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Abstract— In this paper, we introduce the class of semi-
separable kernel functions for use in constructing Lyapunov
functions for distributed-parameter systems such as delay-
differential equations. We then consider the subset of semi-
separable kernel functions defined by polynomials. We show
that the set of such kernels which define positive forms can
be parameterized by positive semidefinite matrices. In the
particular case of linear time-delay systems, we show how
to construct the derivative of Lyapunov functions defined by
piecewise continuous semi-separable kernels and give numeri-
cal examples which illustrate some advantages over standard

polynomial kernel functions.

I. INTRODUCTION

The area of time-delay systems has long been an active

area of research. Recently there has been much work on

the construction of Lyapunov functions for linear time-delay

systems. Some fundamental results in Lyapunov theory for

delayed systems are given in [5]. A broad overview of

research in time-delay systems can be found in, e.g., [3]

or [6].

There have been a number of results in recent years

on identifying ways to parameterize Lyapunov Krasovskii

functionals using polynomial optimization. These papers

all propose new ways of constructing positive Lyapunov

structures of the following form.

V (x) =

∫ 0

−h

[

x(0)
x(θ)

]

M(θ)

[

x(0)
x(θ)

]

dθ

+

∫ 0

−h

∫ 0

−h

x(θ)N(θ, ω)x(ω)dθdω

For linear time-delay systems, h is taken to be the maximal

value value of the delay and M and N are necessarily

piecewise-continuous real-valued functions. In [8], we con-

sidered the first half of the Lyapunov function and gave an

exact characterization of positivity using pointwise inequality

conditions. We then demonstrated how to enforce these posi-

tivity conditions using a sum-of-squares (SOS) methodology.

In [9], we considered the second half of the function. In

that paper, a necessary and sufficient condition was given

for positivity under the assumption of a polynomial function

N . The two results were connected by a joint positivity

condition.
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In this paper, we address problems created by the assump-

tion of a polynomial N . While it is known that the function

M in the first part of the function may be assumed to be

polynomial (See [7]), very little is known about the class

of functions to which N belongs. In a series of papers, of

which [4] is representative, examples of these functions are

derived given desired forms of the derivative. These functions

include exponential terms and although polynomials can

approximate exponentials in the L∞ norm, it is not clear

whether a quadratic form defined by such an approximation

will approximate the original quadratic form. In fact, when

using the algorithms defined in papers [8], [9], we have

found that polynomials N of degree higher than 1 provide

no improvement in accuracy (See the numeric examples at

the end of the paper). There are a number of explanations

for this result, and some of them are discussed in section IV.

Perhaps the simplest argument, however, is that a quadratic

form defined by a polynomial, N , will only be positive on

a finite-dimensional subspace of C∞.

In this paper, we address the problem of polynomial

kernels by considering a class of functions known as semi-

separable functions. If a function, N , is semi-separable, then

it can be represented as

N(t, s) =

{

N1(t)N2(s) s < t

N3(t)N4(s) s ≥ t.

Semi-separable functions defined by polynomials can de-

fine quadratic forms which are positive on dense subspaces of

C∞. Furthermore, numerical tests indicate that an increase in

the degree of the polynomial will always result in an increase

in the accuracy of the condition. It is interesting to note that

the quadratic forms defined by semi-separable kernels have

a structure similar to a quadratic form originally considered

by Repin in [10].

The main result of this paper is a method, based on

sums-of-squares, for parameterizing semi-separable kernel

functions using semidefinite programming. The paper is

organized as follows. In the first section, we review some

relevant prior work. In section III, we parameterize positive

semi-separable kernel functions using a sum-of-squares ap-

proach. In section IV, we motivate semi-separable kernels

by examining properties of their behavior. In Section V, we

derive the derivative of a semi-separable kernel function for

a single and for multiple delays. Finally, in Section VI, we

illustrate the use of semi-separable kernels with numerical

experiments.
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II. POLYNOMIAL MATRICES AND KERNELS

We will use a generalization of the framework as defined

in [9]. First define the intervals

Hi =

{

[−h1, 0] if i = 1

[−hi,−hi−1) if i = 2, . . . , k.

