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Abstract— An internal model control (IMC) design method
is proposed that is applicable to linear infinite-dimensional
systems. An infinite-dimensional filter is coupled with the
inverse of the irrational transfer function between the process
input and output, to produce a physically realizable controller
with a tuning parameter to trade off nominal performance with
robustness. The proposed IMC design technique is applied to
two boundary control problems for mass transport described
by partial differential equations, in which the proposed method
provides much better robust performance compared to regular
IMC design applied to the finite-dimensional approximation of
the transfer function.

I. INTRODUCTION

The most commonly applied approach for the design of
control systems for distributed parameter systems (DPS)
is to approximate the partial differential equations (PDEs)
by ordinary differential equations (ODEs) and apply finite-
dimensional control design methods. The advantage of this
approach is that a finite set of state-space equations or a
finite-dimensional transfer function is produced for which
many control design methods (e.g., linear quadratic gaus-
sian control, H∞-optimal control, model predictive control,
differential geometric methods, robust optimal control) are
directly applicable. A drawback of this approach is that,
depending on the spatial dynamics of the particular process,
the dimension of the ODEs can be high resulting in high
computational cost or the ODEs may not represent the DPS
as accurately as desired so that important model behaviors
are missed. Also, such an approach can hide the underlying
structure and dynamics of the optimal controller for the DPS,
with a loss in understanding, elegance, and efficiency that
would be obtained by direct solution of the DPS optimal
control problem (e.g., see discussion by [1] and citations
therein).

Internal model control (IMC) is a control design method
that matured in the 1980s to 1990s in which an analytical so-
lution for an optimal controller for a nominal process model
is combined with a low-order filter with an adjustable tuning
parameter for trading off control quality with robustness to
model uncertainties [6]. This method can be interpreted as
augmenting the inverse or an approximate inverse of the
transfer function of the nominal process model with a low-
order low-pass filter to make the IMC controller proper and
provide the tuning parameter. Other features are that the
IMC controller can be easily modified to provide antiwindup
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Fig. 1. IMC (a, top) and classical (b, bottom) feedback control structures.

compensation during control input saturation [7], and that
reference prefilters, cascade controllers, and other multiple
degree-of-freedom controllers can be designed independently
[6]. Certainly it would be beneficial to have design methods
for DPS that share these features.

The above considerations motivate this paper’s develop-
ment of an IMC design method that is directly applicable to
linear infinite-dimensional systems without approximation of
the PDEs, in which the IMC controller is designed by analyti-
cal solution of an optimal control problem or by inverting the
irrational transfer function for the process. Two approaches
are developed for designing a physically realizable IMC
controller for infinite-dimensional systems: (1) augmenting
the IMC controller with an infinite-dimensional filter, or (2)
designing the IMC controller for the process model that has
been augmented to be semiproper. Section II provides the
definitions and robust analysis results used in Section III
which describes the IMC design method. This is followed by
illustrative examples, conclusions, and directions for future
investigation.

II. PRELIMINARIES

The definitions and structure for infinite-dimensional sys-
tems described in this section mirror those for finite-
dimensional systems [6].

Definition 2.1 (Nominal Performance): The closed-loop
system in Fig. 1b attains nominal performance if it is stable
and

‖W1S‖∞ = sup
ω∈R
|W1(jω)S(jω)| < 1, (1)

where W1 is a weighting function, S = 1 − P̃Q =
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1/(1 + P̃C) is the sensitivity function, and P̃ , Q, and C
are the nominal process model, IMC, and classical feedback
controller transfer functions, respectively.

The weighting function W1 is typically selected to be
large at low frequencies and small at high frequencies, so
as to emphasize performance at low frequencies. A pole at
s = 0 forces the controller to have integral action. The H∞-
norm is the induced system norm for input and output signals
quantified in terms of the L2-norm, regardless of whether the
weight and sensitivity are finite or infinite dimensional [1].

Some more definitions and a more formal definition of
stability for infinite-dimensional systems is needed in the
subsequent statement of the generalized Nyquist stability
criterion. For σ ∈ R, define

L1,σ ≡ {f(·)|f(·) : R+ → C,
∫ ∞

0

|f(t)e−σt|dt <∞}.
(2)

The convolution algebra A(σ) consists of the elements of the
form

f(t) =


0, t < 0,

fa(t) +
∞∑
i=0

fiδ(t− ti), t ≥ 0, (3)

where
• fa(·) ∈ L1,σ ,
• t0 = 0 and ti > 0, ∀i = 1, 2, . . .,
• fi ∈ C and δ(t − ti) is the Dirac delta distribution

applied at ti, and

•

∞∑
i=0

|fi|e−σti <∞.

