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Abstract— The ensemble Kalman filter for data assimilation
involves the propagation of a collection of ensemble members.
Under the assumption of time-sparse measurements, we avoid
propagating the ensemble members for all of the time steps
by creating an ensemble of models only when a new measure-
ment is made available. We call this algorithm the ensemble-
on-demand Kalman filter (EnODKF). We use guidelines for
ensemble size within the context of EnODKF, and demonstrate
the performance of EnODKF for a representative example,
specifically, a heat flow problem.

I. INTRODUCTION

State estimation for spatially distributed systems typically
entails nonlinear, high-dimensional dynamics. For these ap-
plications, state estimation is known in practice as data
assimilation. Applications range from weather forecasting,
to oceanography, to structural dynamics [1-3].

Data assimilation methods use variations of the basic
formalism of the classical Kalman filter. The most popular
methods replace the Riccati equation error covariance prop-
agation of the classical filter with an ensemble of models
that approximate the error covariance, which is subsequently
used to determine a data injection gain. Two such methods
are the ensemble Kalman filter (EnKF) [4], which is based
on stochastically sampled drivers, and the unscented Kalman
filter (UKF) [5], which is based on deterministically deter-
mined drivers for an ensemble of 2n + 1 members, where n
is the number of states. In the case of linear systems, UKF
exactly reproduces the results of the classical Kalman filter.

Many of the EnKF or UKF applications of interest
arise from extremely high-order dynamics. In particular, we
are interested in the global ionosphere-thermosphere model
(GITM) [6], whose 10° states require a several-hundred-node
computing cluster for real-time simulation. Real-time data
assimilation based on UKF would require several million
nodes, which is not feasible in the foreseeable future.

For very large scale systems, EnKF has the dubious ad-
vantage over UKF in that the number of ensemble members
is not specified. However, useful guidance for the appropriate
size of the EnKF ensemble based on linearized analysis is
given in [7]. This analysis provides a key role in the present
paper, as explained below.
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In the present paper we are motivated by the need to
perform data assimilation on a system such as GITM, where
propagation of an ensemble throughout the data assimilation
process is prohibitive. In particular, as is often the case in
practice, we assume that the available measurements are time
sparse, that is, occur infrequently. When measurements are
available at every time step, UKF methods for systems with
underlying continuous-time dynamics are given in [8]. How-
ever, these methods are prohibitive for large scale systems,
and are not needed for systems in which the underlying
dynamics are given in time-discretized form.

Under the assumption of time-sparse measurements, we
avoid propagating the ensemble members for all of the time
steps by creating an ensemble of models only when a new
measurement is made available. We then propagate this en-
semble into the future, thereby generating an error-covariance
matrix, which, in turn, is used to create a data injection gain,
which, finally, is used to assimilate the measurements at the
time step at which the measurements became available. Once
the measurements are assimilated, only a single simulated
model is updated until new measurements become available.
We call this algorithm the ensemble-on-demand Kalman
filter (EnODKF). EnODKF is suboptimal since the past
history of the error covariance is lost each time the ensemble
is collapsed and thus disbanded. However, the computational
advantages of not updating the complete ensemble through-
out the process can facilitate data assimilation in applications
that would otherwise be prohibitive.

The goal of the present paper is to present EnODKF and
numerically investigate its properties within the context of
linear systems. Nonlinear applications are readily addressed,
but are deferred to future work. A key element of our inves-
tigations is the analysis of ensemble size based on the work
of [7]. We provide a self-contained proof of the result of [7],
which provides guidance on the size of the ensemble needed
to accurately estimate the error covariance. We use this
guidance within the context of EnODKF, and demonstrate
the performance of EnODKF for a representative example,
specifically, a heat flow problem.

