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Abstract— We apply the adaptive mixing control approach
to a simple example, presenting concepts of the design and
analysis of these schemes in a pedagogical manner. Unique
to deterministic multiple model adaptive control schemes,
adaptive mixing control does not switch discontinuously among
candidate controllers. Continuous “mixing” is possible because
the multicontroller is constructed by controller interpolation
methods and the supervisor generates the mixing signal by
monitoring an online estimate of the unknown parameters. This
paper also presents stability and robustness results that can be
extended to the general case with out difficulty.

I. INTRODUCTION

Critical to the success of designing practical controllers

for application with stringent requirements is an approach

that specifies such requirements explicitly in the problem

formulation. Modern linear time invariant (LTI) control the-

ories, e.g. H∞ and µ-synthesis [1]–[3], provide powerful

tools when model uncertainties are sufficiently small. In the

presense of “large”uncertainty, a single fixed LTI controller

that achieves satisfactory closed-loop behavior may not exist.

Adaptive control, on the other hand, is capable of coping

with large parametric uncertainty by tuning controller gains

in response to estimated changes in the model. Since in

conventional adaptive control [4], [5] the controller gains are

calculated in real time based on an estimated plant model, the

complicated manner in which the plant parameters influence

H∞ and µ-synthesis controller gains has precluded the use of

these modern robust synthesis techniques in a conventional

adaptive control setting.

By using controllers designed off-line, multiple model

adaptive control (MMAC) schemes avoid real-time controller

synthesis issues and, therefore, provide an attractive frame-

work for combining adaptive and modern robust tools. The

general MMAC architecture, shown in Fig. 1, comprises

two levels of control: (1) a low-level system C(β) called

the multicontroller that is capable of generating finely-tuned

candidate controls and (2) a high-level system ΣS called

the supervisor that influences the control u by adjusting the

multicontroller based on processed plant input/output data.

Existing MMAC approaches in literature include switching-

based schemes: supervisory control [6]–[8], adaptive con-

trol with multiple models [9]–[11], unfalsified control [12],

[13]; and robust MMAC [14]–[16], which is a stochastic

approach. The switching-based schemes have the advantage
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Fig. 1. Multiple model adaptive control architecture: Based on observed
data, the supervisor ΣS selects/blends/mixes candidate controls to apply to
the unknown plant P.

Cu 

y 

Parameter 

Estimator
Mixer

�

Fig. 2. Adaptive mixing control’s supervisor ΣS comprises an online
parameter estimator and a mixer.

over conventional adaptive control of being capable of over-

coming the loss of stabilization problem and responding

rapidly to abrupt parameter changes. However, switching-

based schemes may also exhibit behaviors, such as inter-

mittent switching among “similar” models and persistent

selection of a poorly performing controller despite data that

suggest to switch, that lead to poor performance.

The focus of this paper is the application of the MMAC

approach adaptive mixing control to a simple example in

order to introduce its architecture, design, and analysis. With

the aim of eliminating the undesirable behaviors of existing

MMAC approaches, candidate controllers are “mixed” into

the loop in a continuous manner, driven by a robust adaptive

law. Not only is the multicontroller of the adaptive mixing

control scheme capable of generating any of the candidate

control laws, but also, by controller interpolation, a mix

of candidate controllers. This allows the multicontroller to

evolve from one controller to another in a continuous manner.

The supervisor, shown in Fig. 2, generates the mixing signal

β(t) by processing the online estimate θ(t) of the unknown

system parameter θ∗ through a system called the mixer M
that determines the level of participation of each candidate

controller. This determination is a manifestation of certainty

equivalence: at every fixed t ≥ 0, the candidate controllers

that were designed for θ∗ = θ(t) are mixed such that

closed-loop objectives are met. A more in-depth exposition

of adaptive mixing control is the subject of the follow-up

paper [17].
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II. NOTATION AND PRELIMINARIES

For A ∈ R
m×n, the transpose of A is denoted by AT . For

the n-vector x, |x| is the Euclidean norm (xTx)1/2 and the

corresponding induced matrix norm of A is denoted as ‖A‖.

