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Adaptive Neural Control for Uncertain Nonlinear Systems in
Pure-feedback Form with Hysteresis Input

Beibei Ren!, Shuzhi Sam Ge'*, Tong Heng Lee! and Chun-Yi Su?

Abstract—In this paper, adaptive neural control is inves-
tigated for a class of unknown nonlinear systems in pure-
feedback form with the generalized Prandtl-Ishlinskii hysteresis
input. The non-affine problem both in the pure-feedback form
and in the generalized Prandtl-Ishlinskii hysteresis input func-
tion is solved by adopting the Mean Value Theorem. By utilizing
Lyapunov synthesis, the closed-loop control system is proved to
be semi-globally uniformly ultimately bounded (SGUUB), and
the tracking error converges to a small neighborhood of zero.
Simulation results are provided to illustrate the performance
of the proposed approach.

I. INTRODUCTION

Control of nonlinear systems with unknown hysteresis
nonlinearities has been an active topic, since hysteresis
nonlinearities are common in many industrial processes. It is
challenging to control a system with hysteresis nonlinearities,
because they severely limit system performance such as
giving rise to undesirable inaccuracy or oscillations and even
may lead to instability [1]. In addition, due to the nonsmooth
characteristics of hysteresis nonlinearities, traditional con-
trol methods are insufficient in dealing with the effects of
unknown hysteresis. Therefore, advanced control techniques
are much needed to mitigate the effects of hysteresis.

One of the most common approaches is to construct an
inverse operator to cancel the effects of the hysteresis as in
[1] and [2]. However, it is a challenging task to construct
the inverse operator for the hysteresis, due to its complexity
and uncertainty. To circumvent these difficulties, alternative
control approaches that do not need an inverse model have
also been developed in [3]- [6]. In [3] and [4], robust adaptive
control and adaptive backstepping control were, respectively,
investigated for a class of nonlinear system with unknown
backlash-like hysteresis. In [5] and [6], adaptive variable
structure control and adaptive backstepping methods, respec-
tively, were proposed for a class of continuous-time nonlinear
dynamic systems preceded by a hysteresis nonlinearity with
the conventional Prandtl-Ishlinskii model representation.

In this paper, we consider a class of unknown nonlinear
systems in pure-feedback form which are preceded by a gen-
eralized Prandtl-Ishlinskii hysteresis input. Compared with
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the backlash-like hysteresis and the conventional Prandtl-
Ishlinskii hysteresis model discussed in the above works
[3]- [6], the generalized Prandtl-Ishlinskii hysteresis model
proposed in [7], can capture the hysteresis phenomenon
more accurately and accommodate more general classes of
hysteresis shapes, by adjusting not only the density function,
but also the input function. However, the difficulty in dealing
with the generalized Prandtl-Ishlinskii hysteresis model lies
in that the input function in the generalized Prandtl-Ishlinskii
hysteresis model is unknown and non-affine. Motivated by
[8], in this paper, we will adopt the Mean Value Theorem
to transform the unknown non-affine input function to a
partially affine form, which can be handled by extending
some available techniques for affine nonlinear system control
in the literature.

For pure-feedback systems, the cascade and non-affine
properties make it quite difficult to find the explicit virtual
controls and the actual control to stabilize the pure-feedback
systems. In [9] and [10], much simpler pure-feedback sys-
tems where the last one or two equations were assumed
to be affine, were discussed. In [11], an “ISS-modular”
approach combined with small gain theorem was presented
for adaptive neural control of the completely non-affine pure-
feedback system. In this paper, we also consider a class of
unknown nonlinear systems in pure-feedback form. The non-
affine problem in the control variable and virtual ones is dealt
with by adopting the Mean Value Theorem, motivated by the
works [8], without the strong assumptions that the last one
or two equations are affine as in [9] and [10]. The unknown
virtual control directions are dealt with by using Nussbaum
functions. To the best of our own knowledge, it is the first
time, in the literature, to investigate the tracking control
problem of unknown nonlinear systems in pure-feedback
form with the generalized Prandtl-Ishlinskii hysteresis input.

