and M. Lovera are with the Dipartimento

di Elettronica e Informazione, Politecnico di Milano, Mi-
lano, Italy. {desiderio,lovera}@elet.polimi.it
S. Pautonnier is with Thales Alenia Space France.
stephane.pautonnier@thalesaleniaspace.com R. Drai
is with ESA-ESTEC. Remi.Drai@esa.int

of any satellite based on a zero-momentum architecture.
To date, the use of magnetic torquers for such purposes
has been always limited to LEO satellites, given the rapid
decrease of the intensity of the geomagnetic field with
altitude. Recently, however, it has been proposed to try
and use magnetic desaturation techniques for Geostationary
Earth Orbit (GEO) platforms, by relying on suitably designed
magnetic torquers capable of providing magnetic dipoles in
the order of 3000÷4000 A m2, which are necessary in order
to compensate for the weak intensity of the geomagnetic
field at geostationary altitude (see [1]). In addition, while
the geomagnetic field at LEO altitude can be accurately
modelled using classical representation, such as the IGRF
model (see again [1]), at GEO altitude the effect of solar
wind causes occasional, rapid and essentially unpredictable
variations of the geomagnetic field which make robustness
the main requirement in the design of the desaturation loop.

This paper deals with the problem of designing suitable
laws for the control of the momentum of a GEO spacecraft’s
reaction wheels, using magnetic actuators, taking specifically
into account the robustness issues associated with the un-
certainty of the geomagnetic field and the saturation of the
magnetic actuator.

This work relies on the assumption (which is common
practice both in the literature and in actual on board imple-
mentations, see, e.g., [4], [5]) that the momentum control
loop and the attitude control loop can be treated indepen-
dently. Such an engineering approximation is entirely justi-
fied by the wide frequency separation between the attitude
control loop (time response of the order of seconds/minutes)
and the momentum control loop (time response of the order
of minutes, possibly hours).

II. PROBLEM STATEMENT

A. System description

The considered system is a High Resolution mission
platform intended for operation in a GEO orbit. An example
of potential satellite architecture is depicted in Figure 1
and described in [6]. From a control perspective, the main

Fig. 1. The considered High Resolution mission platform.

features of the current design are the choice of a three-
axis stabilised architecture and the presence of a solar array
(SA) which can rotate independently from the satellite. The
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attitude control system is based on four reaction wheels set
up in a pyramidal configuration and three out of four wheels
are used in nominal configuration (the fourth wheel is used
for failure occurrence purpose). The use of reaction wheels
has the advantage of providing a “smooth” and continuous
control. As can be seen from Figure 1, the spacecraft is
characterised by a significant asymmetry in the North/South
(N/S) direction, given the presence of a single solar array
(SA) instead of a symmetric couple. This is bound to cause
a rapid, significant accumulation of angular momentum in
the orbit plane, due to the secular component of the solar
radiation pressure which will be captured by the SA.

The maximum capability for angular momentum storage
of the considered reaction wheels set is of 32.5 Nms, which
is expected to be reached only in a few days.

The “classical” solution, i.e., the use of chemical thrusters
for momentum management, requires, instead, the interrup-
tion of the mission; in this case, this would occur every 2.75
days. This time period is very short and so it would be more
convenient to use the magnetic torque. As a possible solution
to the problem, it is proposed to entirely or partially coil the
SA in order to obtain an equivalent magnetic torquer capable
of producing a dipole (normal to the SA surface) of up to
≃ 3500 Am2 with the considered sizing, which would be
sufficient to implement a continuous momentum unloading
policy for the in-plane components of the spacecraft angular
momentum. The magnetic torque is realized by the inter-
action of a magnetic dipole moment, produced by coiling
the SA with a magnetic coil, with the (essentially orbit-
normal) earth magnetic field. However, this solution relies on
the assumption that the earth’s magnetic field in GEO orbit
can allow the generation of the necessary magnetic torque;
the field, unfortunately is rather weak and very sensitive to
solar activity. The web site of the National Geophysical Data
Center (see [7]) contains all the data measured by the GOES
satellites concerning magnetic field fine measurements in
GEO orbit for several years.

In the following, we will refer to the spacecraft-fixed axes
illustrated in Figure 2. The XY Z axes represent the orbit
reference frame while the X ′Y ′Z′ axes are related to the
rotating SA. The SA coordinate system is rotated, around
the Y ′ axis, of the angle α as regards the orbit reference
frame.

Earth

Satellite

Z
Z’

X

X’
Y

Y’

X’

Z’

Fig. 2. Definition of the XY Z and X ′Y ′Z′ coordinate frames.

