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Abstract— The ensemble Kalman filter for data assimilation
involves the propagation of a collection of ensemble members.
Under the assumption of time-sparse measurements, we avoid
propagating the ensemble members for all of the time steps
by creating an ensemble of models only when a new measure-
ment is made available. We call this algorithm the ensemble-
on-demand Kalman filter (EnODKF). We use guidelines for
ensemble size within the context of EnODKF, and demonstrate
the performance of EnODKF for a representative example,
specifically, a heat flow problem.

I. INTRODUCTION

State estimation for spatially distributed systems typically

entails nonlinear, high-dimensional dynamics. For these ap-

plications, state estimation is known in practice as data

assimilation. Applications range from weather forecasting,

to oceanography, to structural dynamics [1–3].

Data assimilation methods use variations of the basic

formalism of the classical Kalman filter. The most popular

methods replace the Riccati equation error covariance prop-

agation of the classical filter with an ensemble of models

that approximate the error covariance, which is subsequently

used to determine a data injection gain. Two such methods

are the ensemble Kalman filter (EnKF) [4], which is based

on stochastically sampled drivers, and the unscented Kalman

filter (UKF) [5], which is based on deterministically deter-

mined drivers for an ensemble of 2n + 1 members, where n
is the number of states. In the case of linear systems, UKF

exactly reproduces the results of the classical Kalman filter.

Many of the EnKF or UKF applications of interest

arise from extremely high-order dynamics. In particular, we

are interested in the global ionosphere-thermosphere model

(GITM) [6], whose 106 states require a several-hundred-node

computing cluster for real-time simulation. Real-time data

assimilation based on UKF would require several million

nodes, which is not feasible in the foreseeable future.

For very large scale systems, EnKF has the dubious ad-

vantage over UKF in that the number of ensemble members

is not specified. However, useful guidance for the appropriate

size of the EnKF ensemble based on linearized analysis is

given in [7]. This analysis provides a key role in the present

paper, as explained below.
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In the present paper we are motivated by the need to

perform data assimilation on a system such as GITM, where

propagation of an ensemble throughout the data assimilation

process is prohibitive. In particular, as is often the case in

practice, we assume that the available measurements are time

sparse, that is, occur infrequently. When measurements are

available at every time step, UKF methods for systems with

underlying continuous-time dynamics are given in [8]. How-

ever, these methods are prohibitive for large scale systems,

and are not needed for systems in which the underlying

dynamics are given in time-discretized form.

Under the assumption of time-sparse measurements, we

avoid propagating the ensemble members for all of the time

steps by creating an ensemble of models only when a new

measurement is made available. We then propagate this en-

semble into the future, thereby generating an error-covariance

matrix, which, in turn, is used to create a data injection gain,

which, finally, is used to assimilate the measurements at the

time step at which the measurements became available. Once

the measurements are assimilated, only a single simulated

model is updated until new measurements become available.

We call this algorithm the ensemble-on-demand Kalman

filter (EnODKF). EnODKF is suboptimal since the past

history of the error covariance is lost each time the ensemble

is collapsed and thus disbanded. However, the computational

advantages of not updating the complete ensemble through-

out the process can facilitate data assimilation in applications

that would otherwise be prohibitive.

The goal of the present paper is to present EnODKF and

numerically investigate its properties within the context of

linear systems. Nonlinear applications are readily addressed,

but are deferred to future work. A key element of our inves-

tigations is the analysis of ensemble size based on the work

of [7]. We provide a self-contained proof of the result of [7],

which provides guidance on the size of the ensemble needed

to accurately estimate the error covariance. We use this

guidance within the context of EnODKF, and demonstrate

the performance of EnODKF for a representative example,

specifically, a heat flow problem.

II. ENSEMBLE KALMAN FILTER (ENKF)
Consider the discrete-time nonlinear dynamic system

xk+1 = f(xk, uk, k) + wk, k = 0, 1, 2, . . . , (2.1)

with measurements

yk = h(xk, k) + vk, k ∈ Kd, (2.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, and Kd denotes the

set of time steps at which measurements yk are available.
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The input uk is assumed to be known for all k ≥ 0, and

wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean white

noise processes with covariances Qk and Rk, respectively.