Definition 2.2 (A(σ)-stability): Let Cσ+ denote the
closed right-half complex plane {s ∈ C| Re s ≥ σ}. Then
f(·) is said to belong to A−(σ) iff there exists σ1 ∈ R
with σ1 < σ such that f(·) ∈ A(σ1). Further, define
Â(σ) = {f̂ |f ∈ A(σ)}, where f̂ is the Laplace transform of
f . A system is said to be A(σ)-stable if its transfer function
belongs to Â(σ).

A closed-loop system that is A(σ)-stable with σ < 0
is exponentially stable. The generalized Nyquist stability
criterion provides an analytical condition for A(σ)-stability
of a closed-loop infinite-dimensional system in terms of a
path in the complex s-plane.1

Theorem 2.3 (Generalized Nyquist Stability Criterion [3]):
Suppose the following conditions are satisfied:

1) Ĝ(s) = n̂(s)/d̂(s), where n̂(s) ∈ Â−(σ0) and d̂(s) ∈
Â−(σ0),

2) There exist û(s) ∈ Â−(σ0) and v̂(s) ∈ Â−(σ0) such
that û(s)n̂(s) + v̂(s)d̂(s) = 1,

3) d̂(s) is analytic and bounded away from zero at ∞ in
Cσ0+,

4) Ĝ(s) approaches zero as |s| → ∞ in Cσ0+.
Then, the closed-loop system with open-loop transfer func-
tion Ĝ(s) in unity feedback is A(σ)-stable iff, for some
σ < 0,

1The result is the same as that of Ref. [3] except for the strengthening
of Condition 4 as done in Ref. [2].

• 1 + Ĝ(s) 6= 0, ∀s ∈ N̄∞,
• 1+Ĝ(s) encircles the origin k times in the counterclock-

wise sense, where k is the number of open right-half
plane zeros of d̂(s), counting multiplicities,

where N̄∞ is the Nyquist path, which follows the imaginary
axis including the points +j∞ and −j∞ except with ε-
indentations in the left-half plane around any poles of Ĝ(s)
on the imaginary axis.

Model uncertainties in the form of unmodeled dynamics
are represented in terms of a family of processes:

Π = {P : P = (1 + ∆W2)P̃ , where ‖∆‖∞ ≤ 1;
P and P̃ have the same number of unstable poles}, (4)

where P̃ is strictly proper and the uncertainty weight W2 and
perturbation ∆ are stable proper (possibly irrational) trans-
fer functions. Below are robustness analysis conditions for
infinite-dimensional systems controlled by proper controllers
Q and C. The following is the definition of robust stability.

Definition 2.4 (Robust Stability): The closed-loop system
in Fig. 1b is robust stable if it is A(σ)-stable for all P ∈ Π.

The next result applies the generalized Nyquist stability
criterion to derive a necessary and sufficient analytical con-
dition for the robust stability of infinite-dimensional systems.
The proof, which is simpler than that in Ref. [2], follows
a similar argument as used for finite-dimensional systems
[4], [6], but with more care in distinguishing operators from
complex numbers.

Theorem 2.5 (Robust Stability): The closed-loop system
in Fig. 1b is robust stable iff the nominal system is A(σ)-
stable and

‖W2T‖∞ < 1, (5)

where T = P̃C/(1 + P̃C) is the complementary sensitivity
function.

Proof: (⇐) Suppose

‖W2T‖∞ = sup
ω∈R
|W2(jω)T (jω)| < 1, (6)

then
‖∆W2T‖∞ ≤ ‖∆‖∞‖W2T‖∞ < 1. (7)

Now consider the equality

1 + PC = 1 + (1 + ∆W2)P̃C
= (1 + P̃C)(1 + ∆W2T ). (8)

Nominal A(σ)-stability and the generalized Nyquist stability
criterion imply that 1 + P̃C along the Nyquist path is not
equal to zero and encircles the origin the k times required for
A(σ)-stability. The inequality (7) implies that 1 + ∆W2T is
not equal to zero along the Nyquist path and hence does not
change the number of encirclements of the origin. That is,
N(1+P̃C) = N(1+PC), where N(Ĝ(s)) is the net number
of clockwise encirclements of the origin by the image of the
Nyquist path under Ĝ(s).