B. Nominal Model for Momentum Management

For the purpose of the present study, a simple model for
the angular motion of the spacecraft has been adopted, on
the basis of the assumption that the attitude control system
can effectively maintain the attitude motion within the linear
range with respect to the nominal pointing condition.

The attitude dynamics of a rigid spacecraft can be ex-
pressed by the well known Euler’s equations ([2], [1]), as

Iω̇ = −ω × (Iω +hw)− ḣw +Tm +Text , (1)

where ω = [ωx ωy ωz]
T
∈ R

3 is the vector of spacecraft

angular rates, expressed in body frame, I ∈R
3×3 is the inertia

matrix, hw = [hwx hwy hwz]
T
∈ R

3 is the vector of the

wheels’ angular momentum. Tm ∈R
3 is the vector of external

torques induced by the magnetic torquer, while Text ∈ R
3 is

the vector of external disturbance torques.
The dynamics of the reaction wheels is given by

ḣw = −ω ×hw − τ, (2)

where τ ∈ R
3 is the vector of commanded control torques

computed by the attitude control system.
As for the attitude kinematics, a number of possible

parameterizations exist (see, e.g., [1] ). For the purpose of the
present analysis the Euler angles representation is adequate;
considering the so-called 1-2-3 sequence of rotations, the
kinematic equations relating the derivatives of the Euler
angles φ , θ and ψ to the components of the body rates are
given by

φ̇ = (ωx cos(ψ)−ωy sin(ψ))sec(θ)
θ̇ = ωx sin(ψ)+ωy cos(ψ)

ψ̇ = ωz − (ωx cos(ψ)−ωy sin(ψ)) tan(θ).
(3)

The dynamics concerning the angular positions and velocities
are significantly faster than momentum dynamics: so the
complete model for attitude and momentum dynamics can
be reduced to a much simpler one by neglecting the faster
dynamics and obtaining a three state model, representing
only the angular momentum along the three axis.

As for the magnetic actuator, letting m the magnetic dipole
moment of the coil on the SA and b the orbit-normal
component of the geomagnetic field, in the rotating frame
attached to the SA the generated magnetic torque will be
given by mb, directed along the X ′ axis. Finally, in this study
we focus on the disturbance torque due to solar radiation
pressure, so we denote by Td the solar radiation pressure
torque acting on the SA, again acting on the X ′ axis.

By assuming that the attitude is ideally regulated to the
nominal Earth pointing reference, linearising the equations
for angular momentum around such a reference attitude
(taking into account that the nominal angular rate is Ω0 =
[0 −ω⊕ 0]T ) and focusing on the x and z components of the
angular momentum we have

ḣwx = ω⊕hwz + cos(α)(Td +mb) (4)

ḣwz = −ω⊕hwx − sin(α)(Td +mb) , (5)

or, equivalently, letting h̃w = [hwx hwz]
T

˙̃hw = Ah̃w +B(Td +mb) , (6)

where

A =

[

0 ω⊕

−ω⊕ 0

]

, B = [cos(α) −sin(α)]
T

. (7)
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It is useful to re-write the equations of conservation of
angular momentum in a different reference frame, defined
by rotating the spacecraft body frame one so that the x axis
coincides with the solar array, i.e., the considered rotation is
given by

T =

[

cos(α) −sin(α)
sin(α) cos(α)

]

. (8)

By applying the corresponding Lyapunov transformation (see
[8]) to the (A,B) matrices in (7), we get

A′ = Ṫ T T +TAT T =

[

0 0
0 0

]

, B′ = T B = [1 0]
T

(9)

recalling that α̇ = ω⊕ (i.e., the SA rotates with an angular
rate equal to ω⊕ to maintain Sun pointing). So equation (6)
in the new coordinates h′w = T hw is given by

ḣ′wx = (Td +mb) (10)

ḣ′wz = 0. (11)

It is apparent from the above equations that at each time
instant only a one-dimensional subspace of the X −Z plane
is controllable using the available magnetic torquer; however,
the controllable direction coincides with the one which
receives the most significant proportion of the external dis-
turbance torque (actually the entire disturbance under the
considered assumptions), so ensuring that the desaturation
problem can be effectively solved even though the underlying
dynamics is not completely controllable.