If y : R
+ → R

n, then the Lp norm of y is denoted as ‖y‖p

and the truncated L2δ norm is defined as

‖yt‖2δ
△
=

(
∫ t

0

e−δ(t−τ)yT (τ)y(τ)dτ

)

1

2

(1)

where δ ≥ 0 is a constant, provided that the integral in (1)

exists. By ‖yt‖2 we mean that ‖yt‖2δ with δ = 0, and we

say that y ∈ L2e if ‖yt‖2 exists. Let y ∈ L2e, and consider

the set

S(µ) =

{

y :

∫ t+T

t

yT (τ)y(τ)dτ ≤ c0µT + c1, ∀t, T ≥ 0

}

for a given constant µ, where c0, c1 ≥ 0 are some finite

constants independent of µ. We say that y is µ-small in

the mean square sense (m.s.s.) if y ∈ S(µ). Furthermore,

consider the signal w : [0,∞) → R
+ and the set

S(w) =

{

y :

∫ t+T

t

yT (τ)y(τ)dτ

≤ c0

∫ t+T

t

w(τ)dτ + c1, ∀t, T ≥ 0

}

where c0, c1 ≥ 0 are some finite constants. We say that y is

w-small in the m.s.s. if y ∈ S(w).
Let H(s) and h(t) be the transfer function and impulse

response, respectively, of some LTI system. If H(s) is a

proper transfer function and analytic in R[s] ≥ −δ/2 for

some δ ≥ 0, where R[s] denotes the real part of s, then

the H∞ system norm is given by ‖H‖∞
△
= supjω |H(jω)|.

The ‖ · ‖2δ system norm of H(s) is defined as ‖H‖2δ
△
=

1√
2π

{

∫ ∞
−∞

∣

∣H
(

jω − δ
2

)
∣

∣

2
dω

}
1

2

. The induced L∞ system

norm of H is given by ‖H‖∞−gn = ‖h‖1. If y = H(s)u
and ‖u‖∞ = u0 then ‖y‖∞ ≤ ‖H‖∞−gnu0. We say that A :
[0,∞) → R

n×n is exponentially stable (e.s.) if its transition

matrix Φ(t, τ) satisfies ‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ)for some

λ0, α0 > 0 for all t ≥ τ ≥ 0. The following key results are

used in the stability and robustness analysis of the adaptive

mixing control scheme. The results are well known, and,

unless stated otherwise, their proofs can be found in [5] and

the references within.

Theorem 1: Let Ω ⊂ R
2n be compact and p be

any constant in Ω. Let the parameterized detectable pair

(C(p), A(p)) be continuously differentiable with respect to

p ∈ Ω, where A(p) ∈ R
n×n and C(p) ∈ R

l×n.

1) Then there exists an analytic matrix function L : Ω →

R
n×l, such that AI(p)

△
= A(p)−L(p)C(p) is a stability

matrix uniformly in p ∈ Ω, i.e., AI(p) satisfies

max
i

R{λi[AI(p)]} < −σ (2)

for some σ > 0 independent of p, where λi(AI(p)) is

the ith eigenvalue of the matrix AI(p).

2) If θ(t) ∈ Ω for all t ≥ 0 and θ̇ ∈ L2 is satisfied in

addition to the conditions in 1), then the equilibrium

xe = 0 of ẋ = AI(θ(t))x is e.s.

3) If θ(t) ∈ Ω for all t ≥ 0 and θ̇ ∈ S(µ2) is satisfied

in addition to the conditions in 1), then there exists a

µ∗ > 0 such that if µ ∈ [0, µ∗) the equilibrium xe = 0
of ẋ = AI(θ(t))x is e.s.

The proof of Theorem 1 is a combination of the well-known

results of [18] and the linear time varying (LTV) stability

results found in [5].