II. PROBLEM FORMULATION AND PRELIMINARIES
Throughout this paper, () = (A) — (), || - || denotes the
2-norm, Amin(+) and Apax(-) denote the smallest and largest

eigenvalues of a square matrix (-), respectively.

A. Problem Formulation

Consider the following class of unknown nonlinear system
in pure-feedback form whose input is preceded by the
uncertain generalized Prandtl-Ishlinskii hysteresis:

ij = fi(Zj,zj41), 1<j<n-—1
jj’n = fn (jna u) + d(t)
y = o (1)
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where Z; = [21,...,;]T € R7 is the vector of states of the
first j differential equations, and #, = [x1,...,7,]T € R";
fj(-) and f,(-) are unknown smooth functions; d(t) is a
bounded disturbance; y € R is the output of the system;
and v € R is the input of the system and the output
of the hysteresis nonlinearity, which is represented by the
generalized Prandtl-Ishlinskii model in [7] as follows

D
u®) = b0 - [ pnRpOs
0
£ [v](0) h(v(0),0)
F.[v](t) = he(v(t), Fr[v](t;)), for t; <t <tiq,
0<i<N-1
hr(v,w) = max(v—r,min(v+r,w))
where v is the input to the hysteresis model; 0 = ¢y <

t;1 < .. <ty = tg is a partition of [0,¢g] such that the
function v is monotone on each of the subintervals (¢;,t;11];
p(r) is a given density function, satisfying p(r) > 0 with
fooo rp(r)dr < oo; D is a constant so that density function
p(r) vanishes for large values of D; F.[v](t) is known as
the play operator; and h(v) is the hysteresis input function
that satisfies the following assumptions [7]:

Assumption 1: The function h R — R is odd,
non-decreasing, locally Lipschitz continuous, and satisfies
lim,—, o h(v) — oo and %(vv) > 0 for almost every v € R.

Assumption 2: The growth of the hysteresis function h(v)
is smooth, and there exist positive constants hy and h; such
that 0 < hg < L) < ;.

The objective is to design adaptive neural control v(¢) for
system (1) (2) such that all signals in the closed-loop system
are bounded, while the tracking error converges to a small
neighborhood of zero.

To facilitate the control design later in Section III, the
following assumptions are needed.

Assumption 3: The desired trajectory yg4, and their time
derivatives up to the nth order yc(in), are continuous and
bounded.

Based on Assumption 3, we define the trajectory vector
Zag+1) = [Ya Yd - (J)] ,j=1,...,n—1, which is a vector
from y4 to its j- th time derivative, y(J )
in the subsequent control design.

Assumption 4: There exists an unknown constant d* such
that |d(t)| < d*.

Assumption 5: There exist a known constant 4z, such
that p(r) < ppas for all 7 € [0, D].

According to the Mean Value Theorem [12], we can express

which will be used

fi(,+) in (1) as follows:
_ _ af'(j”x'+1)
Fi@E,aim) = fi(Z,20,) + jaxjij 0,
J+1 Tj+1=T 5041
X(zj41—afy,), 1<j<n 3)
where z,.1 = u, and %H i1 + (1 — 6;)29,,
with 0 < 6; < 1. By choosing z9,, = 0, and define
e _
9i(@j ) = [8fj(xj,mj+1)/0xj+1]’m . (3) can

GH1=T 50
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be written as

_ _ _ 9]’
fi@j,zi010) = f3(25,0) +9;(Z5, 2% )ri @)
Substituting (4) into (1), we have
. _ _ .
;= [;(2;,0) +9;(Tj, x4 )T541, 1<j<n—1
Tn = fn( T, ) + gn(xn; en)u + d(t)
y T 5)

In addition, according to the Mean Value Theorem [12],
there also exists a constant 8y (0 < 6y < 1) such that
the unknown input function h(v) in (2) satisfies h(v)
h(v*) + =5 ah( ) ,. (v—v"), where 0% = gv + (1 — Op)v*
Accordlng to K?suronptions 1 and 2, and the Implicit function
Theorem [13], we can find v* such that h(v*) = 0. Defining
go(v¥) = L we have h(v) = go(v®)(v — v*).
Therefore, we can Tewrite (2) as

D
u(t) = o0 — go(v® )" — / p(r) . [0](£)di(6)
0

Substituting (6) into (5) leads to our unified system:

B = fi(5,0) +g;(Tj,27,)wj01, 1<j<n—1
in = fal@n,0) + gn(@n, u")[go(v%)v — go(v?)v*
D
- / p(r) o o)(0)dr] + d(t)
y = o @)

Assumption 6: There exist constants 9; and g; such that
0<gj<|gj()|<gj<oo forj=1,..

