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Abstract— In this paper, we present a feedback control
law to make an autonomous vehicle with rigidly mounted
range sensors track a desired curve. In particular, we
consider a vehicle which has two range sensors that emit
rays perpendicular to the velocity of the vehicle. Under such
a sensor configuration, singularities are bound to occur in
the feedback control law. Thus, to overcome this, we derive
a hybrid strategy of switching between control laws close
to the singularity.

I. INTRODUCTION

Curve tracking control is fundamental for autonomous

vehicles following desired paths, e.g. staying in lanes, or

avoiding obstacles. An example in which this becomes

relevant is when an autonomous vehicle is to follow the

curb or the lane markings of a car. In fact, Fig.1 shows

the mobile vehicle that represented Georgia Tech in the

DARPA Urban Grand Challenge in 2007. As one of this

vehicle’s lane perception strategies, two rigidly mounted

range sensors(lidars) were installed on both sides of the

vehicle. At each instant of time, the vehicle emits a ray

forming a fixed angle with the velocity of the vehicle.

When the sensor ray intersects a lane, it detects a point

on the lane. From the distance measurements taken, the

autonomous vehicle estimates the curvature of the lane

at the detected point, the distance from the point, and

the angle between the heading direction of the vehicle

and the tangent vector to the lane.

In this paper, we design a curve tracking control

law that uses this information to produce the desired

lane following behavior as a component in the Georgia

Tech Urban Grand Challenge system. It should be noted

that our results can be applied to a number of other

types of autonomous vehicles with rigidly mounted range

sensors.

The literature is abundant with papers on trajectory

tracking for autonomous vehicles. For example, in [1],

a reference point on the contour being tracked moves

along the reference trajectory while the vehicle follows

it. Otherwise, the reference point might stop to wait

for the vehicle. In [2] and [3], a gyroscopic feedback
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law was used to model the interaction of a particle

with an image particle representing the closest point

on a closed curve bounding an obstacle. This controller

design method was generalized to cooperative motion

patterns on closed curves for multiple vehicles in [4],

[5], [6]. The closest point is also used for path following

in [7]. In [8], sensors provide measurements at different

fixed points in front of the vehicle. From the data, a

recursive spline is updated, then tracked by applying

a suitable feedback control law. Similarly, the problem

of tracking a ground curve is formulated as controlling

the shape of the curve in the image plane in [9]. Other

vision-based path following methods can be found in

[10], [11], [12]. To achieve motion camouflage, bio-

logically plausible feedback law which has an intuitive

physical interpretation is shown in [13]. The authors

of [14] determined bound of the tolerance sampling

interval so that the vehicle stays in the lane. A feedback

linearization approach and Lyapunov-oriented control

designs are presented to make a mobile vehicle converge

to a predefined path [15]. Curve tracking for atomic

force microscope is considered in [16]. A decentralized

coordination algorithm for multiple vehicles to locate

and track a dynamic perimeter is presented in [17]. The

authors of [18] proposed a control law for following

isolines in a potential field not relying on higher order

characteristics of the field such as the gradient at a point

or the curvature of the isolines.

Fig. 1. The Sting-1 vehicle during testing at Georgia Tech.

Conditions for nonlinear switched system to be

asymptotically stable were presented in [19]. In

[20],[21], and [22], multiple Lyapunov functions were

presented for making a switched system to be Lyapunov
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stable. Furthermore, three composite quadratic Lyapunov

functions are used for the construction of stabilizing

laws for discrete-time switched systems [23]. In [24],

the authors proposed control laws that switch between

an approximate control law when the system is near a

singularity, and an exact control law when the system is

bound away from the singularity.

A similar philosophy is pursued in this paper. In fact,

the control law for boundary following presented in this

paper has two attractive features. First, to overcome sin-

gularities of a Lyapunov function-oriented control law,

a switched controller is presented to make the system

asymptotically stable. Second, our approach allows a

vehicle to follow a boundary curve using only two

range sensors. Hence, this approach does not require

wide-angle scanning that is commonly assumed by other

boundary-following algorithms.