II. ENSEMBLE KALMAN FILTER (ENKF)
Consider the discrete-time nonlinear dynamic system

Ti41 :f(xk,uk,k)—i—wk, k=0,1,2,..., 2.1
with measurements
yr = h(zk, k) + vk, k€ Ka, (2.2)

where z € R", up, € R™, y,, € RP, and K4 denotes the
set of time steps at which measurements y; are available.
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The input uy is assumed to be known for all £ > 0, and
wr € R™ and v € RP are uncorrelated zero-mean white
noise processes with covariances ();, and Ry, respectively.
We assume that R}, is positive definite.

Equation (2.2) denotes that measurements are not available
at every time step. When data are not available, the ensemble
members are updated by means of a forecast step only.
However, when data are available, the ensemble members
are updated by both a data assimilation step and a forecast
step. We now summarize the steps of the ensemble Kalman
filter. For an ensemble consisting of ¢ members at the kth

step, EnKF is given by the following procedure:
For k ¢ Kg:
Forecast Step

T4 =f(:c2”}uk,k:)+wi, i=1,....q @3
mfﬁ—l =- Z xk+1 @4
For k € Kq:
Data Assimilation Step
f,2 £z ] f 1 z £z
ykﬂ = h‘(xk,la k) + vl’w Y = — yk’la (25)
=1
EL, 2 [a;f;l O xi] , 2.6)
Eys 2 [y - i vt -k @7
Pt B (B )T P = B (B )T (28
zy,k*j z,k( y,k) y L yy,k j y,k( y,k) ( . )
Ky = Pry k(Pyy )", (2.9)
x(liaﬂ,:xky JrKk(Z/k*Z/;i”) ai = 17~~~7Qa (210)
1< ;
e dasi, .11
i=1
Forecast Step
wfcj_l :f(x‘,i“ uk,k)—i-w};, i=1,...,q, (2.12)
Tiop1 = Z Tyt 2.13)

To reproduce the process noise statistics, the noise term
w};, which drives the P ensemble member, is generated
deterministically or is sampled, for instance, from a normal
distribution with mean zero and covariance Q. Likewise, U,i
can be sampled from a normal distribution with mean zero
and covariance Rj, and added to the residual y;, — h(:cfc’z) in
order to reproduce the measurement noise statistics.

Figure 1 illustrates EnKF. Each ensemble member is
updated by time-sparse measurement data, and is propagated
independently when data are not available.

III. ENSEMBLE SIZE FOR LINEAR SYSTEMS

The accuracy of EnKF improves as the number of ensem-
ble members is increased. However, a large number of en-
semble members may be computationally intractable in terms
of computation time and memory. Therefore, it is necessary
to determine the minimum ensemble size that can adequately
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Data Assimilation
Step
L
ack_‘_lff(wza'uk k) +wy, i=1,...,q, k € Ka,
Ik+l—f(1k,uk,]€)+’wk,z_1 - q, kg Ka.
~ T
N /\/\//\/ R . \ //
e~ Sos~lsmT - - - N ’\\ ~
time \
‘Iza’lzzi’l—l—lﬁc(k—h(z )+'Uk)v i=1,...,q. ‘
)
f f f -1
‘ Bk By H w k> wk H Ky = u, k<Pyy k)

Fig. 1. Diagram of ensemble Kalman filter.

approximate the mean of the states and the error covariance.
We now examine the required number of ensemble members
for the case of linear dynamics. Specifically, we consider the
linear system

Tpt1 = Apxp + Wi, 3.1

where z;, € R", A, € R™", and wy, € R" is a random
disturbance with mean zero and covariance Q.