A matrix-valued function M : [−h, 0] → S
n is called a

piecewise polynomial matrix if for each i = 1, . . . , k the

function M restricted to the interval Hi is a polynomial

matrix. Here Sn refers to the set of real symmetric n × n
matrices. We parameterize such piecewise polynomial ma-

trices as follows. Define the vector of indicator functions

g : [−h, 0] → R
k by

gi(t) =

{

1 if t ∈ Hi

0 otherwise

for all i = 1, . . . , k and all t ∈ [−h, 0]. Let zd(t) be the

vector of monomials in variable t of degree d or less and

also define the function Zn,d : [−h, 0] → R
nk(d+1 )×n by

Zn,d(t) = g(t) ⊗ In ⊗ z(t).

M is a piecewise matrix polynomial if and only if there exist

matrices Qi ∈ S
n(d+1) for i = 1, . . . , k such that

M(t) = Zn,d(t)
T diag(Q1, . . . , Qk)Zn,d(t). (1)

The function M is pointwise positive semidefinite, ( i.e.,

M(t) � 0 for all t ∈ [−h, 0] ) if there exists positive

semidefinite matrices Qi satisfying (1). We refer to such

functions as piecewise sum of squares matrices, and define

the set of such functions

Σn,d =
{

ZT
n,d(t)QZn,d(t) |

Q = diag(Q1, . . . , Qk), Qi ∈ S
n(d+1), Qi � 0

}

.

If we are given a function M : [−h, 0] → S
n which is

piecewise polynomial and want to know whether it is piece-

wise sum of squares, then this is computationally checkable

using semidefinite programming. Naturally, the number of

variables involved in this task scales as kn2(d + 1)2 when

the degree of M is 2d.

A. Piecewise Polynomial Kernels

We consider functions N of two variables s, t which we

will use as a kernel in the quadratic form

∫ 0

−h

∫ 0

−h

φ(s)T N(s, t)φ(t) ds dt. (2)

A polynomial in two variables is referred to as a binary

polynomial. A function N : [−h, 0] × [−h, 0] → S
n is

called a binary piecewise polynomial matrix if for each

i, j ∈ {1, . . . , k} the function N restricted to the set Hi×Hj

is a binary polynomial matrix. It is straightforward to show

that N is a symmetric binary piecewise polynomial matrix

if and only if there exists a matrix Q ∈ S
nk(d+1) such that

N(s, t) = ZT
n,d(s)QZn,d(t),

where d is the degree of N . The following is from [9].

Theorem 1: Suppose N is a symmetric binary piecewise

polynomial matrix of degree 2d. Then
∫ 0

−h

∫ 0

−h

φ(s)T N(s, t)φ(t) ds dt ≥ 0 (3)

for all φ ∈ C([−h, 0], Rn) if and only if there exists Q ∈
S

nk(d+1) such that

N(s, t) = ZT
n,d(s)QZn,d(t), Q � 0.

For convenience, we define the set of symmetric bi-

nary piecewise polynomial matrices which define positive

quadratic forms by

Γn,d =
{

ZT
n,d(s)QZn,d(t) | Q ∈ S

nk(d+1), Q � 0
}

.

If we are given a binary piecewise polynomial matrix

N : [−h, 0] × [−h, 0] → S
n of degree 2d and want to

know whether it defines a positive quadratic form, then this

is checkable using semidefinite programming. The number

of variables scales as (nk)2(d + 1)2.