The following lemma is useful for estabhshlng the stability
properties of the closed-loop system.

Lemma 1: [14] Let V(-), {(-) be smooth functions de-
fined on [0,t7) with V(t) > 0, ¥t € [0,f), and N(-) be
an even smooth Nussbaum-type function. If the following
inequality holds:

V) < cote / ()N + 1éer™dr

where c( represents some suitable constant, ¢; is a positive
constant, and ¢(-) is a time-varying parameter which takes
values in the unknown closed 1ntervals I = [I7,I"], with
0¢I,then V(¢ fo ¢){dr must be bounded on

[0,t).
III. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will investigate adaptive neural control
for the system (7) using the backstepping method [15] com-
bined with neural networks approximation. The backstepping
design procedure contains n steps and involves the following
change of coordinates: z; T1 — Yd, Zi = Tij — Qi_1,
i = 2,...,n, where «; are virtual controls which shall be
developed for the corresponding ¢-subsystem based on some
appropriate Lyapunov functions V;. The control law v(t) is
designed in the last step to stabilize the entire closed-loop
system, and deal with the hysteresis term.
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Step 1: Since 21 = 1 — yg and 25 = x5 — a1, the
derivative of z; is

B2 g1(Z1, 29 (20 + 1) + Q1(Z1)

where Q1(Z1) = f1(21,0)—ga with Z1 = [Z1,94] € Qz, C
R2. To compensate for the unknown function Q(Z;), we
can use radial basis function neural network (RBFNN),
WIS(Zy), with Wy € R, §(Zy) € R™!, and the NN
node number [ > 1, to approximate the function Q1(Z1) on
the compact set €2z, as follows

Qi(Z1) = W{'S(Zy) — Wi'S(Zy) +e1(2y) )

where the approximation error £1(Z;) satisfies |e1(Z71)| <
€} with a positive constant 7. Substituting (9) into (8), we
obtain

®)

91(Z1,25") (22 + o) + W{S( Zy)
+51(Z1) (10)

Choose the following virtual control and adaptation laws:

21 Zl)_WlTS(

o N(C)[krz1 + WES(21))] (11)
C'l = k‘lzf + 2’1W1TS(Z1) (12)
Wl = Fl[Zl;S’(Zl) — 0'1W1] (13)

where Ty =T'7 € R > 0, k; > 0 and o7 > 0.
Consider the following Lyapunov function candidate

1 1= ~
V= ng + 5WlTr;lW1 (14)
The time derivative of (14) along with (10)-(13) is

Vi + (g1 (21, 23) N1 (G1) + 1]

+01(F1,25) 2120 — I WEW + |21l (15)

< k2t

Using the Young’s inequality, the following inequalities hold:

= s Wi |2 Wy
—0’1W1TW1 < _01” 1l o [W7|| (16)
2 2
€ —_— €
21181 = dey C11&1
— 6 Z2 01y .2
g1(T1, 29 )z122 < 4 c1201 (F1,75")z5  (18)

4cio
Substituting (16)-(18) into (15) results in

Vi < —mVi+ [g(@1, 28 )N1L(G) + 16+ o
+c1063 (T, 25 ) 22 (19)
where ;1 and p; are positive constants, which are defined as
1 1 g1
= min{2(k; — — ,
71 { ( 1 Acyy dero )\maX(F;1)}
o1 lIW 2 y
A L

Multiplying both sides of (19) by ¢71¢ and integrating it over
[0, ], we have

<

t
Vi PLyvio) + e*”t/ [91(Z1, 25 ) N1(G1) + 116

§a! 0

t
eNTdr + e_'“t/ 1297 (F1, 29" )25€ Tdr (20) V< ¢+ e_’y']t/
0 0
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Noting Assumption 6, the last term of (20) satisfies