Lemma IIL1. Ler 81 C R! and 83 C R! be subspaces, and
assume that

dim 8; 4+ dim 82 <1, 3.2)

where dim denotes dimension. Then there exists an orthogonal
matrix S € R'™" such that

58, C 87 (3.3)

Proof. Let n; = dim S5. Let M; € R*"1,
Mo € R™™2 be matrices whose columns are an orthonormal basis
for 81 and S, respectively. Next, let M§ € R™*(="1) be a matrix
composed of [ —n; orthonormal vectors that are also orthogonal to
each column vector of M, and let M5 € RY>¥(=72) pbe defined
similarly. Now define S & [ M{ M;][ Mo M$]™" € R .
Hence [ SM2 SMs5] =[ M7 M;]. Since [ —ny1 > no, it follows
that S82 = R(SMs) C R(Mf) = 81, where R denotes range.
O

The following result is stated without proof in [7].

= dim 81 and na

Fact IIL1. Let zi’l, ey :cf’q € R", and define

Hy = [Ain’i—AkJJ;, Akqu Akxk] ER™, (3.4)

where xf & %Zq 1 Ik Then there exist wy, ..., wi € R™ such
that
g .
> wi =0, (3.5)
i=1
.. s AT
3 wi (Ak.:c,j - Akxk> -0, (3.6)
i=1
1 &
ﬁ ; kwk = Qk, (3.7
if and only if
rank(Hy) + rank(Qr) + 1 < g, 3.8)
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Now, let
fi £ i
Ty = Arxy twg, i=1,...,q
Then
3 £
Tht1 = Ak,
£ £ T
fg%k+1::AkPszAk47Qka
£ A 1\4¢ £
where Thi1 = Zl 1 ka, Py
T
1 q £i £ £,i f £
-1 Zizl <93k - $k) (mk - xk) , and  Ppy i

T
1 q £, £ f,i £

a—1 >im1 (karl - $k+1) (%H - 93k+1> .
Proof. Defining

Wi 2 [wllc
(3.5)-(3.7) can be written as

wi] € R,

lixq 0
Hk W];T - 0 k]
Wi (¢—1)Qk

(3.9)

(3.10)
(3.11)

[I>

(3.12)

(3.13)

where 114 is the 1 X ¢ ones matrix. Letting col;(M) denote the

jth column of M, (3.13) can be written as

(3.14)

(3.15)

lixq 0
Hy | colj(Wy) = 0 , j=1
Wi (g —1) colj(Qr)
To prove necessity, note that, using (3.14), Theorem 2.6.3 in [9]
implies that, for all j =1,...,n,
11 Xq 11 Xq 0
rank| Hjp |=rank| Hj 0 <q.
Wk Wk (q — 1)COlj(Qk)

Since Hplgx1 = 0, it follows that 1,4 is orthogonal to every

row of Hy. Therefore,

1
rank { Il—Iqu } =rank(H) + 1

(3.16)

Furthermore, it follows from (3.14) that every row of W} is or-

thogonal to every row of [1T,, Hp]T
rank(W, W,l) = rank(Qy), it follows that

11Xq
rank Hy
Wi

= rank(Hy) + rank(Qx) + 1 < q.

. Finally, since rank(W}) =

(3.17)

To show sufficiency, let Wi € R™™? be such that W W;;F =

(¢ — 1)Qr, and define the matrix
s 11><q (n+1)xq
Hy, = [ H, } eR .

Let 81 £

(3.18)

R(AT) CR? and 82 2 R(W,F) C RY. Since dim 8; +

dim 82 = 1 + rank(Hy) + rank(Qr) < ¢, Lemma IIL.1 implies

that there exists an orthogonal matrix .S € R7*? such that
Wi = SWi,
HwWr =0,
WiWiE = WiSTSW = MWy = (g — 1)Qx.

(3.19)
(3.20)
(3.21)

Hence (3.13) follows. Finally, (3.10) and (3.11) follow from (3.13).

O
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Let

Q £ {q:(3.8) is satisfied}. (3.22)

Then, Fact III.1 shows that the minimum number of ensem-
ble members needed to achieve (3.10), (3.11) is

A .
(min = min Q.