III. PIECEWISE POLYNOMIAL SEMI-SEPARABLE

KERNELS

A function N : [−h, 0] × [−h, 0] → S
n is called a

piecewise polynomial semi-separable matrix if the function

N(s, t) restricted to the s ≤ t or s ≥ t is a binary

piecewise polynomial matrix. N is a piecewise polynomial

semi-separable matrix if and only if there exist matrices

Q1, Q2 ∈ S
nk(d+1) such that

N(s, t) =

{

ZT
n,d(s)Q1Zn,d(t) s ≤ t

ZT
n,d(s)Q2Zn,d(t) s > t

,

A piecewise-polynomial semi-separable matrix defines a

positive quadratic form if it has a “sum-of-squares” repre-

sentation.

Theorem 2: Suppose Q(s) ≥ 0 and let Z be the standard

vector of monomial bases. Now define

R(t, s, ω) =

[

R11(t, s, ω) R12(t, s, ω)
R12(t, s, ω)T R22(t, s, ω)

]

= Z2n,d(t)
T Q(s)Z2n,d(ω)

N(ω, t) =

{

N1(ω, t) ω ≤ t

N2(ω, t) ω > t,

where

N1(ω, t) =

∫ ω

−h

R11(t, s, ω) ds +

∫ t

ω

R21(t, s, ω) ds

+

∫ 0

t

R22(t, s, ω) ds,

N2(ω, t) =

∫ t

−h

R11(t, s, ω) ds +

∫ ω

t

R12(t, s, ω) ds

+

∫ 0

ω

R22(t, s, ω) ds.

Then for any x ∈ C([−h, 0], Rn)
∫ 0

−h

∫ 0

−h

x(s)T N(s, t)x(t)dsdt ≥ 0.
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The proof proceeds by a “sum-of-squares”-style argument,

similar to that used for joint positivity in [9]. We use

the squares root of the matrix Q to construct a squared

representation of N using semi-separable kernels.

Proof: By positivity, there exists a P (s) so that Q(s) =
P (s)T P (s). Now equipartition

P (s)Z2n,d(ω) =
[

K1(s, ω) K2(s, ω)
]

.

Then

R(t, s, ω) = (P (s)Z2n,d(t))
T P (s)Z2n,d(ω)

=

[

K1(s, t)
T

K2(s, t)
T

]

[

K1(s, ω) K2(s, ω)
]

=

[

K1(s, t)
T K1(s, ω) K1(s, t)

T K2(s, ω)
K2(s, t)

T K1(s, ω) K2(s, t)
T K2(s, ω)

]

=

[

R11(t, s, ω) R12(t, s, ω)
R12(t, s, ω)T R22(t, s, ω)

]

Now let

K(s, t) =

{

K1(s, t) s ≤ t

K2(s, t) s > t.

We define the integral operator A by y = Ax if

y(s) =

∫ 0

−h

K(s, t)x(t) dt.

Then

〈y, y〉 =

∫ 0

−h

∫ 0

−h

∫ 0

−h

x(ω)T K(s, ω)T K(s, t)x(t) dt ds dω

=

∫ 0

−h

∫ 0

−h

x(ω)T

(
∫ 0

−h

K(s, ω)T K(s, t) ds

)

x(t) dt dω.

Now, for ω ≤ t
∫ 0

−h

K(s, ω)T K(s, t) ds =

∫ ω

−h

K1(s, ω)T K1(s, t) ds

+

∫ t

ω

K2(s, ω)T K1(s, t) ds +

∫ 0

t

K2(s, ω)T K2(s, t) ds,

= N1(ω, t)

Similarly, for ω > t,

∫ 0

−h

K(s, ω)T K(s, t) ds =

∫ t

−h

K1(s, ω)T K1(s, t) ds

+

∫ ω

t

K1(s, ω)T K2(s, t) ds +

∫ 0

ω

K2(s, ω)T K2(s, t) ds

= N2(ω, t).

Therefore,

〈y, y〉 =

∫ 0

−h

∫ 0

−h

x(ω)T N(s, t)x(t) dt dω ≥ 0.