II. BOUNDARY-FOLLOWING MODEL WITH RIGIDLY

MOUNTED RANGE SENSORS

Consider a vehicle with two range sensors that emit

rays forming a fixed angle α with the velocity of the

vehicle. When a boundary curve is presented in the

plane, the sensor ray will intersect the boundary and

detect a point ~r2, which will be called the detected

point. Here, ~r1 is the position of the vehicle. Hence, the

relative position between the vehicle and the detected

point is ~rα = ~r2 − ~r1, and φ is the angle measured

counterclockwise from the tangent vector ~x2 at the

detected point to the heading direction of the vehicle

~x1.

x1

y1

x2y2

rα

r1

r2α

x1

φ

Fig. 2. A vehicle with a rigidly mounted sensor at angle α and a
boundary curve in its environment.

We first establish two Frenet-Serret frames [25]: one

at the vehicle, the other at the detected point, as shown

in Fig. 2. These two frames satisfy the Frenet-Serret

equations:

~̇r1 = v1~x1

~̇x1 = v1u~y1

~̇y1 = −v1u~x1 (1)

~̇r2 = ṡ~x2

~̇x2 = ṡκ~y2

~̇y2 = −ṡκ~x2, (2)

where v1 is the speed control, κ is the curvature of

the curve at the detected point, and s is the arc-length

parameter of the curve. Here, u is the steering (i.e.,

curvature) control we apply to avoid colliding with the

obstacle and to achieve boundary following.

We may choose the positive direction of the boundary

curve such that

~x1 · ~x2 = cos(φ) > 0. (3)

When the curve is convex, i.e., curving away from the

vehicle, we have κ < 0. When the curve is concave, i.e.

curving towards the vehicle, the curvature κ > 0. The

above settings for the interaction between the vehicle

and the boundary curve were introduced in [2].

The key idea of curve tracking control is to control

the relative motion between the vehicle and the detected

point. For this purpose, we develop a set of equations

that govern the relative motion.

The relative position between the free particle and the

detected point is (~rα = ~r2 − ~r1). In Fig. 2, α is defined

as the angle formed by ~rα and ~x1. Also, let rα = ‖~rα‖.

Then

~rα · ~x1 = cos(α)rα. (4)

To derive the relative motion equations, we need to find

ṙα, ṡ and φ̇.

We first obtain an equation between ṙα and ṡ. We take

the time derivative of ~rα using (1) and (2) to get

~̇rα = ṡ~x2 − v1~x1. (5)

Differentiating (4) with respect to time on both sides, we

obtain

~̇rα · ~x1 + ~rα · ~̇x1 = cos(α)ṙα. (6)

And then, replacing ~̇x1 by v1u~y1, we get

~̇rα · ~x1 + ~rα · v1u~y1 = cos(α)ṙα. (7)

Replacing ~̇rα in (7) by (5), we obtain

(ṡ~x2 − v1~x1) · ~x1 + ~rα · v1u~y1 = cos(α)ṙα. (8)

We observe that, in Fig. 2, the angle formed by ~x1 and

~x2 is φ. Also, the angle formed by ~rα and ~y1 is (π
2 +α).

Therefore, we get

ṡ cos(φ) = v1(1 + sin(α)rαu) + cos(α)ṙα. (9)
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Note that r2
α = ‖~rα‖

2 = (~r2 − ~r1) · (~r2 − ~r1), and

from this it can be shown that

ṡ =
v1(rαu + sin(α))

sin(α − φ)
. (10)

and

ṙα = v1
sin(φ)+rαu cos(α−φ)

sin(α−φ) . (11)

Now let us find the equation for φ̇. From Fig. 2, we

can see that the angle between ~x1 and ~y2 is (π
2 − φ).

Therefore, we get

sin(φ) = ~x1 · ~y2, (12)

from which it follows that the equation for φ̇ is

φ̇ = v1rαu( 1
rα

− κ
sin(α−φ) ) −

v1 sin(α)κ
sin(α−φ) . (13)

For the Sting-I autonomous vehicle, the sensor on each

side of the vehicle is installed such that α = π
2 . In this

case, (10) is simplified as

ṡ =
v1(rαu + 1)

cos(φ)
. (14)

(11) is simplified as

ṙα = v1 tan(φ)(1 + rαu). (15)

Also, (13) is simplified as

φ̇ = v1u(1 −
rακ

cos(φ)
) −

κv1

cos(φ)
. (16)

The system equations are different from the equations

for the closest point in [2].