(3.23)

Furthermore, the maximum value of ¢ given by (3.23) is
2n + 1, where n is the number of states of the system. This
value is the number of ensemble members used by UKF [5].
However, in many cases, Hj, and the disturbance covariance
Q. have low rank, which means that the required ensemble
size ¢ may be substantially less than 2n + 1.

Now, we present the numerical algorithm given in [7]
for generating w,lc, . wk that satisfy (3.5)-(3.7); see Fact
II1.2. This algorithm is used for the numerlcal examples in
the section VL For z; = [z;1 --- z;;] € RJ, define the
Householder matrix H(z;) € R7*J by

H(z) 2 I (3.24)
T
Zj,1 Zj,1
1
1+|Zj,j| Zj,5—1 Z5,5—1 ’

zj5+sign(z;;) 1 L 2z;,;+sign(z;,5)

and let H:C(z]) € R7*U~1 denote H(z;) with its last column
deleted. Next, define I' € R9*("+1) by
£y,
and let hy, £ rank(H},) and g, = rank(Qg).
Fact II1.2. Let q > hr + qr + 1 be an integer, and let Wk €
R™*9 satisfy Wka = (¢ — 1)Qx. Let v be a nonzero column
of T, and define z4 = ~y/||v||2. Form T'q by removing -y from T
For i =0,...,hy — 1, let v; € R be a nonzero column of
ﬂ-CT(zq_i)Fi € Rla—i=Dx(n=i=1) g define zq—i—1 = ~i /¥ | 2-

Remove ~; from J:CT(zq,i)Fi and denote the resulting matrix by
Tit1. Finally, let Q € ROT1=h)IX% sarishy QTQ = 1. Then

Wi, = [wp - - wl] 2 WipF(zg) - - H(2g—n,, ) (3.26)
satisfies (3.5)-(3.7).

(3.25)

IV. ENSEMBLE REDUCTION FOR LINEAR SYSTEM DATA

. ) ASSIMILATION
Consider the linear system

Tp1 = ApTr + wy, 4.1)

with measurements

v = Crxr + vk, k€ XKg, “4.2)

where z;, € R", y, € RP, and K4 denotes the set of time
steps at which measurements yy, are available. As in Section
I, wr € R™ and v € RP are uncorrelated zero-mean white
noise processes with covariances (QJy and Ry, respectively.
We assume that Ry, is positive definite. For this linear system,

the Kalman filter is given by the following procedure:
For k ¢ Ka:

4.3)
4.4)

£ £
Tpp1 = Apxy,

Pl = APLAY + Qs
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For k € Kq:
Data Assimilation Step

yp = O, 4.5)
Ky = P,ﬁc;f (CvPLCY + Ry) 7, (4.6)
28 = af + Ki(yr — yh), %)

Pi* = Py — PLCF(CwPLCY + Ri) 'CrPL,  (4.8)
Forecast Step

Thiy = Az, (4.9)

Py = AP AL + Qx. (4.10)

The following result shows that disturbances that do not

affect the observable subspace can be ignored by the data
assimilation procedure.

Proposition IV.1. Consider the linear system
1 k1 Ay 0 T1,k w1,k
: S : : 4.11
{ T2, k+t1 } [ A1k A2,k:| [ T2,k }Jr{ W2,k } » )

yo=[ Cix 0] { 22 } + v, 4.12)

’

where Az i, is asymptotically stable, and Ry, £ E(Ukvg). Let wy, £
[ T T 17T
Wy wzk] , assume wy, and vy, are uncorrelated, and define

a T Qir Qu2r| A a|Qix 0
= = ’ T, Q= ’ . 4.13

Q’C (wkwk) |: "1F2’k Q2,k: :| Qk |: 0 0 ( )
Now, let &1, q, be the state estimate of the Kalman filter that uses
Qk, and let T, O be the state estimate of the subaptimal estimator
whose gam is obtained by replacing Qy, by Ok in (4 4), (4.10).
Define P & Eﬁ[(m;c — k5,0, ) (T — Tr,0,) "] and Pr £ &[(zx —
Ty 0, )Tk — 7Qk)T] and let the corresponding costs Jq, of the
Kalman filter and J@k of the suboptimal estimator be