We assume that Rk is positive definite.

Equation (2.2) denotes that measurements are not available

at every time step. When data are not available, the ensemble

members are updated by means of a forecast step only.

However, when data are available, the ensemble members

are updated by both a data assimilation step and a forecast

step. We now summarize the steps of the ensemble Kalman

filter. For an ensemble consisting of q members at the kth

step, EnKF is given by the following procedure:
For k /∈ Kd:

Forecast Step

xf,i
k+1 = f(xf,i

k , uk, k) + wi
k, i = 1, . . . , q, (2.3)

xf
k+1 =

1

q

q
∑

i=1

xf,i
k+1. (2.4)

For k ∈ Kd:
Data Assimilation Step

yf,i
k = h(xf,i

k , k) + vi
k, yf

k =
1

q

q
∑

i=1

yf,i
k , (2.5)

Ef
x,k �

[

xf,1
k − xf

k · · · xf,q
k − xf

k

]

, (2.6)

Ef
y,k �

[

yf,1
k − yf

k · · · yf,q
k − yf

k

]

, (2.7)

P f
xy,k=

1

q − 1
Ef

x,k(Ef
y,k)T, P f

yy,k=
1

q − 1
Ef

y,k(Ef
y,k)T (2.8)

Kk = P f
xy,k(P f

yy,k)−1, (2.9)

xda,i

k =xf,i
k +Kk

(

yk− yf,i
k

)

, i = 1, . . . , q, (2.10)

xda
k =

1

q

q
∑

i=1

xda,i

k . (2.11)

Forecast Step

xf,i
k+1 = f(xda,i

k , uk, k) + wi
k, i = 1, . . . , q, (2.12)

xf
k+1 =

1

q

q
∑

i=1

xf,i
k+1. (2.13)

To reproduce the process noise statistics, the noise term

wi
k, which drives the ith ensemble member, is generated

deterministically or is sampled, for instance, from a normal

distribution with mean zero and covariance Qk. Likewise, vi
k

can be sampled from a normal distribution with mean zero

and covariance Rk and added to the residual yk −h(xf,i
k ) in

order to reproduce the measurement noise statistics.

Figure 1 illustrates EnKF. Each ensemble member is

updated by time-sparse measurement data, and is propagated

independently when data are not available.

III. ENSEMBLE SIZE FOR LINEAR SYSTEMS

The accuracy of EnKF improves as the number of ensem-

ble members is increased. However, a large number of en-

semble members may be computationally intractable in terms

of computation time and memory. Therefore, it is necessary

to determine the minimum ensemble size that can adequately

Step

Data Assimilation

time data

Forecast Step

Kk = P f
xy,k(P f

yy,k)−1Ef
x,k, Ef

y,k P f
xy,k, P f

yy,k

xf,i

k+1
= f( xda,i

k
, uk, k) + wi

k, i = 1, . . . , q, k ∈ Kd,

xf,i

k+1
= f(xf,i

k
, uk, k) + wi

k, i = 1, . . . , q, k /∈ Kd.

xda,i

k
= xf,i

k
+ Kk

(

yk − h(xf,i

k
) + vi

k

)

, i = 1, . . . , q.

Fig. 1. Diagram of ensemble Kalman filter.

approximate the mean of the states and the error covariance.

We now examine the required number of ensemble members

for the case of linear dynamics. Specifically, we consider the

linear system

xk+1 = Akxk + wk, (3.1)

where xk ∈ R
n, Ak ∈ R

n×n, and wk ∈ R
n is a random

disturbance with mean zero and covariance Qk.