III. CONTROLLER DESIGN AND CONVERGENCE

ANALYSIS

A. Lyapunov function

Consider the Lyapunov function candidate

V1 = −ln(cos(φ)) + h(rα), (17)

h(rα) in (17) should satisfy these conditions:

1) dh/drα = f(rα),where f(rα) is a Lipschitz

continuous function on (0,∞), so that h(rα) is

continuously differentiable on (0,∞).

2) lim
rα→0

f(rα) = −∞, which leads to lim
rα→0

h(rα) =

∞. This is needed to blow up V1 as the moving

vehicle approaches collision with the boundary

curve.

3) f(rα) vanishes at a point where rα = r0. At which

point, h(rα) is also zero. This is for the moving

vehicle to converge to the desired relative position

at a distance from the boundary curve given by

rα = r0.

4) lim
rα→∞

h(rα) = ∞. By this condition and the form

of V1, we conclude that V1 is radially unbounded

(i. e., V1 → ∞ as ‖φ‖ → π/2, as rα → 0, or as

rα → ∞).

Observe that V1 given by (17) is continuously differen-

tiable provided (3) holds. In (17), the term −ln(cos(φ))
penalizes misalignment between the tangent vector of the

moving vehicle with the tangent vector to the boundary

curve at the detected point. The term h(rα) in (17) deals

with the separation between the moving vehicle and the

boundary curve. In short, V1 is designed to make a

vehicle converge to the relative position where rα = r0

and φ = 0. Here, r0 represents the desired separation

between the moving vehicle and the boundary curve for

boundary-following. This form of Lyapunov function has

been used in recent papers regarding boundary following

and curve tracking using the closest point information in

[2], and [6].

For the point detected by the fixed range sensors at

an angle α = π/2, our candidate f(rα) satisfying these

conditions is

f(rα) =
−1

rα

+
1

r0
(18)

where r0 is a positive constant which represents the

desired separation between the moving vehicle and the

boundary curve for boundary-following. Further, the

corresponding h(rα) is

h(rα) = − ln(rα) +
rα

r0
+ ln(r0) − 1, (19)

which satisfies the conditions for h(rα) in V1 (17).

The time derivative of V1 is

V̇1 = − tan(φ)[u(
v1rακ

cos(φ)
− v1 − v1f(rα)rα)

+
v1

cos(φ)
κ − v1f(rα)], (20)

where we have used (15), (16), and (17). We now assume

that the speed v1 > 0 is a constant and design steering

control u so that V̇1 ≤ 0.

B. Tracking control for convex curves

We first consider the case when the curve is convex

and curving away from the vehicle. In this case we have

κ < 0.

One choice of u which leads to V̇1 ≤ 0 is

u1 =
v1κ − cos(φ)(v1f(rα) + µ sin(φ))

v1(cos(φ) + f(rα)rα cos(φ) − rακ)
, (21)

where µ > 0 is a constant. The time derivative of V1 in

(20) with u given by (21) is

V̇1 = −µ
sin2(φ)

cos(φ)
≤ 0, (22)
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where (3) is used. Thus, V̇1 ≤ 0 and V̇1 = 0 if and only

if sin(φ) = 0. But by (3), we see that V̇1 = 0 if and

only if φ = 0.

From now on, we define the case where the denom-

inator of control law is zero as singular case of the

controller. It seems possible that the control law given

by (21) is singular when the denominator of u1 equals

to zero, i.e., cos(φ) = rακ
1+f(rα)rα

. Using (18), we have

cos(φ) =
rακ

1 + f(rα)rα

= r0κ. (23)

Therefore, in the case where the curvature of the lane

at the detected point κ is equal to or smaller than zero

in (23), the denominator of the control law in (21) will

never be zero since cos(φ) > 0, and we can now state

the following theorem:

Theorem 1: Consider the case where the boundary

curve is convex, i.e., κ < 0. Then, using the steering

control law in (21), the vehicle satisfying (3) with

constant speed v1 > 0 tracks the curve at a distance

r0 without collision.

rαr0

1
rακ

1 + f (rα)rα

r1

(18) is used

Fig. 3. Comparison of 1 + f(rα)rα and κrα. Control law given by
(21) is singular when cos(φ) = rακ

1+f(rα)rα
. We argue that singular

case can not be removed by choosing f(rα) if the curvature κ is upper
bounded.