Jo, EtrPy, Js 2 trPy (4.14)

Assume that the Kalman filter and the suboptimal estimator have
same initial conditions and initial error covariance. Then, for all

k,

Jor < Ja, - (4.15)
Furthermore, if Q12 = 0, then, for all k,

Jo, = Jg, - (4.16)

Proof. We denote the gains of the Kalman filter with Q) and the
suboptimal estimator with Qk by K} and K}, respectively, where
K. is given by (4.6) and K, is given by

Ky = PLCF (CLPLCY + Ri) ™Y, @.17)
P* = Bl — PO} (ChPLCY + Ri) "' Cu P, (4.18)
Pl = AP AT 4 O (4.19)

Then the error covariance Py of the Kalman filter and the pseudo-
error covariance Py of the suboptimal estimator satisfy

Prr1 =Ap(I — KiCp)Pr(I — K1,Ci)T AL

+ A Ko Re K AY + Qu, (4.20)
P =Ar(I — KxCr)Pu(I — KiCr) AL
+ A Ko Re KF AL + Q. 4.21)

Subtractmg 4. 20) from (4.21), adding and subtractmg Ap(I —
KrC)Pe(I — KxCr)TAL, and using Ky = PrCE R,:l, where
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Rk £ Ckﬂ)kcg + Ry, yields
j’k+1 —Pry1 = Ak(I - f(kclc)(j)k - ?k)(l - R’ka)TAE
+ARKRRLK E At AR R KT Aj— AL K R K Af= ArK R R K AR
= AT~ CRPr—P I —KCh ) "AR + AWK — K )Ri(K o — K, ) "Af
>0, (4.22)
which implies (4.15). .

Now, assume @Q12,x = 0. Let P,g and P,ﬁ denote the forecast-step
error covariance and pseudo-error covariance of the Kalman filter

with @ and the suboptimal estimator with Q) replaced by Qk,
respectively. Next, partition Pf and Pk according to (4.11) as

Pf Pf AE P! P!
Pf — |: 1k 12,k ],P — |: Alk 12k :| (423)
b P12k PQf,k r P12k P2k

Similarly, define and partition P® and P8*. Let Py denote the
initial error covariance, and deﬁne the initial forecast step error
covariances P, PO by

Py =P = P. (4.24)
Now, the gains K} and K} are given by
Py CT ] [ Picr } -1
Kp=| - PFULE |yt =] LR LE gt (4.25)
g |:P1f2kcirk i " P12k01k

where Vk = Ch IcP1 kcl e + Ry and V)c = C1 IcP1 kcl v + Rk
Using the gains K, and Kk, P1 . Pldfz and P1 PR P12 . are given
by

P = Pl — Pl CLuVi 'CriPly, (4.26)
Pi5% = Pl — Pl CLp Vi 'OLi Py, (4.27)
P = Pl — PL.CTyVi ' CLiPly, (4.28)
P =Py — P35, CT Vi ' Cu Py (4.29)

Consequently, P,f 41 and 15]5 41 are given by

Plin = AL PR AT, + Qu, (4.30)
Plf;F,k+1 = A21,kP1d,?cA1[:k + A2,kal2€fEA1T,k, (4.31)
Plf,kJrl = A1,kpﬁ2AEk + Q1,x, (4.32)
Plfg,k+1 = A21,kﬁ{i,zf4’11:k + AQ,kﬁfszAlT,k- (4.33)

Hence, Pf, = P, P}, = P{3 ., and Kj, = K, for all k, which
implies Zx,q, = &} g, and thus (4.16). O

Proposition IVl implies that, for EnKF, it is not necessary
to generate w2 x» Which does not affect the observable
subspace of (A, Cr).