5()]

C12 _
—g; sup [z

t
e*“’lt/ clggf(a_cl,xgl)zgeV”dT <
0 Y1 7o,

where gy is the upper bound for |gi(-)| as defined in
Assumption 6. Therefore, if z» can be kept bounded over
a finite time interval [0 t f) we can obtain the boundedness
of the term e 71‘5] c1293(Z1, 25" )23 " dr. Furthermore,
(20) can be written as

t
ete ™ [ln@adni) + aedr @
0

% + V1(0) + m91 SUPrejo, tf][zz( 7)]. Ac-
cording to Lemma 1, we can conclude that Vi, (i, Wl,
fg[gl(:fl,:cgl)Nl(Cl) + 1]¢1e"7dr are all bounded on
[0,tf). According to Proposition 2 [16], t; = oo and we
know that z; and W; are SGUUB. The boundedness of zo
will be dealt with in the following steps.

where ¢

Step j (2 < j < n): The derivative of z; = x; — a;_1 is

. _ _ b .
zio= [i(@,0) +9;(@5, 2 )i — 1 (22)
Since oj_; is a function of Ej,l,:ﬁdj,gj,l,Wl, ...,Wj,l,

its derivative, ¢v;_1, can be expressed as

. Oavi_
Qi1 = Z 537% fe(@rs Tig1) + 051 (23)
k=1
where
i—1
(’)aj,l 804371 - X 80@‘71 4
D 1—WQ71+ bE dj+ZaAka (24)

which is computable. As such, ;1 can be seen as a function

of z;, ch ! 6g;k1 ,¢;—1. Further, we can rewrite (22) as

. _ 9j T ¥
g < (@520, (2 + ap) + (W) = W])S(Z;)

+e; (25)
where WTS (Z;) is used to approximate the unknown func-
tion Qj( i) = fj(wj70) ¢;—1 on the compact set €2z,

with Z; = [2;, 3401 %5
the approximation error €;(Z;) satisfies |, (

positive constants 7.

Similar to the discussion in Step 1, we consider the
following Lyapunov function candidates, virtual controls and
adaptation laws:

,0j—1] € Qz, C R¥, and
Zj)| < g5 with

Vi = 55 +5 WTF "W (26)
aj = (Cj)[k‘zj +W[S(2))] 27
G = kg + 2 WS(Z)) (28)
W = Ty[28(2;) — o;Wj] (29)

where T; =T7 > 0, k; and o are positive constants.
Following the procedures outlined in Step 1, we have
t

[9 (27,27, )N; () + 1€ 7dr (30)
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where ¢; = 3(0) + 2257 sup,cpo, m[ 22 (7)), v =
. =112

min{2(k; 451]2) )\7} and p; = w +

Ci1E; *2_ Then, applying Lemma 1 the boundedness of V,,

¢ Wi, fo 9j(Zj,x fﬂ) 5(¢j) 4 1]¢j€"7dr can be readily
obtained. The boundedness of z;;; will be dealt with in the
Step (j +1).

Step n: In this final step, we will design the control input
v(t). Since z, = x,, — ay,—1, its derivative is given by

4(:‘]1

b = (@) g0 (0™)0 — go(%)"
D
—APMEMwwHﬂfﬂ%%ﬂfﬂ%)
ten(Zn) + d(t) 31)

where WWT S(Zy,) is used to approximate the unknown func-
tion @, (Z,) = fn(,0) — éy,—1 on the compact set Q7 C
R with Z, = [T, Tgot, ,8;“: L on1] € Qz, C R,
and the approximation error €,,(Z,,) satisfies |e,(Z,)| < €},

with a positive constant €.
Choose the following Lyapunov function candidate

1
V., = =224 WTF W, +—d2

2" 27q
D
+ 2 [ B r)ar (32)
27 Jo (:r)
where d = d — d*, p(t,r) = p(t, ) — Pmax d and p(t,r) are

the estimates of the disturbance bound d* and the density
function of p(r) respectively, I'), = I‘TTL > 0, and g4, v, are
positive constants.