For convenience, we define the set of piecewise polyno-

mial semi-separable matrices which define positive quadratic

forms by

Ξn,d,r =
{

(N1, N2) | R11 : R
3 → R

n×n, Pi ∈ S
4nk(d+1)(r+1)

N1(ω, t) =

∫ ω

−h

R11(t, s, ω) ds +

∫ t

ω

R21(t, s, ω) ds

+

∫ 0

t

R22(t, s, ω) ds,

N2(ω, t) =

∫ t

−h

R11(t, s, ω) ds +

∫ ω

t

R12(t, s, ω) ds

+

∫ 0

ω

R22(t, s, ω) ds,

R(t, s, ω) = Z2n,d(t)
T Q(s)Z2n,d(ω)

Q(s) = Z2nk(d+1),r(s)
T PZ2nk(d+1),r(s)

P = diag(P1, · · · , Pk), Pi � 0
}

.

Here r is the degree of the sum-of-squares representation

and d is the degree of the kernel matrix. In practice, the

complexity can be reduced by separating the kernel into a

piecewise polynomial component and k continuous semi-

separable components. See Section V-A for details on the

separation. We will not directly address the associated com-

plexity reduction in this paper.

IV. PROPERTIES OF SEPARABLE AND SEMI-SEPARABLE

KERNELS

To motivate the synthesis of positive semi-separable ker-

nels, we will use this section to examine some of the

properties of these functions. The motivation given is in

terms of certain operator-theoretic concepts. A discussion of

the known properties of operators defined by semi-separable

kernels can be found in [2].

It is well-known that a stable dynamical system which

defines a strongly continuous semigroup on a Hilbert space

X will have a Lyapunov function of the form

〈x, Ax〉,

where A : X → X is a positive operator (See, e.g. [1]).

For time-delay systems, that one possible state space is x ∈
R

n × C([−h, 0], Rn) equipped with the L2-inner product.

For linear time-delay systems, it is known that A may be

assumed to have the form

(Ax)(θ) = M(θ)

[

x(0)
x(θ)

]

+

∫ 0

−h

[

0 0
0 N(θ, ω)

] [

x(0)
x(θ)

]

.

Thus we can assume that A consists of the combination

of a multiplier and integral operator defined by matrix-

valued functions M and N , respectively. Most results on

constructing Lyapunov-Krasovskii functionals are attempts

to parameterize classes of positive linear operators by using

positive semidefinite matrices to construct the functions M
and N . For example, the “piecewise-linear” method of [3]

is used to construct functions M and N which are linear

on certain subintervals of [−h, 0]. We note briefly that

the method in [3] also constructs semi-separable kernels,
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although, naturally, the separable components are piecewise-

linear.

Properties of a kernel function are most easily expressed

by properties of the operator it defines. Consider the operator

Ak defined by the function k ∈ L2.

(Akx)(t) :=

∫ 0

−h

k(t, s)x(s)ds

The following properties are listed here without proof.

• If k is separable, it is semi-separable.

• If k is separable, then Ak has a finite number of non-

zero singular values, denoted σi(Ak).
• If k ∈ L2([−h, 0] × [−h, 0]), then Ak is a compact,

Hilbert-Schmidt operator and so
∞
∑

i

σi(Ak)2 < ∞

• The class of semi-separable operators is not of the “trace

class”, i.e. there exist semi-separable functions, k, such

that
∞
∑

i

σi(Ak) = ∞.

A simple example of a kernel for a non-“trace class”

operator is k1(t)k2(s) = 0 and k3(t)k4(s) = 1.

• Any non-negative compact Hermetian operator A has a

compact Hermitian square root B such that A = B∗B

One possible explanation for the effectiveness of semi-

separable kernel methods is that positive operators defined

by polynomial semi-separable kernels will be non-zero on a

dense subset of L2.

V. THE DERIVATIVE OF A FUNCTION WITH

SEMI-SEPARABLE KERNEL

In this section, we consider the derivative of the functional

defined by a semi-separable kernel on the vector field defined

by a linear time-delay system of the following form.