The following results concern the LTV system given by

ẋ = A(t)x+B(t)u, x(0) = x0 (3)

y = C(t)x+D(t)u (4)

where x(t) ∈ R
n, y(t) ∈ R

l, u(t) ∈ R
m, and the elements

of the matrices A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
l×n,

and D(t) ∈ R
l×m are bounded continuous functions of time.

Lemma 2: If the LTV system (3),(4) is e.s. and u ∈ L2e

then

1) for any δ ∈ [0, δ1) where 0 < δ1 < 2α0 is arbitrary,

we have

‖xt‖2δ ≤
cλ0

√

(δ1 − δ)(2α0 − δ)
‖ut‖2δ + ǫt

where c = supt ‖B‖ and ǫt is an exponentially

decaying to zero term accounting for the possibility

that x0 6= 0.

2) u ∈ L2 ⇒ x ∈ L2∩L∞, ẋ ∈ L2, and limt→∞ |x(t)| =
0

3) u ∈ S(µ) ⇒ x ∈ S(µ) ∩ L∞
Lemma 3: Consider the LTI system given by y = H(s)u

where H(s) is a strictly proper rational function of s. If H(s)
is analytic in R[s] ≥ −δ/2 for some δ ≥ 0 and u ∈ L2e

then we have |y(t)| ≤ ‖H(s)‖2δ‖ut‖2δ .

The following Bellman-Gronwall (B-G) lemma is useful for

establishing boundedness.

Lemma 4 (B-G Lemma): Let c1, c2 be positive constants

and g(t) be a piece-wise continuous function of t. If for all

t ≥ t0 ≥ 0, the function y(t) satisfies the inequality

y(t) ≤ c1 + c2

∫ t

t0

e−δ(t−τ)g2(τ)y(τ)dτ

then for all t ≥ t0 ≥ 0

y(t) ≤ (c0 + c1)e
−α(t−t0)e

c2

∫

t

t0
g2(s)ds

+c1α
∫ t

t0
e−α(t−τ)ec2

∫

t

τ
g2(s)dsdτ.

III. EXAMPLE

A. Problem Statement

Consider the uncertain plant

y =
1

s− θ∗
(1 + ∆m(s))(u+ d), θ∗ ∈ Ω = [−2.5, 2.5]

(5)

where θ∗ is an unknown constant that belongs to the known

interval Ω; d is a bounded disturbance, i.e., |d(t)| ≤ d0 ∀t ≥
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Fig. 3. Block diagram of the adaptive mixing control scheme.

0; and ∆m(s) is a multiplicative plant uncertainty. ∆m(s)
is assumed to be a proper rational transfer function that is

analytic in R[s] ≥ −δ0/2 for some known δ0 > 0. We refer

to G0(s) = 1/(s − θ∗) as the nominal model. The control

objective is to place the pole of the closed-loop nominal plant

in the interval [−5,−3]; guarantee that y and u are bounded;

and when d0 = 0, y and u converge to zero as t→ ∞. Given

are three candidate-controller/parameter-subset pairs

(k1,Ω1) = (5.5, [0.5 , 2.5]) (6)

(k2,Ω2) = (4, [−1, 1]) (7)

(k3,Ω3) = (2.5, [−2.5, −0.5]). (8)

The candidate index set is defined as I
△
= {1, 2, 3}. The

candidate controllers were designed such that if θ∗ ∈ Ωi∗

for some i∗ ∈ I = {1, 2, 3} then u = −ki∗y would meet

the control objective. Let us now describe the design of the

adaptive mixing control scheme shown in Fig. 3.