(⇒) Proof by contrapositive. Suppose

‖W2T‖∞ ≥ 1, (9)
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then ∆̂ = 1/‖W2T‖∞ satisfies ‖∆̂‖∞ ≤ 1 and
‖∆̂W2T‖∞ = 1. Let ω̂ be a frequency in which this equality
holds, then |∆̂W2T |ω̂ is located on a unit circle centered
at origin. Select the parameter θ in ∆̄ = e−sθ∆̂ so that
|1+∆̄W2T |ω̂ = 0. Then ‖∆̄‖∞ ≤ 1 and, by (8), 1+PC = 0
which implies that the system is not robust stable (from the
generalized Nyquist stability criterion).

Definition 2.6 (Robust Performance): The closed-loop
system in Fig. 1b attains robust performance if it is
A(σ)-stable and the performance objective (1) is satisfied
∀P ∈ Π.

Mathematically, robust performance is equivalent to the
satisfaction of the inequalities

‖W2T‖∞ < 1 and
∥∥∥ W1S

1 + ∆W2T

∥∥∥
∞
< 1, ∀‖∆‖∞ ≤ 1,

(10)
with the first condition being the test for robust stability
(Thm. 2.5) and the second condition being the performance
condition (Defn. 2.1) applied to all processes within the
uncertainty description (4).

Theorem 2.7 (Robust Performance): The closed-loop sys-
tem in Fig. 1b attains robust performance if and only if it is
A(σ)-stable and

‖|W1S|+ |W2T |‖∞ < 1. (11)
Proof: The proof is very similar to that on pages 56-57

of [4] with substitution of Thm. 2.5 for the analysis of the
robust stability for infinite-dimensional systems.

III. IMC DESIGN FOR DPS

The analysis conditions for infinite-dimensional systems
in the previous section are used to develop an IMC design
method for DPS. As in the design method for ODEs,
the method can be interpreted as determining an exact or
approximate inverse of the nominal process model which is
augmented with a filter to derive a proper (physically real-
izable) controller. Extension of this approach to an infinite-
dimensional process model can require the use of an infinite-
dimensional filter. The required information for controller
design are:

1) nominal process model P̃ ,
2) performance specification (weighting function W1),

and
3) uncertainty weight W2.

Two methods are proposed for creation of a physically
realizable IMC controller.

A. Method 1

The IMC controller consists of the optimal controller for
the nominal process model followed by filtering to provide
robustness.

1) Nominal performance: Determine the operator Q̃ for
the nominal process P̃ that optimizes the nominal perfor-
mance:

min ‖W1S̃‖∞, (12)

where S̃ = 1 − P̃ Q̃ is the nominal sensitivity function.
Readers are referred to Ref. [2] for algorithms for solving

this minimization for infinite-dimensional processes. If the
nominal process is minimum-phase, then the solution is

Q̃ = P̃−1. (13)

This nominal operator Q̃ is usually improper since the
nominal process is usually strictly proper.

2) Robust stability and performance: Design the IMC
controller

Q(s) = Q̃(s)F (s, λ) (14)

which augments Q̃ with a filter F to detune the optimal
controller and trade off speed of response with robustness to
model uncertainty, insensitivity to measurement noise, and
smoothness of the control action. The classical feedback
controller C is given by comparison of the IMC and classical
control structures in Fig. 1:

C =
Q

1− P̃Q
. (15)

Usually an infinite-dimensional filter is needed so that the
IMC controller Q is proper and the feedback controller C is
physically realizable. The filter F should be selected so that
the closed-loop system retains desired asymptotic properties
as Q is detuned for robustness. In particular, for the error
signal resulting from a step input to approach zero at steady-
state, the filter should satisfy

lim
s→0

F (s, λ) = 1. (16)

To provide a one-to-one correspondence to the IMC design
method for finite-dimensional systems, the tuning parameter
λ in the infinite-dimensional filter F should be defined so
that the optimal nominal performance is achieved as λ→ 0:

lim
λ→0

F (s, λ) = 1. (17)

The specific finite value for the tuning parameter λ can
be selected in a number of ways, corresponding to the same
criteria used to tune IMC controllers for finite-dimensional
systems [6]. For example, λ can be selected as small as possi-
ble while satisfying the robust stability or robust performance
conditions

‖W2T‖∞ < 1, (18)

‖|W1S|+ |W2T |‖∞ < 1, (19)

or to minimize the robust performance condition

min
λ>0
‖|W1S|+ |W2T |‖∞ (20)

with the design being acceptable if the attained objective
is less than one. For stable processes, increasing λ slows
the closed-loop dynamics and increases robustness to model
uncertainties.
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B. Method 2