ẋ(t) =
k

∑

i=0

Aix(t − hi) (4)

Solutions of this type of system are well-defined, and we

have the following result.

Proposition 3: Suppose that N1 and N2 are continuous,

differentiable functions. Let

V (x) =

∫ 0

−h

∫ 0

−h

x(s)N(s, t)x(t) ds dt (5)

where

N(t, s) =

{

N1(t, s) s < t

N2(t, s) s ≥ t.

Then V̇ (x) along trajectories of Equation 4 is given by

V̇ (x) =

∫ 0

−h





x(t)
x(t − h)

x(θ)





T

D(θ)





x(t)
x(t − h)

x(θ)





−

∫ 0

−h

∫ 0

−h

x(θ)T E(θ, ω)x(ω) dω dθ,

where

D(θ) =





0 0 N1(0, θ)
0 0 −N2(−h, θ)

N2(θ, 0) −N1(θ,−h) 0





and

E(θ, ω) =

{

∂
∂ω

N1(θ, ω) + ∂
∂ω

N1(θ, ω) θ < ω
∂

∂ω
N2(θ, ω) + ∂

∂ω
N2(θ, ω) θ ≥ ω.

Proof: Suppose x is a trajectory of Equation 4. Then

V (t) =

∫ 0

−h

∫ θ

−h

x(t + θ)T N1(θ, ω)x(t + ω) dθ dω

+

∫ 0

−h

∫ 0

θ

x(t + θ)T N2(θ, ω)x(t + ω) dθ dω

= V1(t) + V2(t).

Now we will examine these parts individually.

V̇1(t) =

∫ 0

−h

∫ θ

−h

ẋ(t + θ)T N1(θ, ω)x(t + ω) dθ dω

+

∫ 0

−h

∫ θ

−h

x(t + θ)T N1(θ, ω)ẋ(t + ω) dθ dω

By noting that ∂
∂t

x(t+θ) = ∂
∂θ

x(t+θ) and using integration

by parts on the first term of V1, we obtain

∫ 0

−h

ẋ(t + θ)T

∫ θ

−h

N1(θ, ω)x(t + ω) dω dθ

= x(t)T

∫ 0

−h

N1(0, ω)x(t + ω) dω

−

∫ 0

−h

x(t + θ)T N1(θ, θ)x(t + θ)dθ

−

∫ 0

−h

x(t + θ)T

∫ θ

−h

(

∂

∂θ
N1(θ, ω)x(t + ω) dω

)

dθ.

Similarly for the second term,

∫ 0

−h

x(t + θ)T

∫ θ

−h

N1(θ, ω)ẋ(t + ω) dθ dω

=

∫ 0

−h

x(t + θ)T (N1(θ, θ)x(t + θ) − N1(θ,−h)x(t − h)) dθ

+

∫ 0

−h

x(t + θ)T

∫ θ

−h

∂

∂ω
N1(θ, ω)x(t + ω) dθ dω.

Collecting terms, we have

V̇1(x) = −x(t + θ)T

∫ 0

−h

N1(ω,−h)x(t − h) dθ

+

∫ 0

−h

x(t)T N1(0, ω)x(t + ω)dω

−

∫ 0

−h

∫ θ

−h

x(t + θ)T
( ∂

∂ω
N1(θ, ω)

+
∂

∂ω
N2(θ, ω)

)

x(t + ω)dωdθ
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A Similar analysis of V2 yields the following results.

V̇2(x) = −x(t − h)T

∫ 0

−h

N2(−h, ω)x(t + ω) dω

+

∫ 0

−h

x(t + θ)T N2(θ, 0)x(t)dθ

−

∫ 0

−h

∫ 0

θ

x(t + θ)T
( ∂

∂ω
N2(θ, ω)

+
∂

∂ω
N2(θ, ω)

)

x(t + ω)dωdθ

By combining V̇1 and V̇2, we obtain the desired result.