B. Adaptive Mixing Control Design

No candidate controller meets the control objective, but

if the supervisor ΣS could determine that θ∗ ∈ Ωi∗ for

some i∗ ∈ I, then the control objective would be met by

applying the candidate control ui∗ = −ki∗y. Moreover, if

θ∗ belongs to the parameter overlap Ωi ∩ Ωi+1 for some

i ∈ {1, 2}, then any convex combination of controllers ki

and ki+1 would also meet the control objective. Thus, we

construct the multicontroller C(β) as

u = −C(β)y = −(β1k1 + β2k2 + β3k3)y (9)

where the mixing signal β
△
= [β1 β2 β3]

T is tuned by the

supervisor . Observe that C(β) is continuously differentiable

with respect to β.

The supervisor ΣS generates the mixing signal β(t) by

feeding an estimate θ(t) of θ∗ to a system called the mixer

M , which implements the mapping β : Ω → [0, 1]3. For the

purpose of exposition, we will first examine the mixer design

for the known parameter case. When the adaptive design is

pursued, we will combine the multicontroller C(β) and the

mixer M with an online parameter estimator by replacing θ∗

with θ(t).

If θ∗ is known then one possible construction of θ∗ 7→
β(θ∗) is

β(θ∗)
△
=

[IΩ1
(θ∗), IΩ2

(θ∗), IΩ3
(θ∗)]T

∑

i∈I IΩi
(θ∗)

(10)

where, for any i ∈ I, IΩi
is the indicator function: IΩi

(θ∗) =
1 if θ∗ ∈ Ωi; IΩi

(θ∗) = 0 if θ∗ /∈ Ωi. Note that β is

discontinuous in θ∗ and, since θ∗ will ultimately be replaced

with its estimate θ(t) in the adaptive case, will lead to

practical issues. We therefore define the mixing signal as

β(θ∗)
△
=

[ψ( θ∗−1.75
1.25 ), ψ(θ∗), ψ( θ∗+1.75

1.25 )]T

ψ( θ∗−1.75
1.25 ) + ψ(θ∗) + ψ( θ∗+1.5

1.25 )
(11)

where ψ is the smooth bump function: ψ(θ∗) = e
− 1

1−θ∗2 if

|θ∗| ≤ 1; ψ(θ∗) = 0 if |θ∗| > 1. Note that by construction

β : Ω → [0, 1]3 is smooth;
∑

i∈I βi = 1; βi ≥ 0 for all

i ∈ I; and if θ∗ /∈ Ωi for some i ∈ I, then βi = 0. When

u = −C(β(θ∗))y, the nominal closed-loop pole is sCL =
θ∗ − C(β(θ∗)). From the above properties of β and (9), we

have that

• if θ∗ ∈ [−2.5, −1] then β(θ∗) = [0 0 1]T and −5 ≤
sCL ≤ −3.5

• if θ∗ ∈ [−1, −0.5] then β(θ∗) = [0 b∗2 b∗3]
T , where

b∗2, b
∗
3 ≥ 0 and b∗2 + b∗3 = 1, and −5 ≤ sCL ≤ −3

• if θ∗ ∈ [−0.5, 0.5] then β = [0 1 0]T and −4.5 ≤
sCL ≤ −3.5

• if θ∗ ∈ [0.5, 1] then β(θ∗) = [b∗1b
∗
20]T , where b∗1, b

∗
2 ≥ 0

and b∗1 + b∗2 = 1, and −5 ≤ sCL ≤ −3
• if θ∗ ∈ [1, 2.5] then β(θ∗) = [1 0 0]T and −4.5 ≤
sCL ≤ −3.

Therefore C(β(θ∗)) meets the control objective if θ∗ is

known.