Lemma III.1. Let S1 ⊆ R
l and S2 ⊆ R

l be subspaces, and
assume that

dim S1 + dim S2 ≤ l, (3.2)

where dim denotes dimension. Then there exists an orthogonal
matrix S ∈ R

l×l such that

SS2 ⊆ S
⊥

1 . (3.3)

Proof. Let n1 = dim S1 and n2 = dim S2. Let M1 ∈ R
l×n1 ,

M2 ∈ R
l×n2 be matrices whose columns are an orthonormal basis

for S1 and S2, respectively. Next, let Mc
1 ∈ R

l×(l−n1) be a matrix

composed of l−n1 orthonormal vectors that are also orthogonal to

each column vector of M1, and let Mc
2 ∈ R

l×(l−n2) be defined

similarly. Now define S � [ Mc
1 M1] [ M2 Mc

2 ]−1 ∈ R
l×l .

Hence [ SM2 SMc
2 ] = [ Mc

1 M1]. Since l−n1 ≥ n2, it follows

that SS2 = R(SM2) ⊆ R(Mc
1 ) = S

⊥
1 , where R denotes range.

The following result is stated without proof in [7].

Fact III.1. Let xf,1
k , . . . , xf,q

k ∈ R
n, and define

Hk � [Akxf,i
k −Akxf

k, . . . , Akxf,q
k −Akxf

k] ∈ R
n×q, (3.4)

where xf
k � 1

q

∑q

i=1 xf,i
k . Then there exist w1

k, . . . , wq

k ∈ R
n such

that

q
∑

i=1

wi
k = 0, (3.5)

q
∑

i=1

wi
k

(

Akxf,i
k − Akxf

k

)T

= 0, (3.6)

1

q − 1

q
∑

i=1

wi
kwiT

k = Qk, (3.7)

if and only if

rank(Hk) + rank(Qk) + 1 ≤ q, (3.8)
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Now, let

xf,i
k+1 = Akxf,i

k + wi
k, i = 1, . . . , q. (3.9)

Then

xf
k+1 = Akxf

k, (3.10)

P f
xx,k+1 = AkP f

xx,kAT
k + Qk, (3.11)

where xf
k+1 � 1

q

∑q

i=1 xf,i
k+1, P f

xx,k �

1
q−1

∑q

i=1

(

xf,i
k − xf

k

) (

xf,i
k − xf

k

)T

, and P f
xx,k+1 �

1
q−1

∑q

i=1

(

xf,i
k+1 − xf

k+1

) (

xf,i
k+1 − xf

k+1

)T

.

Proof. Defining

Wk � [w1
k · · · wq

k] ∈ R
n×q, (3.12)

(3.5)-(3.7) can be written as




11×q

Hk

Wk



 WT
k =





0
0

(q − 1)Qk



 , (3.13)

where 11×q is the 1 × q ones matrix. Letting colj(M) denote the

jth column of M , (3.13) can be written as




11×q

Hk

Wk



 colj(W
T
k ) =





0
0

(q − 1) colj(Qk)



 , j = 1, . . . , n.

(3.14)

To prove necessity, note that, using (3.14), Theorem 2.6.3 in [9]
implies that, for all j = 1, . . . , n,

rank





11×q

Hk

Wk



=rank





11×q 0
Hk 0
Wk (q − 1)colj(Qk)



≤q. (3.15)

Since Hk1q×1 = 0, it follows that 11×q is orthogonal to every
row of Hk. Therefore,

rank

[

11×q

Hk

]

= rank(Hk) + 1. (3.16)

Furthermore, it follows from (3.14) that every row of Wk is or-
thogonal to every row of [1T

1×q HT
k ]T. Finally, since rank(Wk) =

rank(WkWT
k ) = rank(Qk), it follows that

rank





11×q

Hk

Wk



 = rank(Hk) + rank(Qk) + 1 ≤ q. (3.17)

To show sufficiency, let Ŵk ∈ R
n×q be such that ŴkŴT

k =
(q − 1)Qk, and define the matrix

H̄k �

[

11×q

Hk

]

∈ R
(n+1)×q. (3.18)

Let S1 � R(H̄T
k ) ⊆ R

q and S2 � R(WT
k ) ⊆ R

q . Since dim S1 +
dim S2 = 1 + rank(Hk) + rank(Qk) ≤ q, Lemma III.1 implies
that there exists an orthogonal matrix S ∈ R

q×q such that

WT
k = SŴT

k , (3.19)

H̄kWT
k = 0, (3.20)

WkWT
k = ŴkSTSŴT

k = ŴkŴT
k = (q − 1)Qk. (3.21)

Hence (3.13) follows. Finally, (3.10) and (3.11) follow from (3.13).