The derivative of V,, defined in (32) along (31) is

V, =

%%@mwwmw%w—é p(r) F[o] ()dr] —

Zngn(ZTn, ufn )go(voo)v* + znVAVnTS(Zn) —
annTS(Zn) + znen(Zn) + 2,d(t) + WgF;an
1= g, [P )
+—dd + —/ t,r t,r)dr (33)
Yd Yo Jo ot )8 Blt.r)
From Assumptions 2 and 6, we know that

*| < C, where C is a positive constant.

n)| < el and Assumption 4, (33) becomes

|gn (2, u”" ) gov
Due to |e,(Z,

. D
v, < %%@Mﬁmwﬁw—ApMEmmm

+2aWLS(Zn) — 2nWES(Z) + |2a|(C + %)
Fanld® + WITZW, + - dd
Yd
_ D
Jn 0
In t,r)dr 34
+7p p(t,r )at p(t,r) (34)
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The following control and adaptation laws are proposed:

v o= NG [knzn +WTS(Z,) +d tanh(%")]
+vp, 35
: P p(t,r)
vy = —s1gn(zn)/ A |E-[v](t)|dr (36)
0 0
(n = kn2242,WES(Z )+zndtanh( Yy (37)
W, = TlenS(Zn) — 0nWil (38)
d = Yalzn tanh(%)faddA] (39)
3t p(t,r)
—Ypopp(t,7), p(t,r) > pmaz(40)
Yollznl|Fr 0] ()] — opp(t, 7)), 0 < p(t,7) < Pz

where o, and w are positive constants.

Substituting (35)-(39) into (34), and using Young’s In-
equality and the property of the hyperbolic tangent function
0 < |2,| — 25 tanh(Z2) < 0.2785w, we obtain that

. 1
th < _(kn - 4c 1)Z + [gn('r u )90( ) n(C’n)
: O'n||WnH2 Udd2 o’n”W;”Q
1 _ _
+ ]Cn D) 5 D)
oqd*? . * 2
+ +0.2785wd” + ca1 (g, + C)” + A(41)

where c,,1 is a positive constant and

wm/

D
o / p(r)F, o] (t)dr}
0

D

A

gn (@, u ”) - [wl(®)]dr

@
Tp

p(t, r)gt

(,u’ |zn|/ p(t, )| F-[v] (¢)|dr

+ p(t,r)dr

IN

+9n

. pumapuMd

(42)
According to (40), the adaptation law for the estimate of
density function p(¢,r) comprises two cases, due to the
different regions which p(¢, r) belong to. Therefore, we also
need to consider two cases for the analysis of (42):

Case(a): When r € Doz = {r : p(t,7) > Dmaz} C
[0, D], according to (40), we have

B(t,r) 20, —p(tr) = —popp(t,r)  (43)
Substituting (43) into (42), we have
A< o [ peoptnd @
r€Dmax

Case (b): When r € Dy, .., which is the complement set
of Dpaz in [0, D], ie., 0 < p(t,7) < Dmaz- In this case,
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from(40), we have

ﬁ(t,r) < 0 45)
0 . R
EP(L r) = 7p[|2n‘|Fr [w](t)| — opp(t, 7)] (46)
Substituting (45) and (46) into (42), we have
A < —ga(wu® |zn|/ Bt o] (D) dr
suleal [ pter VI l(0ldr
~on | e
reDS, .
< —apgn/ p(t, r)p(t,r)dr 47)
€De

max

Combining Case (a) with Case (b), (42) can be written as

A < —0,G, /OD p(t,r)p(t,r)dr (48)
By Young’s Inequality, we can rewrite (48) further as
A < T /OD Pt rdr + 0Py @)
Substituting (49) into (41), we have
Vi < =Va + (9@, ") 9o (™) Nu(Ga) + 1n + pa
(50)
where ~,, and p,, are positive constants defined as
= min(kn — ), e 0w 0]
pn = U”HZ/JHQ + Ud§*2 +0.2785wd* + cp1 () + C)?
L D)

Multiplying both sides of (50) and integrating over [0, ¢], we
have

p p !