Now we consider θ∗ to be unknown and use the certainty

equivalence approach by combining the multicontroller C(β)
and mixer M with a robust online parameter estimator. The

linear parametric model (LPM) of the plant (5), constructed

using the procedure of [5, Sec. 2.4.1], is given by

z = θ∗φ+ η, z = sF (s)y − F (s)u, φ = F (s)y (12)

η = ∆mF (s)u+ (1 + ∆m)F (s)d (13)

where z, φ are measurable signals; η is an unknown modeling

error term; F (s) = λ
s+λFη(s); λ > 0; and Fη(s) is a stable

minimum phase filter. This LPM can be used to generate a

wide-class of adaptive laws for generating the estimate θ of

θ∗ [5] that guarantee that θ(t) ∈ Ω for all t ≥ 0 (by the use

of the projection operator) and when ∆m, d0 = 0,

ǫ, ǫm, θ̇ ∈ L2 ∩ L∞, if ∆m, d0 = 0 (14)

ǫ, ǫm, θ̇ ∈ S(η2/m2) ∩ L∞, otherwise. (15)

For this example, let us choose Fη(s) = 1 and the adaptive
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law as the gradient algorithm with projection modification

θ̇ = Pr
Ω

(γǫφ) =

{

γǫφ, |θ| < 2.5 or γǫφ sgn θ ≤ 0
0, otherwise

(16)

ǫ =
ǫ1
m2

=
z − θφ

m2
(17)

m2 = 1 + nd, ṅd = −δ0nd + u2 + y2 (18)

where γ > 0 is the adaptive gain.

To complete the adaptive mixing control design, we com-

bine the adaptive law (16) with the mixer M given in (11)

so that β(t) takes on the value

β(θ(t)) =
[ψ( θ(t)−1.75

1.25 ), ψ(θ(t)), ψ( θ(t)+1.75
1.25 )]T

ψ( θ(t)−1.75
1.25 ) + ψ(θ(t)) + ψ( θ(t)+1.5

1.25 )
. (19)

C. Analysis

Let the plant be realized as by (AP, BP, CP, DP), where the

pairs (CP, AP) and (AP, BP) are detectable and stabilizable,

respectively. Let us define a system called the estimation

model E(θ) as the dynamical system ǫ1 = z − θφ with

the realization (AE, BE, CE, DE), where AE is a stability

matrix. For the purpose of stability and robustness analysis

and by following the tunability analysis approach of [19],

we study the behavior of the system comprised of the plant,

multicontroller, mixer, and estimation model, which we call

the parameterized system Σ(θ). The output of Σ is defined

as the unnormalized estimation error ǫ1. The state-space

realization of Σ is written compactly as

ẋ = A(θ)x+Bd, ǫ1 = C(θ)x (20)

where x = [xT
P
, xT

E
]T where xP, xE are the states of the plant

and E(θ), respectively. We also define the parameterized

controller as k(θ)
△
= C(β(θ)), i.e., the mixer/multicontroller

interconnection.

The stability analysis of adaptive mixing control is car-

ried out in four steps. In the first three steps we consider

the adaptive mixing scheme applied to the nominal plant

(∆m, d0 = 0) with the objective of establishing that x→ 0 as

t→ ∞. Then in the fourth step we consider the application

of the adaptive mixing scheme to the true system and analyze

its robustness properties. For all steps, assume that θ∗ is any

constant in Ω.

Step 1: Establish that ∀p ∈ Ω, (C(p), A(p)) is a detectable

pair.

Consider the adaptive law initialization θ(0) = p, where p
is any constant in Ω. If we let ǫ1 ≡ 0 then from (16) there is

no adaptation, i.e., θ ≡ p; therefore the closed-loop system

is an LTI system. Since ǫ1 ≡ 0, it follows from (12) that

z = pφ and y,u satisfy

sλ

s+ λ
y −

λ

s+ λ
u = p

λ

s+ λ
y. (21)

Likewise, because there is no adaptation, the parameterized

controller k(p) is constant and, therefore, u satisfies

u = −k(p)y. (22)

By substituting (22) into (21), we can rewrite (21) as

(s− p+ k(p))y = 0 (23)

and since k(p) was constructed to ensure that (s−p+k(p))
is Hurwitz, we have that y ∈ L∞ and y → 0 as t → ∞.