Let

Q � {q : (3.8) is satisfied}. (3.22)

Then, Fact III.1 shows that the minimum number of ensem-

ble members needed to achieve (3.10), (3.11) is

qmin � min Q. (3.23)

Furthermore, the maximum value of q given by (3.23) is

2n + 1, where n is the number of states of the system. This

value is the number of ensemble members used by UKF [5].

However, in many cases, Hk and the disturbance covariance

Qk have low rank, which means that the required ensemble

size q may be substantially less than 2n + 1.
Now, we present the numerical algorithm given in [7]

for generating w1
k, . . . , wq

k that satisfy (3.5)-(3.7); see Fact
III.2. This algorithm is used for the numerical examples in

the section VI. For zj = [zj,1 · · · zj,j ]
T

∈ R
j , define the

Householder matrix H(zj) ∈ R
j×j by

H(zj) � I− (3.24)

1

1+|zj,j |









zj,1

...
zj,j−1

zj,j+sign(zj,j)

















zj,1

...
zj,j−1

zj,j+sign(zj,j)









T

,

and let Ĥ(zj) ∈ R
j×(j−1) denote H(zj) with its last column

deleted. Next, define Γ ∈ R
q×(n+1) by

Γ � H̄T
k , (3.25)

and let hk � rank(Hk) and qk � rank(Qk).

Fact III.2. Let q ≥ hk + qk + 1 be an integer, and let Ŵk ∈
R

n×q satisfy ŴkŴT
k = (q − 1)Qk. Let γ be a nonzero column

of Γ, and define zq � γ/‖γ‖2. Form Γ0 by removing γ from Γ.

For i = 0, . . . , hk − 1, let γi ∈ R
q−i−1 be a nonzero column of

Ĥ
T(zq−i)Γi ∈ R

(q−i−1)×(n−i−1), and define zq−i−1 � γi/‖γi‖2.

Remove γi from Ĥ
T(zq−i)Γi and denote the resulting matrix by

Γi+1. Finally, let Ω ∈ R
(q−1−hk)×qk satisfy ΩTΩ = I . Then

Wk = [w1
k · · ·wq

k] � ŴkĤ(zq) · · · Ĥ(zq−hk
)Ω (3.26)

satisfies (3.5)-(3.7).

IV. ENSEMBLE REDUCTION FOR LINEAR SYSTEM DATA

ASSIMILATION
Consider the linear system

xk+1 = Akxk + wk (4.1)

with measurements

yk = Ckxk + vk, k ∈ Kd, (4.2)

where xk ∈ R
n, yk ∈ R

p, and Kd denotes the set of time

steps at which measurements yk are available. As in Section

II, wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean white

noise processes with covariances Qk and Rk, respectively.

We assume that Rk is positive definite. For this linear system,

the Kalman filter is given by the following procedure:
For k /∈ Kd:

xf
k+1 = Akxf

k, (4.3)

P f
k+1 = AkP f

kAT
k + Qk. (4.4)
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For k ∈ Kd:
Data Assimilation Step

yf
k = Ckxf

k, (4.5)

Kk = P f
kCT

k (CkP f
kCT

k + Rk)−1, (4.6)

xda
k = xf

k + Kk(yk − yf
k), (4.7)

P da
k = P f

k − P f
kCT

k (CkP f
kCT

k + Rk)−1CkP f
k, (4.8)

Forecast Step

xf
k+1 = Akxda

k , (4.9)

P f
k+1 = AkP da

k AT
k + Qk. (4.10)

The following result shows that disturbances that do not
affect the observable subspace can be ignored by the data
assimilation procedure.