Vo < 2 - Zge et [ g (o)
Tn Tn ) 0
90(v™) N (Gn) + 1)Gre™ 7 dr (52)

t
< et e [ lgalea o) Na(G)
0
+1)¢, e dr (53)
where ¢, = p—" + V,(0). According to Assumptions

1, 2, and 6, we can regard g, (z,u)go(v) in (53) as
g(+), which is a time-varying parameter and takes val-
ues in the known closed intervals I [hogn,hlgn],
with 0 ¢ . Using Lemma 1, we can conclude that
Vi(t),Cn(t) and hence z,(t), W,,d, are SGUUB. From
the boundedness of z,(t), the boundedness of the ex-
tra term e~ /-1t f(f Ctn-1292_1(Tn-1, xf{"l)zie%*”dT at
Step (n — 1) is readily obtained. Applying Lemma 1 for
(n — 1) times backward, it can be seen from the above

90
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iterative design procedure that Vj, z;, Wj, Jj, and hence, z;,
are SGUUB on [0, ).

The following theorem shows the stability and control
performance of the closed-loop adaptive system.

Theorem 1: Consider the closed-loop system consisting
of the plant (1) with the unknown hysteresis nonlin-
earities (2), and the control and adaptation laws (35)-
(40). Under Assumptions 1-6, given some initial conditions
zi(O),Wi(O),cZ(O) (¢ = 1,2,...,n), belong in Qg, we can
conclude that the overall closed-loop neural control system
is semi-globally uniformly ultimately bounded (SGUUB) in
the sense that all of the signals in the closed-loop system
are bounded i.e., the states and weights in the closed-loop
system will remain in the compact set defined by

.~ ~ 205
Q= {2 Wd|lz] < V2w WG < | [
Amin(rj )
4 < V2yapins j=1,00m.} (54)
where p; = c] + 90 with cjo being the upper bound
of e~ fo 9;(Z;, j+1) ECJ) ]CjevﬂdT Jj=1,.
and ¢; = 2+ V,(0) + 2252 sup.co l2 (7)), en =
Ly VL(0), Vi(0) = 122(0) + WT ()T W (0),
Vo(0) = 122(0) + sWT(0)L,'W,(0) + md%(O)
q" fo 2(0,7)dr, j = 1,...,n — 1. Furthermore, the states

and Welghts in the closed- loop system will eventually con-
verge to the compact set defined by

0 = Loyl < ot () < | —2
s Zjs Wis |ZJ‘ = :U’ja” ]” = mv
A < V2t j =1, (55)
where 1 = ¢+ cjo, j = 1l,..,n, and ¢; = 2 +
Cﬁg‘] SuPrejo, t][ j+1( )} C/n = pn’j 1,.,n—1

Proof: Based on the previous iterative derlvatlon proce-
dures from Step 1 to Step n of backstepping, from (21) (30)
to (53), andA according to Lemma 1, we can conclude that
Vj,zj, W;,d and hence z; are SGUUB, i = 1,2, ...,n, ie.,
all the signals in the closed-loop system are bounded.

From (53) lettlng cno be the upper bound of the term

e [ [gn (@, u ) go N (o) + 1€ dT, 1, = Cn + o,
and noting the definition of V,, in (32), we have

|Zn| < V2, ”WnH < |J| < V2Yapn

Similarly, in the rest of steps from n—1 to 1, letting c;q be the
upper bound of e~ 7s? fg[gj(jj’xgil)Nj(gj) + 1]¢e7dr
and p; = ¢j + ¢jo in (30), we can obtain

2] < V20, Wil <

Furthermore, we can rewrite (52) as
Pn

Tn

24p
>\min (F;I) ’

2414

N oy
)\min(Fj )

j=1,2,...,n—1.