Therefore, it follows from (22) that u ∈ L∞ and u → 0 as

t → ∞, and in turn, because AE is a stability matrix, we

have that xE ∈ L∞ and xE → 0 as t → ∞. Since ǫ1 ≡ 0
implies x → 0 as t → ∞, the parameterized closed-loop

system Σ(p) is detectable on Ω.

Step 2: Establish that along the solutions of (20),(16)-(18)

there exists a vector-valued function L : Ω → R
3×1 such that

AI(t)
△
= A(θ(t)) − L(θ(t))C(θ(t)) is exponentially stable.

Since the adaptive law guarantees that θ(t) ∈ Ω, and the

pair (C(θ), A(θ)) is affine, and consequently continuously

differentiable, with respect to θ, it follows from result 1)

of Theorem 1 that there exists a continuously differentiable

function L : Ω → R
3×1 such that for each fixed t ≥ 0

that AI(t)
△
= A(θ(t)) − L(θ(t))C(θ(t)) is a stability matrix

uniformly in θ(t) ∈ Ω, i.e., maxi R{λi[AI(t)]} < −σ for

some σ > 0 and ∀t ≥ 0, where λi(A) is the ith eigenvalue

of the matrix A ∈ R
n×n. Observe that since L is analytic

and Ω is compact, ‖L‖ ∈ L∞. Because the adaptive law

additionally guarantees that θ̇ ∈ L2, it follows from result

2) of Theorem 1 that the transition matrix Φ(t, τ) for the

differential equation

z(t) = AI(t)z(t) (24)

satisfies ‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ) for some positive con-

stants λ0, α0 and t ≥ τ ≥ 0.

Step 3: Establish boundedness and convergence of x.

Let δ ∈ [0, δ1) where δ1 < min{2α0, δ0} and c > 0
denotes any finite constant.

By applying output injection, we rewrite (20) as

ẋ = AI(t)x+ L(θ(t))ǫ1 (25)

where in Step 2 we established e.s. of the homogeneous part

of (25). For the purpose of establishing that ǫ1 ∈ L2 ∩ L∞,

we will show that m ∈ L∞, which together with ‖L‖ ∈ L∞,

ǫ1 = ǫm2, and the properties (14) guaranteed by the adaptive

law will establish boundedness and convergence of x.

By result 1) of Lemma 2 and the e.s. property of AI , we

have that

‖xt‖2δ ≤ c‖ (ǫ1)t ‖2δ + c. (26)

Since y is a subvector of x we have that

‖yt‖2δ ≤ c‖(ǫ1)t‖2δ + c (27)

and therefore it follows from u = −k(θ(t))y and k ∈ L∞
that

‖ut‖2δ ≤ c‖(ǫ1)t‖2δ + c. (28)

Consider the fictitious normalization signal

m2
f

△
= 1 + ‖ut‖

2
2δ + ‖yt‖

2
2δ. (29)
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Note that because δ < δ0, it follows from the definitions

of m and mf that m ≤ mf . Substituting (27), (28), and

ǫ1 = ǫm2 into (29) yields

m2
f ≤ c‖(ǫm2)t‖

2
2δ + c ≤ c‖(ǫmmf )t‖

2
2δ + c (30)

where the second inequality is obtained by using m ≤ mf .

From the definition of ‖(·)t‖2δ it follows that

m2
f ≤ c

∫ t

0

e−δ(t−τ)(ǫ(τ)m(τ))2m2
f (τ)dτ + c. (31)

Applying the B-G Lemma to (31) with g(τ) = ǫ(τ)m(τ)
yields

m2
f ≤ ce−δtec

∫

t

0
g2(τ)dτ + cδ

∫ t

0

e−δ(t−s)ec
∫

t

s
g2(τ)dτds.

(32)

Boundedness of mf , and in turn m, follows from g = ǫm ∈
L2.