Proposition IV.1. Consider the linear system
[

x1,k+1

x2,k+1

]

=

[

A1,k 0
A21,k A2,k

] [

x1,k

x2,k

]

+

[

w1,k

w2,k

]

, (4.11)

yk =
[

C1,k 0
]

[

x1,k

x2,k

]

+ vk, (4.12)

where A2,k is asymptotically stable, and Rk � E(vkvT
k ). Let wk �

[

wT
1,k wT

2,k

]T
, assume wk and vk are uncorrelated, and define

Qk�E(wkwT
k )=

[

Q1,k Q12,k

QT
12,k Q2,k

]

, Q̂k�

[

Q1,k 0
0 0

]

. (4.13)

Now, let x̂k,Qk
be the state estimate of the Kalman filter that uses

Qk, and let x̂k,Q̂k
be the state estimate of the suboptimal estimator

whose gain is obtained by replacing Qk by Q̂k in (4.4), (4.10).

Define Pk � E[(xk − x̂k,Qk
)(xk − x̂k,Qk

)T] and P̂k � E[(xk −
x̂k,Q̂k

)(xk − x̂k,Q̂k
)T], and let the corresponding costs JQk

of the

Kalman filter and JQ̂k
of the suboptimal estimator be

JQk
� tr Pk, JQ̂k

� tr P̂k. (4.14)

Assume that the Kalman filter and the suboptimal estimator have
same initial conditions and initial error covariance. Then, for all
k,

JQk
≤ JQ̂k

. (4.15)

Furthermore, if Q12,k = 0, then, for all k,

JQk
= JQ̂k

. (4.16)

Proof. We denote the gains of the Kalman filter with Qk and the

suboptimal estimator with Q̂k by Kk and K̂k, respectively, where

Kk is given by (4.6) and K̂k is given by

K̂k = P̂ f
kCT

k (CkP̂ f
kCT

k + Rk)−1, (4.17)

P̂ da
k = P̂ f

k − P̂ f
kCT

k (CkP̂ f
kCT

k + Rk)−1CkP̂ f
k, (4.18)

P̂ f
k+1 = AkP̂ da

k AT
k + Q̂k. (4.19)

Then the error covariance Pk of the Kalman filter and the pseudo-

error covariance P̂k of the suboptimal estimator satisfy

Pk+1 =Ak(I − KkCk)Pk(I − KkCk)TAT
k

+ AkKkRkKT
k AT

k + Qk, (4.20)

P̂k+1 =Ak(I − K̂kCk)P̂k(I − K̂kCk)TAT
k

+ AkK̂kRkK̂T
k AT

k + Qk. (4.21)

Subtracting (4.20) from (4.21), adding and subtracting Ak(I −
K̂kCk)Pk(I − K̂kCk)TAT

k , and using Kk = PkCT
k R̃−1

k , where

R̃k � CkPkCT
k + Rk, yields

P̂k+1 − Pk+1 = Ak(I − K̂kCk)(P̂k − Pk)(I − K̂kCk)TAT
k

+AkK̂kR̃kK̂
T
k AT

k+AkKkR̃kK
T
k AT

k−AT
kKkR̃kK̂

T
k AT

k−AkK̂kR̃kK
T
k AT

k

=Ak(I−K̂kCk)(̂Pk−Pk)(I−K̂kCk)TAT
k+Ak(K̂k−Kk)R̃k(K̂k−Kk)TAT

k

≥ 0, (4.22)

which implies (4.15).

Now, assume Q12,k = 0. Let P f
k and P̂ f

k denote the forecast-step
error covariance and pseudo-error covariance of the Kalman filter

with Qk and the suboptimal estimator with Qk replaced by Q̂k,

respectively. Next, partition P f
k and P̂ f

k according to (4.11) as

P f
k =

[

P f
1,k P f

12,k

P fT
12,k P f

2,k

]

, P̂ f
k =

[

P̂ f
1,k P̂ f

12,k

P̂ fT
12,k P̂ f

2,k

]

. (4.23)

Similarly, define and partition P da
k and P̂ da

k . Let P0 denote the
initial error covariance, and define the initial forecast step error

covariances P f
0 , P̂ f

0 by

P f
0 = P̂ f

0 = P0. (4.24)

Now, the gains Kk and K̂k are given by

Kk=

[

P f
1,kCT

1,k

P f
12,kCT

1,k

]

V −1
k , K̂k=

[

P̂ f
1,kCT

1,k

P̂ f
12,kCT

1,k

]

V̂ −1
k , (4.25)

where Vk � C1,kP f
1,kCT

1,k + Rk and V̂k � C1,kP̂ f
1,kCT

1,k + Rk.