A. Multiple Delays

For the case of multiple delays, the functions may be

discontinuous at points hi. The derivatives are therefore more

complicated. For taking the derivative, it is convenient to

decomposed the kernels into separable and semi-separable

parts as follows

V (t) = V1(t) + V2(t).

The separable part is defined by a piecewise-polynomial

kernel, Q.

V1(t) =

∫ 0

−h

∫ 0

−h

x(t + θ)T Q(θ, ω)x(t − ω) dθ dω

The semi-separable part is defined by piecewise-

polynomial kernels, N1 and N2, as follows.

V2(t) =

k
∑

i=1

∫

−hi−1

−hi

∫ θ

−hi

x(t + θ)T N1(θ, ω)x(t − ω) dθ dω

+

k
∑

i=1

∫

−hi−1

−hi

∫

−hi−1

θ

x(t + θ)T N2(θ, ω)x(t − ω) dθ dω (6)

Since the derivative of a separable kernel is already well-

known, we can instead focus on the derivative of the semi-

separable part. We have the following framework for the

functional and its derivative.

Y =
{

N : [−h, 0]× [−h, 0] → S
n |

N(s, t) = N(t, s)T for all s, t ∈ [−h, 0]

N is C1 on Hi × Hj for all i, j = 1, . . . , k

and for s 6= t
}

Z1 =
{

D : [−h, 0] → S
(k+2)n |

Dij(t) is constant for all t ∈ [−h, 0]

for i, j = 1, . . . , 3

D is C0 on Hi for all i = 1, . . . , k
}

Z2 =
{

E : [−h, 0]× [−h, 0] → S
n |

E(s, t) = E(t, s)T for all s, t ∈ [−h, 0]

E is C0 on Hi × Hj for all i, j = 1, . . . , k

and for s 6= t
}

Here D ∈ Z1 is partitioned according to

D(t) =







D1,1 . . . D1,k+1(t)
...

...

Dk+1,1(t) . . . Dk+1,k+1(t)






(7)

where Di,j ∈ R
n×n. Let Z = Z1 × Z2. The derivative of a

Lyapunov function can be defined as a linear map Y 7→ Z .

This is made explicit in the following definition.

Definition 4: Define the map L : Y → Z by (D, E) =
L(N) if for all t, s ∈ [−h, 0] and i = 1, · · · , k, we have

Di,k+1(t) =

{

− 1
2 (N1(θ,−hi) + N2(−hi, θ)) θ ∈ Hi

1
2 (N1(−hi, θ) + N2(θ,−hi)) θ ∈ Hi+1

where those values undefined by symmetry are zero and

E(θ, ω) =











∂
∂ω

N1(θ, ω) + ∂
∂ω

N1(θ, ω) θ < ω, θ, ω ∈ Hi

∂
∂ω

N2(θ, ω) + ∂
∂ω

N2(θ, ω) θ ≥ ω, θ, ω ∈ Hi

0 otherwise.
Here D is partitioned as in (7).

Lemma 5: Suppose N ∈ Y and V is given by (6). Let

(D, E) = L(M, N). Then the Lie derivative of V on the

vector field of (4) is given by

V̇ (φ) =

∫ 0

−h











φ(−h0)
...

φ(−hk)
φ(s)











T

D(s)











φ(−h0)
...

φ(−hk)
φ(s)











ds

−

∫ 0

−h

∫ 0

−h

φ(s)T E(s, t)φ(t) ds dt. (8)

Proof: The proof is now a straightforward extension of

the single-delay case. In particular, if

Vi(x) =

∫

−hi−1

−hi

∫ θ

−hi

x(t + θ)T N1(θ, ω)x(t − ω) dθ dω,

+

∫

−hi−1

−hi

∫

−hi−1

θ

x(t + θ)T N2(θ, ω)x(t − ω) dθ dω,

then

V̇i(x) =

∫

−hi−1

−hi





x(t − hi−1)
x(t − hi)

x(θ)





T

D(θ)





x(t − hi−1)
x(t − hi)

x(θ)