We now turn our attention to the injected system (25). The

term L(t)ǫ(t)m2(t) can be viewed as the input ū into the

exponentially stable linear system ẋ = AI(t)x+ ū. Because

‖L‖,m ∈ L∞ and ǫm ∈ L2 ∩ L∞, the input ū = Lǫm2

belongs to L2 ∩ L∞. Since the equilibrium solution xe = 0
of AI(t) is e.s. and Lǫm2 ∈ L2∩L∞, it follows from result

2) of Lemma 2 and (25) that x ∈ L2 ∩ L∞, ẋ ∈ L2 ∩ L∞,

and x→ 0 as t→ ∞. From the convergence property of x,

and consequently Lǫ1, it follows from (25) that ẋ → 0 as

t→ 0.

Step 4: Establish robustness claims

Now suppose that ∆m, d0 6= 0. Consequently, the robust

adaptive law no longer guarantees that ǫ, ǫm, θ̇ ∈ L2, but

rather, it guarantees that ǫ, ǫm, θ̇ ∈ S(η2/m2). Nonetheless,

the analysis approach for the nominal case can be applied to

the robustness analysis with only minor modifications.

It follows from Lemma 3, d ∈ L∞, and (13) we have

|η(t)| ≤ ∆1‖ut‖2δ0
+ ∆2 (33)

∆1
△
= ‖∆mF‖2δ0

, ∆2
△
= ‖(1 + ∆m)F‖∞−gn d0 (34)

and because m2 = 1+‖ut‖
2
2δ0

+‖yt‖
2
2δ0

≥ 1, it follows that

|η(t)|/m ≤ ∆1 + ∆2. Therefore, ǫ, ǫm, θ̇ ∈ S(µ2), where

µ2 △
= c(∆2

1 + ∆2
2).

The detectability result established in Step 1 is still valid,

a consequence of the certainty equivalence stabilization

theorem (cf. [20]). Following Step 2, there exists a smooth

function L : Ω → R
n̄×1, where n̄ is the dimension of

x, such that the system matrix A(p) − L(p)C(p) is e.s.

for any constant p ∈ Ω. We apply output injection to the

parameterized system to rewrite the dynamics of x as

ẋ = AI(t)x+ L(θ(t))ǫ1 +Bd (35)

In contrast to the ideal case where θ̇ ∈ L2 ∩ L∞, here the

robust adaptive law only guarantees that θ̇ ∈ S(µ2)∩L∞. It

then follows from result 3) of Theorem 1 that AI(t) is e.s.

provided that

c
(

∆2
1 + ∆2

2

)

< µ∗ (36)

for some µ∗. Condition (36) may not be satisfied, even for

small ∆1, unless d0 is sufficiently small. One way to deal

with the disturbance term is to design the component Fη(s)
of F (s) such that ∆2 is sufficiently small, say c∆2

2 <
µ∗/2 so that for c∆2

1 < µ∗/2, condition (36) is always

satisfied. The constant ∆2 can be made arbitrarily small

by choosing Fη(s) = c where c > 0 is a small design

constant. Because this would slow adaptation across all

frequencies, a more practical approach would be to shape

Fη such that |Fη(jω)| is small in the frequency range of the

disturbance. We continue with the assumption that condition

(36) is satisfied. Therefore the homogeneous part of (35)

is e.s., i.e., the transition matrix Φ(t, τ) of AI(t) satisfies

‖Φ(t, τ)‖ ≤ λ0e
−α0(t−τ) for some positive constants λ0, α0

and t ≥ τ ≥ 0.

Now we prove the claim that ǫ1 ∈ S(µ2)∩L∞. The bound

(32) on m2
f still holds. From mf ∈ L∞ and m ≤ mf , we

have that m is bounded. It follows from m, ‖L‖ ∈ L∞ and

ǫm ∈ S(µ2) ∩ L∞ that Lǫm2 ∈ S(µ2) ∩ L∞. Therefore,

it follows from (35) and the e.s. of AI(t) that x ∈ L∞.

Furthermore, if limt→∞ d(t) = 0 then it follows from result

3) of Lemma 2 that x ∈ S(µ2), i.e., the mean value of x
is of the order of the modeling error characterized by µ2.