C. Uncertainty and saturation

In addition to the above equation (10), a complete formula-
tion of the desaturation problem in this case should take into
account two major issues, which usually do not pose any
specific problem in the LEO case, but become of primary
importance in the GEO one, namely the modelling of the
geomagnetic field and the saturation of the magnetic actuator.
As far as b is concerned, the difficulty is related to the
much higher uncertainty associated with the time behaviour
of the geomagnetic field at GEO altitude with respect to the
much more predictable LEO environment. Therefore, for all
practical purposes, b should be treated as an uncertain, slowly
varying parameter. In order to highlight the type of time-
variability one can expect from b, in Figure 3 the measured
time histories of the −Y component of the geomagnetic field
are illustrated, as measured by the GOES spacecraft (see [7])
during three days which provide a representative sample of
possible perturbations of b with respect to its nominal value
of 100 nT :

• 1 January 2006: a very regular, sinusoidal oscillation of
b around its mean value;

• 23 January 2006: a very high level of activity, with
changes of almost 50% with respect to the mean value;

• 29 January 2006: a very ”quiet” day, with an almost
constant value of b.

As a consequence of the limited knowledge of b, it is very
likely that saturation of the magnetic actuator will come into
play during normal operation of the momentum management
loop: indeed, a given request for the desaturation torque
might give rise to a very large magnetic dipole because of
an unexpected reduction of the local value of b.
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Fig. 3. Time histories of the earth’s magnetic field in GEO orbit during
three different days of January 2006.

III. ACTUATOR SIZING AND DEFINITION OF THE
CONTROL LAW

A. Magnetic Actuator Sizing

A preliminary sizing of the magnetic actuator has been
realized starting from a disturbance torque evaluation. The
objective is to obtain a maximum magnetic torque larger than
the disturbance torque. To achieve this, the magnetic dipole
moment feasible from the magnetic coil has to be at most of
3571 Am2; the mass of the magnetic coil is sizing to be of
38 kg. This first actuator sizing is likely to be conservative
since it is based on a magnetic torque requirement by far
superior to the actual disturbance torque. After the following
considerations on the robustness of the control system, we
will able to optimize this actuator sizing obtaining also a
reduction of the magnetic coil’s mass.

B. Definition of the Control Law

In order to complete the formulation of the analysis
problem, the model of the system has to be augmented with
a suitable desaturation control law. In this work we consider
a classical proportional feedback, i.e., the magnetic dipole is
proportional to the angular momentum h′wx to be removed

m = −
1

b̃
Kwxh′wx, (12)

where Kwx is the control gain and b̃ is a suitable representa-
tion of the geomagnetic field to be included in the controller.
The corresponding magnetic torque, due to the interaction of
the magnetic dipole moment with the earth’s magnetic field,
turns out to be proportional to the angular momentum, i.e.,

Tm = mb = −
b

b̃
Kwxh′wx, (13)

and should, provided that closed loop stability can be guar-
anteed, ensure that the angular momentum remains bounded.
The closed-loop system therefore becomes

ḣ′wx = mb+Td , (14)

m = −
1

b̃
Kwxh′wx.

We have to consider also the fact that the earth’s magnetic
field intensity is an uncertain time-varying parameter; be-
sides, the control law presents a saturation due to the fact that
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the magnetic moment has a maximum bound. Considering
these two factors equations (14) become

ḣ′wx = m(b0 +δ∆b(t))+Td , (15)

m = mmaxsat(−
1

b̃
Kwxh′wx),

with:

• b0 : average value of the earth’s magnetic field along
the Y ′ axis (100nT ),

• δ : scale factor (20÷60nT ),
• ∆b(t): time-varying, norm bounded uncertainty

(|∆b(t)| < 1),
• mmax : saturation limit for the magnetic torquer,
• b̃ : magnetic field value used in the control law.

Concerning the choice of b̃, we will consider three different
possibilities:

1) b̃ = b, assuming that we have access to an exact
measurement of the earth’s magnetic field;

2) b̃ = b0 = 100nT , i.e., we use only the average value of
the earth’s magnetic field in the controller;

3) b̃ = bs = 100+40sin(2π/86400+π)nT , a sine approx-
imation of the earth’s magnetic field over a 24h period.

In the first case we could obtain a magnetic torque exactly
proportional to the angular momentum, but we would need
a magnetometer on board the satellite. In the second case
we would not need an additional sensor; moreover it can be
expected that the computed magnetic dipole moment has a
more regular behaviour. Finally, the third case is considered
as a tradeoff between the availability of a measurement
and a constant model for the geomagnetic field. In Figures
4-6 the time histories of the angular momentum and the
magnetic dipole moment are reported for simulations carried
out during the three days of January considered in Figure 3
using each of the proposed choices for b̃, under the effect of a
constant disturbance torque. From this preliminary analysis,
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Fig. 4. Angular momentum (top) and magnetic dipole moment (bottom):
1 January 2006.

it was chosen to use the average value of the earth’s magnetic
field in the control law.