T
Now, for the disturbance [w? & O} , let the corresponding

matrices for Hy and Q; be H 1 and Qk. Then, assuming that
rank(Hy) < rank(H}), the minimum ensemble size needed
by the ensemble Kalman filter to satisfy constraints (3.5)-
(3.7) can be reduced by rank(Qy) — rank(Qy).

V. ENSEMBLE-ON-DEMAND KALMAN FILTER
(ENODKF)

EnKF requires in (2.3) that ¢ ensemble members be
updated in parallel at every time step whether or not data
are available. When ¢ni, given by (3.23) is large, real-
time estimation for acceptable accuracy is computationally
expensive. To partially overcome the excessive computa-
tional complexity of the ensemble Kalman filter, we consider
the ensemble on-demand Kalman filter (EnODKF), which
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Data Assimilation Forecast Step
Step
Il |

$§c+1 = f(z{*, uk, k), k € Kq,
wh = f(@h,ur, k), k ¢ Ka

T
Vs P
— >

time

T

T zde =2t 4 Ky (yk—h(zﬁc))
i

f f —1
Ky = Pwy~k(Pyy,k)

£ £
Eeking: By rgng

£ —_ 1 pof £ T
Poyr= q—1E:1;,k+Ns(Ey,k:+Ns)

f _ 1 f f T
Pyye = q—lEyyk+Ns<E1/yk+Ns) + Riy

Fig. 2. Diagram of the ensemble-on-demand Kalman filter.

propagates the ensemble members over a small number Ng
of steps only when data are available. EnNODKEF is described
by following procedure: For k ¢ Kq:

Forecast Step

Tir1 = f(@h, uk, k). .1
For k € Kqa:
Data Assimilation Step
xz’i :mi, 1=1,...,q,
apt = Fyh o ukj—1, k) + Whego, (5.2)
i=1,...,q, j=1,...,N,
Uiy, = hlzyin, b+ No), (5.3)
f I 1 £ I g
Thew, = o > aing Vkin, = p > uia (5.4)
=1 =1
ELkin, 2 [ﬂﬁiiw —Thyn, o TRln, — xi+N5] N CE)
Eypin, 2 [y,iiNs — YN, o YN — yiws] , (5.6
1
Paiy,k = ﬁEi,HNS(E;HNS)T, (5.7
1 .
Pk = =1 i Ne (Bykin)” + Rig, (5.8)
Ky = Py (Pyy )" (5.9)
2 = ot + K, (y;€ - h(xi)) . (5.10)
Forecast Step
thor = f(@®, uk, k). 5.11)

Figure 2 illustrates EnODKF. Each ensemble member
propagates for Ny steps when data are available in order to
generate an approximate error covariance. Then, the states
are updated using the gain and the data at the measurement
time.

Ensemble size g for EnODKF can be chosen such that
g > 1+ rank(Hy) + rank(Qg) where k& < k' < k +
N, k € Kq. Next, we should determine Ng considering
the tradeoff between computation time and accuracy. That
is, larger N ensures better accuracy as shown in Figure 5,
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while it requires increased computation time.

VI. TwWO-DIMENSIONAL HEAT CONDUCTION EXAMPLE

We consider EnKF and EnODKF for the linear system
(4.1) with measurements (4.2). As a baseline reference,
we also compute estimates using the Kalman filter (4.3)-
(4.10). For all simulations, the truth model is the model
with stochastic drivers, the no data assimilation (NoDA)
model is the model with the mean value of each driver, and
the data assimilation (DA) model is the model with data
assimilation using simulated measurements from the truth
model simulation.