Using the gains Kk and K̂k, P da
1,k, P daT

12,k and P̂ da
1,k, P̂ daT

12,k are given
by

P da
1,k = P f

1,k − P f
1,kCT

1,kV −1
k C1,kP f

1,k, (4.26)

P daT
12,k = P fT

12,k − P fT
12,kCT

1,kV −1
k C1,kP f

1,k, (4.27)

P̂ da
1,k = P̂ f

1,k − P̂ f
1,kCT

1,kV −1
k C1,kP̂ f

1,k, (4.28)

P̂ daT
12,k = P̂ fT

12,k − P̂ fT
12,kCT

1,kV −1
k C1,kP̂ f

1,k. (4.29)

Consequently, P f
k+1 and P̂ f

k+1 are given by

P f
1,k+1 = A1,kP da

1,kAT
1,k + Q1,k, (4.30)

P fT
12,k+1 = A21,kP da

1,kAT
1,k + A2,kP daT

12,kAT
1,k, (4.31)

P̂ f
1,k+1 = A1,kP̂ da

1,kAT
1,k + Q1,k, (4.32)

P̂ fT
12,k+1 = A21,kP̂ da

1,kAT
1,k + A2,kP̂ daT

12,kAT
1,k. (4.33)

Hence, P f
1,k = P̂ f

1,k, P fT
12,k = P̂ fT

12,k, and Kk = K̂k for all k, which

implies x̂k,Qk
= x̂k,Q̂k

and thus (4.16).

Proposition IV.1 implies that, for EnKF, it is not necessary

to generate wi
2,k, which does not affect the observable

subspace of (Ak, Ck).

Now, for the disturbance
[

wT
1,k 0

]T

, let the corresponding

matrices for Hk and Qk be Ĥk and Q̂k. Then, assuming that

rank(Ĥk) ≤ rank(Hk), the minimum ensemble size needed

by the ensemble Kalman filter to satisfy constraints (3.5)-

(3.7) can be reduced by rank(Qk) − rank(Q̂k).

V. ENSEMBLE-ON-DEMAND KALMAN FILTER

(ENODKF)

EnKF requires in (2.3) that q ensemble members be
updated in parallel at every time step whether or not data
are available. When qmin given by (3.23) is large, real-
time estimation for acceptable accuracy is computationally
expensive. To partially overcome the excessive computa-
tional complexity of the ensemble Kalman filter, we consider
the ensemble on-demand Kalman filter (EnODKF), which
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Data Assimilation

Step

Forecast Step

data

time

Kk = P f
xy,k(P f

yy,k)−1

Ef
x,k+Ns

, Ef
y,k+Ns

P f
xy,k = 1

q−1
Ef

x,k+Ns
(Ef

y,k+Ns
)T

P f
yy,k = 1

q−1
Ef

y,k+Ns
(Ef

y,k+Ns
)T + Rkd

xf
k+1 = f(xda

k , uk, k), k ∈ Kd,

xf
k+1 = f(xf

k, uk, k), k /∈ Kd

xda
k = xf

k + Kk

(

yk − h(xf
k)

)

Fig. 2. Diagram of the ensemble-on-demand Kalman filter.

propagates the ensemble members over a small number Ns
of steps only when data are available. EnODKF is described
by following procedure: For k /∈ Kd:

Forecast Step

xf
k+1 = f(xf

k, uk, k). (5.1)

For k ∈ Kd:
Data Assimilation Step

xf,i
k = xf

k, i = 1, . . . , q,

xf,i
k+j = f(xf,i

k+j−1, uk+j−1, k) + wi
k+j−1, (5.2)

i = 1, . . . , q, j = 1, . . . , Ns,

yf,i
k+Ns

= h(xf,i
k+Ns

, k + Ns), (5.3)

xf
k+Ns

=
1

q

q
∑

i=1

xf,i
k+Ns

, yf
k+Ns

=
1

q

q
∑

i=1

yf,i
k+Ns

, (5.4)