This approach first defines a super-set of the nominal pro-
cess model. For a minimum-phase nominal process model,
construct P̃s(s, λ) ⊃ P̃ (s) for λ > 0 such that P̃s(s, λ) is
minimum-phase and semiproper and satisfies

lim
λ→0

P̃s(s, λ) = P̃ (s). (21)

Then the IMC controller is

Q(s, λ) = P̃−1
s (s, λ), (22)

where the IMC tuning parameter λ is selected as described
in Method 1. If the nominal process model is non-minimum
phase, then P̃s(s, λ) should be constructed so that the IMC
controller Q optimizes the nominal performance (12) as λ→
0.

C. Implementation

Method 1 is closest in character to the IMC method for
finite-dimensional systems [6] whereas Method 2 is more
convenient when inspecting Laplace transform tables to iden-
tify suitable forms for the IMC controller. As in the standard
IMC method, the IMC controller is uniquely defined as λ→
0 but the form of the filter is up to the designer. The transfer
function of the classical controller is determined by (15)
with the time-domain equations constructed by analytical or
numerical solution of the inverse Laplace transform. When
the processes in Π are stable, then the control system can
be implemented using either the IMC or classical feedback
structure in Fig. 1. Only the classical feedback structure can
be implemented when the processes are unstable, and any
unstable poles in the nominal process must be canceled by
unstable zeros in Q, similarly as in the finite-dimensional
case [6].

The allowable error in any finite-dimensional approxima-
tion of the infinite-dimensional controller can be quantified
by using similar analysis methods as developed in Section
II.

IV. EXAMPLE 1

Consider the diffusion equation

∂C

∂t
= D

∂2C

∂x2
, ∀x ∈ (0, a), ∀t > 0, (23)

with Dirichlet and Neumann boundary conditions

C(0, t) = u(t), (24)

∂C

∂x

∣∣∣
x=a

= 0, (25)

nominal diffusion coefficient D̃ = 10−5 m2/s and the
distance across the domain a = 10−2.5 m. The minimum-
phase transfer function for the nominal process

P̃ (s) =
1

cosh
√
s/D̃

(26)

for the control input u(t) and output C(a, t) is obtained by
taking Laplace transforms of the PDE (23) and boundary

conditions (24) and (25), and solving for the Laplace trans-
form for the output.

The performance weight

W1 = 0.5
0.06s+ 1

0.06s
, (27)

is selected to specify zero steady-state error for a step input
(that is, integral action), a peak sensitivity less than 2, and a
closed-loop time constant of 0.06 s.

The model uncertainty is described by the frequency-
dependent bound∣∣∣∣∣P (jω)− P̃ (jω)

P̃ (jω)

∣∣∣∣∣ ≤ |W2(jω)|, ∀ω ∈ R, (28)

with

W2 =
cosh

√
s/D̃

cosh
√
s/1.2D̃

− 0.8, (29)

which requires that the closed-loop system is robust to
variations in the diffusion coefficient, 0.72 × 10−5 ≤ D ≤
1.2× 10−5 or 20% uncertainty in the steady-state gain.

An invertible semiproper super-set of the nominal process
model

P̃s(s, λ) =
coshλ

√
s/D̃

cosh
√
s/D̃

, (30)

follows naturally from (26). Hence the DPS IMC controller
is

Q(s, λ) =
cosh

√
s/D̃

coshλ
√
s/D̃

(31)

which is the optimal solution of (12) for any fixed λ ≥ 0
with P̃s(s, λ) in place of the nominal process model.

The nominal sensitivity function and complementary sen-
sitivity function for the above Q and P̃ (26) are

S(s) = 1− P̃Q = 1− 1

coshλ
√
s/D̃

, (32)

T (s) = P̃Q =
1

coshλ
√
s/D̃

. (33)

Fig. 2 shows that λ = 0.3 satisfies the robust stability
(18) and robust performance conditions (19), and nearly
minimizes (20).