8 ]6_%)& + Cno
n
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As t — oo, we have

Vi

(6]
S C/n + Cno
(71

where ¢}, = £=. Therefore, define u) = ¢, + c,0, we can

conclude that when ¢ — 00,

2l < V205, [[Wall <

(8]

2p7,

)\min (F; 1) ’

Similar conclusions can be made about z;, W; as follows

2] < \f2u5, W5 <

Pi
'Yj+

\d| < \/2var,

(91

[10]

205

ST
Amin (F] )

(11]

= %2?]]2 SUPreo,1] [Zg2'+1(7)]

. * _ ) . /
with pi = ¢} + ¢jo and ¢}
ast— oo.

[12]

TuA03.3

Q. Wang and C. Y. Su, “Robust adaptive control of a class of
nonlinear systems including actuator hysteresis with prandtl-ishlinskii
presentations,” Automatica, vol. 42, no. 5, pp. 859-867, 2006.

0. Klein and P. Krejci, “Outwards pointing hysteresis operators and
asymptotic behaviour of evolution equations,” Nonlinear analysis: real
world applications, vol. 4, no. 5, pp. 755-785, 2003.

S. S. Ge and J. Zhang, “Neural-network control of nonaffine nonlinear
system with zero dynamics by state and output feedback,” IEEE
Transactions on Neural Networks, vol. 14, no. 4, pp. 900-918, 2003.
D. Wang and J. Huang, “Adaptive neural network control for a class
of uncertain nonlinear systems in pure-feedback form,” Automatica,
vol. 38, pp. 1365-1372, 2002.

S. S. Ge and C. Wang, “Adaptive nn control of uncertain nonlinear
pure-feedback systems,” Automatica, vol. 38, no. 4, pp. 671-682,
2002.

C. Wang, D.J. Hill, S. S. Ge, and G. Chen, “An ISS-modular approach
for adaptive neural control of pure-feedback systems,” Automatica,
vol. 42, pp. 723-731, 2006.

T. M. Apostol, Mathematical Analysis, 2nd ed.
Addison-Wesley, 1974.

Reading, MA:

[13] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice
IV. SIMULATION STUDIES Hall, 1996.
[14] S.S. Ge, F. Hong, and T. H. Lee, “Adaptive neural control of nonlinear
Consider a second-order nonlinear system with the gen- time-delay systems with unknown virtual control coefficients,” IEEE
eralized Prandtl-Ishlinskii hvsteresis in (1). where — Transactions on Systems Man and Cybernetics Part B-Cybernetics,
: 1_}?’7, : ( )’_ i vol. 34, no. 1, pp. 499-516, 2004.
z2 + 0.05 Sln($2), f2 = 1+64722 +u+0.1 sm(u), d(t) = [15] M. Kistié, 1. Kanellakopoulos, and P. V. Kokotovié, Nonlinear and
2 . . s
0.1sin(6t), the density function p(r) = 0.086_0'0024(T_1) , Adaptive Control Design. New York: Wiley, 1995.
( ) y p ( ) [16] E. P. Ryan, “A universal adaptive stabilizer for a class of nonlinear
r € [0,100], and h(v)(t) = 0.4(Jv[arctan(v) + v). Our systems,” Systems & Control Letters, vol. 16, pp. 209-218, 1991.
objective is to make the output, y, to track the desired
trajectory, yq = 0.8sin(0.5¢) + 0.1 c.:os(?). g w
The simulation results are shown in Figures 1 and 2. From 5 ]
Figure 1, we can observe that the good tracking performance 8
has been achieved and the tracking error converge to a small % |
neighborhood of zero after a while. At the same time, the = 1
. . E
boundedness of the control signal v and the hysteresis output =
is shown in Figures 2. ime 50
V. CONCLUSION 1
Adaptive neural control has been proposed for a class of S 05f .
unknown nonlinear systems in pure-feedback form preceded 5 ]
by the uncertain generalized Prandtl-Ishlinskii hysteresis. We =
adopted the Mean Value Theorem to solve the non-affine £ -05f |
problem both in the unknown nonlinear functions of the -1 ] ‘ ‘ ‘
. . . . 0 10 20 30 40 50
system dynamics and in the unknown input function of the time
generalized Prandtl-Ishlinskii hysteresis model. The closed- Fig. 1. Tracking performance
loop control system has been theoretically shown to be
SGUUB using Lyapunov synthesis method. 6
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Fig. 2. Control signal and hysteresis output