Ef
x,k+Ns

�

[

xf,1
k+Ns

− xf
k+Ns

· · · xf,q
k+Ns

− xf
k+Ns

]

, (5.5)

Ef
y,k+Ns

�

[

yf,1
k+Ns

− yf
k+Ns

· · · yf,q
k+Ns

− yf
k+Ns

]

, (5.6)

P f
xy,k =

1

q − 1
Ef

x,k+Ns
(Ef

y,k+Ns
)T, (5.7)

P f
yy,k =

1

q − 1
Ef

y,k+Ns
(Ef

y,k+Ns
)T + Rkd

, (5.8)

Kk = P f
xy,k(P f

yy,k)−1, (5.9)

xda
k = xf

k + Kk

(

yk − h(xf
k)

)

. (5.10)

Forecast Step

xf
k+1 = f(xda

k , uk, k). (5.11)

Figure 2 illustrates EnODKF. Each ensemble member

propagates for Ns steps when data are available in order to

generate an approximate error covariance. Then, the states

are updated using the gain and the data at the measurement

time.

Ensemble size q for EnODKF can be chosen such that

q ≥ 1 + rank(Hk′) + rank(Qk′) where k ≤ k′ < k +
Ns, k ∈ Kd. Next, we should determine Ns considering

the tradeoff between computation time and accuracy. That

is, larger Ns ensures better accuracy as shown in Figure 5,

while it requires increased computation time.

VI. TWO-DIMENSIONAL HEAT CONDUCTION EXAMPLE

We consider EnKF and EnODKF for the linear system

(4.1) with measurements (4.2). As a baseline reference,

we also compute estimates using the Kalman filter (4.3)-

(4.10). For all simulations, the truth model is the model

with stochastic drivers, the no data assimilation (NoDA)

model is the model with the mean value of each driver, and

the data assimilation (DA) model is the model with data

assimilation using simulated measurements from the truth

model simulation.
Consider the heat conduction in a two-dimensional plate,

governed by

∂T (x, y, t)

∂t
=α

(

∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)

∂y2

)

+w(x, y, t), (6.1)

where T (x, y, t) is the temperature at position (x, y) and

time t, w(x, y, t) represents disturbance heat sources or sinks

acting on the plate, and α is the heat conduction coefficient.

We discretize (6.1) over a spatial grid of size nx × ny =
20 × 20, where nx and ny denote the number of grid

points in the horizontal and vertical directions, respectively.

The random initial conditions N(0, In) are given, and all

boundary conditions are free.

We consider two kinds of disturbance inputs, specifically,

1) ny-independent disturbances to the left boundary edge

and 2) a single disturbance to the center of the left boundary

edge. Next, we consider two cases of measurements, where

single measurement point is selected with different distances

from the left boundary edge. We assume that measurements

are available every Nd=6 steps, and we consider Ns=1 and

Ns=4 for the EnODKF. The disturbances and measurements

are illustrated in Figure 3.

* *

Fig. 3. Illustration of types of disturbances (left two) and measurements
(right two) used for 2D heat conduction estimation. The leftmost disturbance
indicates that there are 20 independent disturbances act on all of the cells
of the left boundary edge.

Proposition IV.1 shows that we do not need to include

in the ensemble Kalman filter the disturbance sources that

do not affect the observable subspace of (Ak, Ck). Con-

sequently, the ensemble size needed to achieve acceptable

accuracy is less than 1 + rank(Hk) + rank(Qk).
To illustrate Proposition IV.1, we consider estimation

of the two-dimensional heat conduction in a square plate

composed of two regions that have different heat conduction

coefficients as shown in Figure 4.