IV. ROBUSTNESS ANALYSIS

As mentioned in Section II, the time-variability of the
geomagnetic field and the presence of a saturation in the
feedback path represent the main issues associated with the
design of the momentum management system. In particular,
it is relatively simple to check separately the robustness of
the closed loop system with respect to uncertainty in the
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Fig. 5. Angular momentum (top) and magnetic dipole moment (bottom):
23 January 2006.
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Fig. 6. Angular momentum (top) and magnetic dipole moment (bottom):
29 January 2006.

value of the geomagnetic field and to the presence of the
saturation (using, respectively, small gain and absolute sta-
bility theory). Dealing with both sources of uncertainty in a
simultaneous way, however, calls for more advanced methods
for robustness analysis. In this work, the analysis problem
has been formulated in the Integral Quadratic Constraints
(IQC) framework.

1) Parametric Stability Analysis: Considering only the
uncertainty due to the value of the earth’s magnetic field
(treated as an uncertain parameter) and neglecting the non-
linearity due to the saturation of the control variable, the
model can be written as

ḣ′wx = m(b0 +δ∆b)+Td , (16)

m = (−
1

b0
Kwx)h

′
wx = Kxh′wx,

where δ is a scale factor such that ‖∆b‖∞ < 1 and the con-
troller gain Kx is negative. Extracting the uncertain parameter
from the state equation we get

ḣ′wx = b0Kwxh′wx +Kwxw,

z = δh′wx, (17)

w = ∆bz.

so the system is robustly stable if, letting G(s) = δKwx
s−b0Kwx

, we

have ‖G(s)‖∞ < 1. Considering the nominal values

• δ = 40 ·10−9 T
• b0 = 100 ·10−9 T

we can easily compute ‖G(s)‖∞ = δ/b0 = 0.4 < 1, so, as
expected, robust stability in the face of an uncertain value
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of the geomagnetic field is not an issue, provided that the
closed-loop system operates linearly. Note, in passing, that
the condition ‖G(s)‖∞ < 1 holds independently of the value
of the control gain Kx.

2) Saturation stability analysis: The second robustness
analysis focused on considering only to the saturation of the
control variable and assuming that the earth’s magnetic field
coincides with its average value. Under these assumptions,
the model is given by

ḣ′wx = mb0 +Td , (18)

m = mmaxsat(−
1

b0
Kwxh′wx),

where mmax is the saturation limit for the magnetic torquer.
The stability analysis problem can be solved very simply
using Lyapunov theory: for Td = 0, the system (18) has
h′wx = 0 as a globally asymptotically stable equilibrium for
all positive Kwx. It is interesting to point out, however, that
since the linear part of the model is not asymptotically stable,
an absolute stability approach to the analysis would not be
viable. However, the marginally stable dynamics in (18) is
only the result of some modelling simplifications, as (see,
e.g., [1]) the dynamics of the actual reaction wheels will
be asymptotically stable due to (small but nonzero) friction
effects. Therefore, for analysis purposes it would be even
more appropriate to modify (18) by including a friction term
as in

ḣ′wx = −ξ h′wx +mb0 +Td , (19)

m = mmaxsat(−
1

b0
Kwxh′wx),

where ξ > 0 is a suitable friction coefficient. At this point
we are able to apply conditions such as the circle and Popov
criteria (see, e.g., [9]) in order to prove absolute stability of
(19). In particular, since we are dealing with a SISO system
it is straightforward to verify that the graphical condition
for absolute stability associated with the circle criterion is
trivially satisfied.

3) IQC analysis: The third analysis has been realized
taking into account both the uncertainty due to the earth’s
magnetic field’s variability and the non-linearity due to the
saturation of the control variable. This analysis has been
performed using integral quadratic constraints (IQCs) to
model the uncertain components. The IQC approach to robust
stability analysis can be shortly described (see [10] for a
complete treatment) with reference to the system

v = Gw+ e, (20)

w = ∆(v),

(see also the block diagram in Figure 7), where G(s) is the
transfer function of a linear time-invariant system without
poles in the closed right half plane and ∆ is a bounded
operator taking into account the uncertain, nonlinear and
time-varying components of the system to be dealt with in
the analysis. Given a bounded and self-adjoint operator Π,
∆ satisfies the IQC defined by Π if

σΠ(v,∆(v)) =
∫ ∞

−∞

[

v̂( jω)
ŵ( jω)

]∗

Π( jω)

[

v̂( jω)
ŵ( jω)

]

dω ≥ 0,

(21)
where v̂( jω) and ŵ( jω) represent the Fourier transforms of
the signals v and w. At this point, after having characterized

G
w

ev

Fig. 7. Model of a system for IQC robust stability analysis.

the uncertainty by means of an IQC, this can be transformed,
through the Kalman-Yakubovich-Popov Lemma, into a LMI,
simpler to solve by a computational point of view.