The DPS IMC controller (31) was compared to the finite-
dimensional (FD) IMC controller [6] designed from the
second-order and tenth-order transfer functions obtained by
applying a second-order finite-difference spatial discretiza-
tion to the PDE (23) with grid size dx = 0.5 and dx =
0.1, respectively. This discretization provided a much more
accurate fit to the frequency response of the nominal infinite-
dimensional process and gave much better control system
performance than using modal decomposition (details will
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Fig. 2. Bode plots for the evaluation of nominal performance, robust
stability, and robust performance for the DPS IMC controller (Example 1).

be shown in the journal version of this paper). The FD IMC
controllers used the filter [6]

F (s, λ) =
1

(λs+ 1)n
(34)

with n = 2 or 10 to produce a proper Q with physically
realizable controller C. In both cases, there did not exist any
IMC tuning parameter λ that achieved robust performance
(see Figs. 3 and 4). The values λ = 0.08 and λ = 0.01
were selected for the second- and tenth-order transfer func-
tions, respectively, to minimize the violation of the robust
performance condition (19), that is, to minimize (20).

To investigate the effects of model uncertainty, setpoint
tracking responses were simulated assuming that the real pro-
cess was (23) with the diffusion coefficient D = 1.2× 10−5

Fig. 3. Bode plots for the evaluation of nominal performance, robust
stability, and robust performance for the FD IMC controller with dx = 0.5
(Example 1).

which is covered by the model uncertainty description. The
DPS IMC controller (31) provided much better closed-loop
performance than the FD IMC controllers for both sinusoidal
and step setpoints (see Fig. 5 and Table I). Further analysis
(not shown here for brevity) indicated that the FD IMC
controllers do not provide acceptable robust performance
for any order for the finite-difference discretization of the
PDE (23), no matter how high. As the order increases, the
frequency response of the finite-difference process model
approaches the frequency response of the PDE (23), however,
the finite-order IMC filter (34) is poorly matched to the
dynamics of the PDE and this mismatch becomes worse as
the order is increased. While IMC filters other than (34)
could be proposed to attempt to better match the infinite-
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Fig. 4. Bode plots for the evaluation of nominal performance, robust
stability, and robust performance for the FD IMC controller with dx = 0.1
(Example 1).

dimensional dynamics of the process, such guesswork is not
required during the DPS IMC design where an appropriate
form for the infinite-dimensional filter (31) follows naturally
from the transfer function of the nominal process model (26).

The IMC controllers designed for robust performance ap-
plied to finite-dimensional models of increasing order do not
converge to the controller designed by the DPS IMC method
(see Fig. 6), regardless of how accurate the finite-dimensional
model approximates the infinite-dimensional model. Even if
the ultimate goal is to design a finite-dimensional controller,
this example indicates that it can be much more efficient and
effective to design the infinite-dimensional controller based
on the infinite-dimensional process model and then deter-
mine a finite-dimensional approximation of the controller.

Fig. 5. Closed-loop responses for setpoint tracking of sinusoidal and step
signals for Example 1. The “exact” process was modeled by the finite-
difference method with grid size dx = 0.02 and D = 1.2 × 10−5. FD2
and FD10 are the second- and tenth-order IMC controllers designed based
on a finite-dimensional process model. The output is written in terms of
deviation variables.

TABLE I
ERRORS IN TIME-DOMAIN SIGNAL NORMS ON THE CONTROLLED

VARIABLE (EXAMPLE 1).

setpoint FD2 IMC FD10 IMC DPS IMC
Sinusoidal ‖ · ‖∞ 0.6879 0.4766 0.2199
Sinusoidal ‖ · ‖2 0.0338 0.0235 0.0108

Step ‖ · ‖2 0.0100 0.0085 0.0043

It is straightforward to show, from the continuity of the
performance objective with respect to the controller transfer
function evaluated at each frequency, that a sufficiently high
order finite-dimensional approximation of the DPS IMC
controller will satisfy the robust performance criterion (19)
provided that the criterion is strictly satisfied for the DPS
IMC controller and that the frequency response of the finite-
dimensional controller converges to the frequency response
of the DPS IMC controller as the order is increased.

V. EXAMPLE 2

This example illustrates the application of the DPS IMC
method to an unstable process. Consider a series connection
of two processes (A) and (B), where process (A) is governed
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Fig. 6. Bode plots for the controllers C(s) = Q

1−QP̃
designed by three

ways for Example 1.

by the convection equation,

∂CA
∂t

+ v
∂CA
∂x

, ∀x ∈ (0, a), ∀t > 0, (35)

and process (B) is governed by the diffusion equation,

∂CB
∂t

= D
∂2CB
∂x2

, ∀x ∈ (a, b), ∀t > 0, (36)

with initial conditions

CA(x, 0) = 0, (37)

CB(x, 0) = 0, (38)

and boundary conditions

CA(0, t) = u(t), (39)

∂CB
∂x

∣∣∣
x=b

= 0, (40)

vCA(a, t) = −D∂CB
∂x

∣∣∣
x=a

. (41)