−

∫

−hi−1

−hi

∫

−hi−1

−hi

x(θ)T E(θ, ω)x(ω) dω dθ,

where

D(θ) =





0 0 N1(−hi−1, θ)
0 0 −N2(−hi, θ)

N2(θ,−hi−1) −N1(θ,−hi) 0





for θ ∈ Hi and

E(θ, ω) =































∂
∂ω

N1(θ, ω) + ∂
∂ω

N1(θ, ω) θ < ω

θ, ω ∈ Hi

∂
∂ω

N2(θ, ω) + ∂
∂ω

N2(θ, ω) θ ≥ ω

θ, ω ∈ Hi

0 otherwise.
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Since V =
∑k

i=1 Vi, we have the desired result.

VI. NUMERICAL INVESTIGATIONS

In this section, we illustrate through a number of examples

the importance of semi-separable kernels for the stability

of linear time-delay systems. To this end, we compare

algorithms which include semi-separable kernels with ones

which only include separable kernels. We begin with what

is perhaps the best understood linear time-delay system.

ẋ(t) = −x(t − τ)

It is well-known that this system is stable for τ ≤ π
2 .

The following summarizes the results of our numerical

experiments as applied to this problem.

Maximum Stable Delay

degree bound 0 2 4

semi-separable kernel 1.417 1.564 1.570

separable kernel 1.417 1.532 1.532

true 1.5708

TABLE I

τmax USING A FIXED DEGREE BOUND OF 4 ON THE FIRST PART OF THE

FUNCTIONAL AND A VARIABLE BOUND ON THE SECOND PART

We now consider a randomly chosen example.

ẋ(t) =

[

−1 −1
.1 −.2

]

x(t) +

[

0 1
1 0

]

x(t − τ)

Maximum Stable Delay

# of bases 0 1 2

semi-separable kernel 1.586 1.693 1.694

separable kernel 1.586 1.690 1.690

true 1.6941

TABLE II

τmax USING A FIXED DEGREE BOUND OF 4 ON THE FIRST PART OF THE

FUNCTIONAL AND A VARIABLE BOUND ON THE SECOND PART

In our numerical experiments, we chose a relatively high

fixed degree for the first part of the Lyapunov function

and observe the improvement in accuracy as the degree of

the semi-separable kernel function is increased. The reason

for this is that increasing the degree of the first part of

the functional generally results in an increase in accuracy.

Therefore, if we want to separate out the increase in accuracy

due only to the semi-separable kernel, we must maintain

a fixed degree for the first term. We cannot simply leave

off the first term because when considering the derivative

transformation (D, E) = L(N), for a given degree of N ,

the degree of D will be at least N/2. Therefore, for a

nonzero degree N , the first term must have nonzero degree

in order for the first term of the derivative to be negative.

The end result is that for many of examples we considered,

using the multiplier alone was sufficient to obtain accuracy

to 4 significant digits. However, for the examples given here,

the effect of the kernel is clear, if only at higher levels of

accuracy.

The interesting feature of the results presented in this

section is not necessarily the quantitative rate of increase

in accuracy due to increasing polynomial degree, but rather

the qualitative shape of the increase. While for a separable

kernel, there is no increase in accuracy above polynomials

of degree 2, for semi-separable kernels, there is a consistent

increase in accuracy for increasing the degree at any level.

This is a feature we have observed in all numerical examples.

VII. CONCLUSION

In this paper, we give a parametrization of a certain

class of positive kernels using positive semidefinite matrices.

These kernels are used to construct Lyapunov functions

for infinite-dimensional systems. Although the application

given in this paper is on time-delay systems, it is expected

that the Lyapunov functions presented here can be used on

any system with a state space defined by L2. Finally, we

note that the class of “semi-separable” kernels considered

in this paper is significantly larger than that defined simply

by polynomials, with a number of important properties.

Although the results presented here are mostly motivated

by observed improvements in numerical accuracy, active

research is focused on providing a more rigorous explanation.
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