Also, from x, Lǫm2 ∈ S(µ2) ∩ L∞, it follows from (35)

that ẋ ∈ L∞ ∩ S(µ2).
The condition for stability is, therefore,

µ2 < δ∗
△
= min{µ∗, δ/c}, 0 < δ < min{δ0, 2α0} (37)

for some constant c > 0 and µ∗ > 0 is the bound for µ2 for

AI(t) to be e.s.

In summary, we have shown that in the absence of

multiplicative uncertainty ∆m and exogenous input d that the

states xP, xE, θ remain bounded and xP, xE → 0 as t→ ∞.

When ∆m and d satisfy condition cµ2 < δ∗, then all closed-

loop states are bounded and, if d → 0 as t → ∞, x and ẋ
are µ2-small in the m.s.s.

D. Simulation

We now simulate the adaptive mixing control scheme

(9),(19),(16)-(18) applied to the plant given by (5). For

simulation purposes, we use the plant parameters θ∗ = 2.5 ∈
Ω1, ∆m(s) = −2µs

1+µs , µ = 0.1, d0 = 0, and xP(0) = [1, 1]T .

We use the control parameters γ = 100, λ = 5, δ0 = 4, and

θ(0) = 0. For comparison, we also simulate an adaptive

pole-placement control (APPC) scheme with the control

u = −(θ(t)+3)y and the same adaptive law and initialization

as the adaptive mixing control scheme. The plant output is

shown in Fig. 4. In this example, the adaptive mixing control

exhibits faster regulation to zero and less oscillatory behavior

compared to the APPC scheme. The improved performance

is from the fact that oscillations in θ, shown in Fig. 5,

caused by exciting ∆m, are not seen in the control when

θ(t) ≥ 0.5. Said another way, outside the model overlaps,

the mixer output is constant and therefore the controller-

supervisor loop is “open” in the sense that small deviations

in the parameter estimate do not affect the control. This is

not the case for the APPC scheme, where the oscillations
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Fig. 4. Plant output: Adaptive mixing control (solid); Adaptive pole-
placement control (dashed).
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Fig. 5. Estimate θ(t) of θ∗ = 2.5: Adaptive mixing control (solid);
Adaptive pole-placement control (dashed).

in u caused by θ further excites ∆m. Simulations show that

the APPC scheme remains stable for µ ≤ 0.113; adaptive

mixing control remains stable for µ ≤ 0.12; and perfect

identification θ(t) ≡ θ∗ remains stable for µ ≤ 0.124.

IV. CONCLUDING REMARKS

In this paper we applied the adaptive mixing control

approach to a pedagogical example to illustrate its design and

analysis. We established that the closed-loop states remain

bounded when the scheme is applied to the true plant with

multiplicative uncertainty and bounded disturbance. When

the true system matches the nominal model and in the

absence of an external disturbance, the plant output y and

input u converge to zero. Simulation results demonstrated its

robustness with respect to model uncertainty. Furthermore,

for this simple example, the adaptive mixing control scheme

exhibited improved robustness when compared to an analo-

gous (conventional) adaptive pole-placement scheme.

This paper represents our first step towards the gen-

eral exposition of adaptive mixing control [17]. While the

example in this paper illustrates the concepts of adap-

tive mixing control approach, it does leave several issues

unaddressed. First, because of its pole-placement control

objective, this simple example does little to justify its use

over conventional adaptive approaches. An application with

demanding performance objectives that requires the use

of modern controller synthesis methods would demonstrate

the performance advantage of adaptive mixing control over

conventional adaptive control. Second, the ad hoc output

blending strategy used for constructing the multicontroller

works for this specific example, but it is not guaranteed

to work in general. These are among the topics addressed

in [17] and [21]. Further work is focused in combining

mixing and switching approaches with the aim of developing

schemes that possess the beneficial properties of each, while

circumventing their undesirable properties.
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