For the purpose of IQC robustness analysis, the system
under study must be described as (see also the block diagram
in Figure 8)

ḣ′wx = −ξ h′wx +mb+Td ,

b = b0 +δ∆b(t),

m = mmaxm̃, (22)

m̃ = sat(u),

u = Kxh′wx.

By “pulling out” the uncertain elements and defining inter-

mmax Kx

umtildem hwx

b(t)
m

Td

h’wx= - h’wx +b0m+ b(t)m +Td

b(t)m

.

Fig. 8. Block diagram associated with (22).

face variables, (22) can be equivalently written as

ḣ′wx = −ξ h′wx +mmax[w1b0 +w2]+Td ,

w1 = sat(v1),

v1 = Kxh′wx, (23)

w2 = ∆b(t)v2,

v2 = w1δ ,

which is a form suitable for analysis purposes.
As far as the present study is concerned, IQCs for time-

varying uncertain scalars and for the saturation function are
needed. Consider first a time-varying uncertain coefficient
given by

w2 = ∆b(t)v2, (24)

where ∆b(t) is a norm-bounded scalar function, i.e.,
|∆b(t)|< 1. Then (see, again, [10]), it can be shown that the
uncertainty ∆b(t) satisfies an IQC defined by the operator

Π( jω) =

[

X( jω) Y ( jω)
Y ∗( jω) −X( jω)

]

where X = X∗( jω) ≥ 0 and Y ∗( jω) = −Y ( jω) are square,
real-valued matrix functions.
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Similarly, the uncertainty associated with the saturation of
the magnetic torquer is given by

w1 = sat(v1), (25)

with obvious definition of the sat(·) function. This uncer-
tainty can be embedded in IQC form using the matrix

Π( jω) =

[

0 1+H( jω)
1+H(− jω) −(2+2ReH( jω))

]

where H(s) is a proper rational transfer function, such that
for the associated impulse response h the constraint

||h||1 =
∫ ∞

−∞
|h(t)|dt ≤ 1

holds.
The numerical stability analysis has been performed using

the IQC-β toolbox (see [11]), which has allowed to verify
that the L2 gain from the external disturbance torque Td to
the angular momentum h′wx remains finite, even for wide
perturbations of the system’s parameters, such as:

• perturbing the controller gain Kx = −3330 in a range
from 50% to 200%;

• changing the scale factor δ from 20nT to 60nT;
• reducing the maximum magnetic dipole moment from

3571 Am2 to 2500 Am2.

V. SIMULATION STUDY

The simulation results presented in this section have been
obtained by making use of the Spacecraft Modelling Library
(see [12]), which is currently being developed using the
Modelica language and the Dymola simulation environment.

The control law has been implemented in the Modelica
simulator for the considered platform. Through simulations
executed in different periods of the year 2006 the following
results have obtained. The following Figures are related
to ten days of April (5-14 April 2006). Figure 9 shows
the time histories of the angular momentum and of the
magnetic dipole moment for different values of the maximum
magnetic dipole in the considered ten days of April (5-14
April 2006). As expected, the behaviour of the closed-loop
system remains essentially unchanged.
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Fig. 9. Angular momentum (top) and magnetic dipole moment (bottom):
5-14 April 2006.

Similarly, in Figure 10 the response of the angular mo-
mentum and of the magnetic dipole moment are shown, for
different values of the control gain Kx. Here, the tradeoff

inherent in the choice of the control gain becomes apparent.
A larger value of Kx leads to smaller oscillations in the
angular momentum but causes the magnetic dipole to become
more irregular: in view of the significant currents involved
in the operation of this device, this might not be acceptable
from a practical point of view.
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Fig. 10. Angular momentum (top) and magnetic dipole moment (bottom):
5-14 April 2006.

VI. CONCLUSIONS

The problem of reaction wheel desaturation for a geo-
stationary platform has been considered and the feasibility
- at least from the control engineering perspective - of a
solution based on a magnetic torquer has been demonstrated.
A detailed robusteness analysis has been performed, taking
into account both actuator saturation and the time-variability
of the geomagnetic field. Simulation results show that the
closed-loop performance is compatible with the operation of
the platform.
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