We assume that the states of the αlarge region are ob-

servable from the measurement, and are reachable by the 10

independent disturbance sources that are in the αlarge region,

whereas the remaining 10 disturbance sources in the αsmall

region do not affect the αlarge region due to lower conduc-

tivity. Then, we perform EnKF data assimilations with the
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Fig. 4. Comparisons of EnKF estimators using full disturbances and
reduced disturbances for 2D heat conduction on the square plate composed
of regions of two different heat conduction coefficients αsmall and αlarge.
The αsmall and αlarge regions are shown in (a) divided by thin dashed lines,
with NoDA rms error distributions. We take αsmall = 0.2αlarge. 20 filled-
circles in (a) indicate the 20 independent disturbances in the truth model.
(b) is the rms error distribution of the Kalman filter with the measurement
at the location marked by ∗. (c) and (d) are the rms error distribution of
EnKF estimators at ensemble size 30 with full 20 and 10 disturbances in
the αlarge region, respectively. It can be seen in (e) that the errors of EnKF
with full disturbance converge at around the ensemble size 20, which is far
less than 1+rank(Hk)+rank(Qk) for the entire system, which is greater
than 40. Furthermore, the errors of the EnKF with fewer disturbances yields
the same converged estimation accuracy as EnKF with full disturbances at
around the ensemble size 20.

10 and the 20 independent disturbance sources, respectively,

while increasing the number of ensemble members.

It can be seen from Figure 4(e) that the errors of EnKF

with full disturbance sources converge at around an ensemble

size of 20, which is less than half of 1 + rank(Hk) +
rank(Qk) for the entire system. Next, the errors of EnKF

with fewer disturbance sources yields the same estimation

accuracy as EnKF with full disturbance sources at an ensem-

ble size of around 20, which means that there is no accuracy

degradation with the reduced disturbance sources since the

reduced disturbance sources affect the αlarge region while

remaining 10 disturbances have minimal effect on the αlarge

region.

Fig. 5. 2D heat conduction estimation rms error distribution with Nd = 6,
Ns = 1 (top) and Nd = 6, Ns = 4 (bottom). We assume uniform heat
conductivity. 1st to 4th columns: rms error distribution of NoDA, Kalman
filter, ensemble Kalman filter, and ensemble on-demand Kalman filter,
respectively. There is single disturbance to the left boundary edge. Darker
regions around measurement points indicate that the errors are reduced by
data assimilation relative to NoDA.

Next, we compare EnKF and EnODKF. The 2D heat

conduction system has slow dynamics, and the disturbances

are damped out rapidly while passing through the cells.

Therefore, EnODKF with Ns = 1 works poorly when the

measurement point and the disturbance location are different.

This characteristic is illustrated in top plots of Figure 5,

where all EnODKF results are identical to NoDA. However,

as shown in bottom plots of Figure 5, the EnODKF with

Ns = 4 is effective for the cases where the measurement lo-

cations are not far from the disturbances. However, EnODKF

fails to work once the measurement location is placed farther

from the disturbances.

VII. CONCLUSION

In using EnKF, the main issues are how to perturb the

system and how many ensemble members should be gener-

ated. In this paper, we showed that implementation of data

assimilation by EnKF involves first identifying disturbance

sources and then exciting the system using the identified

disturbance sources with the ensemble size guided by the

number 1 + rank(Hk) + rank(Qk).
For large scale systems, the number 1 + rank(Hk) +

rank(Qk) may be prohibitively large for the available com-

puting resources, and thus the reduction of computational

complexity is needed. However, before enforcing the reduc-

tion of computational complexity using, for example, SVD,

projection of disturbance, and, model reduction, removing

unnecessary disturbance sources should be preceded in per-

forming EnKF. We showed the effectiveness of removing

unnecessary disturbances in a 2D heat conduction example

with decreased computational burden and no degradation of

accuracy.

Finally, we showed that EnODKF is computationally in-

expensive but provides acceptable performance for systems

under a single global-type disturbance.
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[6] A. J. Ridley, Y. Deng, and G. Tóth. “The global ionosphere thermo-
sphere model,” Journal of Atmospheric and Solar-Terrestrial Physics,
68:pp. 839–864, 2006.

[7] D. T. Pham, “Stochastic Methods for Sequential Data Assimilation in
Strongly Nonlinear Systems,” Monthly Weather Rev., 129: pp.1194–
1207, 2000.
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