For the control input u(t) and output CB(b, t), the nominal
process transfer function is

P̃ (s) =
ṽe−as/ṽ√

D̃s sinh
√

s
D̃

(b− a)
= P̃a(s)P̃m(s), (42)

where
P̃a(s) = e−as/ṽ, (43)

P̃m(s) =
ṽ√

D̃s sinh
√

s
D̃

(b− a)
. (44)

This is a non-minimum-phase process involving a hyperbolic
PDE coupled with a parabolic PDE, which describes the
transport of molecules through adjacent gas and liquid films.
For a = 10−2.5 m, b = 2×10−2.5 m, and nominal parameters
D̃ = 10−5 m/s and ṽ = 2 × 10−1.5 m/s, these nominal
transfer functions are

P̃ (s) =
20e−s/20√
s sinh

√
s
, (45)

Fig. 7. Uncertainty set covered by W2 for Example 2.

P̃a(s) = e−s/20, (46)

P̃m(s) =
20√

s sinh
√
s
. (47)

The performance weight

W1 = 0.3
0.093s+ 1

0.093s
(48)

specifies zero steady-state gain error for a step input, a
closed-loop time constant of 0.093, and a maximum distur-
bance amplification of 10/3. The uncertainty weight

W2 = 1.1
sinh
√
s√

1.2 sinh
√

s
1.2

− 1 (49)

covers the set of parameters in Fig. 7.
The invertible semiproper super-set of P̃m(s)

P̃ms(s, λ) =
20 coshλ

√
s√

s sinh
√
s

(50)

follows naturally from (47), which results in the DPS IMC
controller

Q(s, λ) =
√
s sinh

√
s

20 coshλ
√
s
. (51)

which is the optimal solution of (12) for any fixed λ ≥ 0
with P̃ms(s, λ) in place of the nominal process model.

The nominal sensitivity function and complementary sen-
sitivity function for the above Q and P̃ (45) are

S(s) = 1− P̃Q = 1− e−s/20

coshλ
√
s
, (52)

T (s) = P̃Q =
e−s/20

coshλ
√
s
. (53)

As discussed in Section III-C, the control system is imple-
mented using the classical feedback control structure. The
zero at s = 0 in the IMC controller Q cancels the pole at
s = 0 in the nominal process when determining the classical
controller from (15), and S has a zero at s = 0, which is
required for nominal stability.

It can be verified that λ = 0.25 satisfies the robust
stability (18) and robust performance conditions (19), and
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Fig. 8. Closed-loop responses for setpoint tracking of sinusoidal and
step signals (Example 2). The “exact” process was modeled by the finite-
difference method with grid size ∆x = (b − a)/50, D = 1.24 × 10−5

m2/s, and v = 1.9 × 10−1.5 m/s. FD2 and FD10 are the second- and
tenth-order IMC controllers designed based on a finite-dimensional process
model. The output is written in terms of deviation variables.

TABLE II
ERRORS IN TIME-DOMAIN SIGNAL NORMS ON THE CONTROLLED

VARIABLE (EXAMPLE 2).

setpoint FD2 IMC FD10 IMC DPS IMC
Sinusoidal ‖ · ‖∞ 1.3563 0.8449 0.4497
Sinusoidal ‖ · ‖2 0.0667 0.0418 0.0223

Step ‖ · ‖2 0.0151 0.0115 0.0080

nearly minimizes (20). By following the same procedure as
the Example 1, the values λ = 0.08 and λ = 0.01 were
selected for the second- and tenth-order transfer functions,
respectively. The DPS IMC controller (51) provides better
setpoint tracking than the FD IMC controllers (see Fig. 8
and Table II).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The Internal Model Control method was generalized to the
design of controllers for linear distributed parameter systems.
The proposed controller provided improved setpoint track-
ing and robust performance compared to the IMC method
designed from an approximate rational transfer function for
two DPS. It can be shown that this new IMC design method
can be used to extend all of the features of IMC for finite-
dimensional systems listed in the Introduction to infinite-

dimensional systems, which means that antiwindup com-
pensation, reference prefilter design, cascade control design,
and feedforward-feedback control design which is very well-
developed for finite-dimensional systems can be applied to
distributed parameter systems in a very similar manner. More
theoretical work is needed to extend the DPS IMC approach
to nonlinear systems, to mirror the developments for finite-
dimensional systems [5]. To do this, systematic techniques
to invert nonlinear infinite-dimensional operators need to be
developed.
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