C. Control laws for concave curve with bounded curva-

ture

We consider the case when the curve is concave, i.e.

curving towards the vehicle. In this case we have κ > 0.

It is possible that the control law given by (21) is singular

when the denominator of u1 equals to zero, i.e.,cos(φ) =
rακ

1+f(rα)rα

. However, in the case where the curvature of

the lane at the detected point κ is bigger than 1
r0

in (23),

no uncontrollable case happens because | cos φ| ≤ 1.

In the real experimental environment, it is necessary

for the vehicle to follow a boundary curve whose cur-

vature is sufficiently small, such as a straight line. We

argue that in this case the singular case exists regardless

of the choice of f(rα).
Fig.3 shows possible graphs of 1 + f(rα)rα and rακ

respectively. When (18) is used as f(rα), we get 1 +

f(rα)rα = rα

r0

. Therefore, the straight line connecting

the origin and (r0,1) represents 1+f(rα)rα when (18) is

used as f(rα). In Fig.3, regardless of f(rα), 1+f(rα)rα

is a continuous function which is equal to 1 when rα =
r0. Also, regardless of the decreasing rate of f(rα) as

rα ↓ 0, we can assure that limrα↓0 1 + f(rα)rα ≤ 1.

As rα ↓ r0, we see that f(rα) and rα both decrease to

make (1 + f(rα)rα) decrease for any choice of f(rα).

At the same time, the possible rακ are plotted as the

straight lines. If the curvature κ is upper bounded by
1
r0

, then these straight lines will be below the curve

that represents (1 + f(rα)rα), regardless of what f(rα)
is. Therefore, rακ

1+f(rα)rα

< 1 and cos φ = rακ
1+f(rα)rα

always has a solution for φ. This singular case can not

be removed by choosing f(rα).

D. The safety zone

As seen on the form of (23), singular case will

never happen if |φ| < arccos(r0κM ), where κM is

the upper bound of κ. Thus, we define the set U =
{(rα, φ)|V1(rα, φ) < −ln(|r0κM |)} as the safety zone.

The controller (21) is used inside the safety zone. Since

this controller yields V̇1 ≤ 0, we conclude that once

the vehicle under control enters the safety zone U , it

will never leave. Therefore, according to Theorem 1, the

curve tracking behavior is stabilized without collision.

E. Switching control that aims for the safety zone

When the vehicle is initially out of the safety zone

but, during its movements, it will come close to the set

where cos(φ) = r0κ, control law (21) can not be applied

due to singularity.

We develop a switching system as depicted in Fig.4

to steer the system into the safety zone in finite time.

Four cases are distinguished, which correspond to four

sets G1, G2, G3 and G4 defined as follows:

G1 = {(rα, φ)|‖ cos(φ) − r0κ‖ > ǫ but (rα, φ) /∈ U}

G2 = {(rα, φ)|ǫ2 < ‖ cos(φ) − r0κ‖ ≤ ǫ}

G3 = {(rα, φ)|‖ cos(φ) − r0κ‖ ≤ ǫ2}

G4 = U,
(24)

where ǫ2 < ǫ.

Three control laws are designed for these four cases.

When the system states are in G1 or G4, we use u1 in

(21). When the states enter G2 from G1, we switch to

u2 which is

u2 =
v1κ − cos(φ)(v1f(rα) + µ2 sin(φ))

v1(cos(φ) + f(rα)rα cos(φ) − rακ)
, (25)
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u1

u2

u1

(rα, φ) ∈ G2

(rα, φ) ∈ G2

(rα, φ) ∈ G1

(rα, φ) ∈ G4

(rα, φ) ∈ G4

u3

(rα, φ) ∈ G3

(rα, φ) ∈ G1 or G4

u3

u2

u1 u1 = v1κ−cos(φ)(v1f(rα)+µ sin(φ))

v1(cos(φ)+f(rα)rα cos(φ)−rακ)
.

u2 = v1κ−cos(φ)(v1f(rα)+µ2 sin(φ))

v1(cos(φ)+f(rα)rα cos(φ)−rακ)
.

u3 = −µ3 sin(φ)+κv1rα

v1rα(cos(φ)−rακ)
.

Fig. 4. The switching control strategy used to enter safety zone. u1

in (21) is used in normal situations i.e. when the states are in G1 or
G4. We switch to u2 in (25) when the states enter G2 and switch to
u3 in (27) when the states enter G3.

where the only difference between u1 and u2 is that the

gain µ2 is much bigger than µ. The time derivative of

V1 under control u2 given by (25) is

V̇1 = −µ2
sin2(φ)

cos(φ)
≤ 0. (26)

When the states of the system enter G3 from G2

(rα, φ) ∈ G3, we switch to controller u3:

u3 =
−µ3 sin(φ) + κv1rα

v1rα(cos(φ) − rακ)
, (27)

where µ3 > 0 is a constant. Under this controller, we

have

φ̇ = −
µ3 tan(φ)

rα

. (28)

Hence, φ → 0 as t → ∞. This implies that the system

states will get out of G3 and then out of G2 in finite

time. We switch back to controller u1 after the states

enter either G1 or G4. Note that by Theorem 1, once

the states enter G4, they will stay in G4 and converge

to the desired values.

We now prove convergence of the system under the

switching control laws illustrated in Fig. 4. The idea

is that the value of the Lyapunov function V1 may be

increasing under controller u3, but such increase will be

compensated by controller u2. Hence the overall effect

is that the Lyapunov function decreases until the system

reaches G4. Some notations and technical conditions are

needed to rigorously state and prove the results.

It is uninteresting if the states never enters the set

G3. In which case V1 would be decreasing until G4 is

reached. Therefore, we discuss the most general case i.e.

the states of the system enters G3 for a number of times.

In order to enter G3, the system must enter G2 first. We

use the notations ti1 to indicate the time when the system

enters G2, ti2 to indicate the time when the system enters

G3, and ti3 to indicate the time when the system leaves

G2. The index i is used to distinguish multiple entries.

If the states enter G3 and later leaves G2, then ti1, ti2
and ti3 happen in sequence.

The following technical assumptions are needed

(A1) The curvature κ is bounded above by κM > 0.

(A2) The desired distance r0 satisfies that r0κM < 1.

(A3) Define ζ as

v1‖−arccos(κMr0+ǫ)+arccos(κMr0−ǫ2)‖+ǫ3,
where ǫ3 > 0 is a constant. We assume that the

gains µ2 and µ3 in controllers u2 and u3 satisfy

µ2µ3(t
i
2 − ti1) > ζr0κM

1−(r0κM )2 for all i.

Assumptions (A1) and (A2) put mild constraints on the

curve to follow. Assumption (A3) is the key technical

assumption. This assumption can always be satisfied

when ti2 − ti1 6= 0 and if we allow the gains µ2 or µ3 to

be arbitrarily large.

Theorem 2: Consider the system defined by (15) and

(16) governing the relative distance and heading angle

between the vehicle and the detected point. Suppose the

vehicle travels at constant speed v1. Under the switching

strategy in Fig. 4, with assumptions (A1)-(A3) satisfied,

the states of the switching closed loop system enter G4

in finite time.

We omit the proof of this theorem, but note that it should

be organized along two steps, namely

1) Show that when u3 is used, V1 will increase a finite

amount bounded above in the worst case.

2) Show that when u2 is used, V1 will decrease more

than the upper bound for its increase under u3.

In Fig.5, a typical switching process is plotted. Con-

troller u1 is used from 0 to ti1, u2 is used from ti1 to

ti2, u3 is used from ti2 to ti3, and u1 is used again after

ti3. Intervals of using u2 is long enough to overcome the

increase of V1 inside the interval when u3 is used. V1

always decrease more than it increases.

In the case where rα = r0 and cos(φ) = r0κ, we

have singular cases of u1, u2 and u3 at the same time.

This singular case will not happen if the vehicle is in

the safety zone. An example of applying the switched

5
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time

V1

ti
1

ti
2

ti
3

u1 is used

u3 is used

−ln(|r0κM |)

u2 is used

safety zone

Fig. 5. The Lyapunov function V1 in a typical case of switching
control. u1 in (21) is used from 0 to ti1, u2 in (25) is used from ti1 to

ti2, u3 in (27) is used from ti2 to ti3, and u1 is used from ti3 to final
time.

control strategy is shown in Fig 6, in which switches are

needed to overcome the singular case.
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Fig. 6. The vehicle is close to the set where cos(φ) = κr0 initially.
However, switched control strategy is used to overcome the singular
case.
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