Consider the heat conduction in a two-dimensional plate,
governed by

OT(z,y,t) _ (O*T(2,y,t)  O°T(w,yt)
ot - 0x? ' oy?

where T'(x,y,t) is the temperature at position (z,y) and
time ¢, w(z, y, t) represents disturbance heat sources or sinks
acting on the plate, and « is the heat conduction coefficient.
We discretize (6.1) over a spatial grid of size n, x n, =
20 x 20, where n, and n, denote the number of grid
points in the horizontal and vertical directions, respectively.
The random initial conditions N(0, I,,) are given, and all
boundary conditions are free.

We consider two kinds of disturbance inputs, specifically,
1) ny-independent disturbances to the left boundary edge
and 2) a single disturbance to the center of the left boundary
edge. Next, we consider two cases of measurements, where
single measurement point is selected with different distances
from the left boundary edge. We assume that measurements
are available every N3=6 steps, and we consider Ng=1 and
Ny=4 for the EnODKEF. The disturbances and measurements
are illustrated in Figure 3.

>+w(l",y7t), (6.1)

Fig. 3. Illustration of types of disturbances (left two) and measurements
(right two) used for 2D heat conduction estimation. The leftmost disturbance
indicates that there are 20 independent disturbances act on all of the cells
of the left boundary edge.

Proposition IV.1 shows that we do not need to include
in the ensemble Kalman filter the disturbance sources that
do not affect the observable subspace of (Ag,Cj). Con-
sequently, the ensemble size needed to achieve acceptable
accuracy is less than 1 + rank(Hj) + rank(Qy).

To illustrate Proposition IV.1, we consider estimation
of the two-dimensional heat conduction in a square plate
composed of two regions that have different heat conduction
coefficients as shown in Figure 4.

We assume that the states of the aarge region are ob-
servable from the measurement, and are reachable by the 10
independent disturbance sources that are in the oarge region,
whereas the remaining 10 disturbance sources in the qgmal
region do not affect the ovja,ge region due to lower conduc-
tivity. Then, we perform EnKF data assimilations with the
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() (b) (d)

NoDA
- DAKF

- . DA ENKF w/ full W,

DA EnKF w/ reduced W

opt

JJ

ensemble size !
(e)

Fig. 4. Comparisons of EnKF estimators using full disturbances and
reduced disturbances for 2D heat conduction on the square plate composed
of regions of two different heat conduction coefficients asman and ajarge-
The asman and aqarge regions are shown in (a) divided by thin dashed lines,
with NoDA rms error distributions. We take atgman = 0.2a1arge. 20 filled-
circles in (a) indicate the 20 independent disturbances in the truth model.
(b) is the rms error distribution of the Kalman filter with the measurement
at the location marked by *. (c) and (d) are the rms error distribution of
EnKF estimators at ensemble size 30 with full 20 and 10 disturbances in
the ajarge region, respectively. It can be seen in (e) that the errors of EnKF
with full disturbance converge at around the ensemble size 20, which is far
less than 1+rank(Hy)+rank(Qy) for the entire system, which is greater
than 40. Furthermore, the errors of the EnKF with fewer disturbances yields
the same converged estimation accuracy as EnKF with full disturbances at
around the ensemble size 20.

10 and the 20 independent disturbance sources, respectively,
while increasing the number of ensemble members.

It can be seen from Figure 4(e) that the errors of EnKF
with full disturbance sources converge at around an ensemble
size of 20, which is less than half of 1 4 rank(Hy) +
rank(Qy) for the entire system. Next, the errors of EnKF
with fewer disturbance sources yields the same estimation
accuracy as EnKF with full disturbance sources at an ensem-
ble size of around 20, which means that there is no accuracy
degradation with the reduced disturbance sources since the
reduced disturbance sources affect the arge region while
remaining 10 disturbances have minimal effect on the ajarge

region.
-

Fig. 5. 2D heat conduction estimation rms error distribution with Ng = 6,
Ns =1 (top) and Ng = 6, Ny = 4 (bottom). We assume uniform heat
conductivity. 1st to 4th columns: rms error distribution of NoDA, Kalman
filter, ensemble Kalman filter, and ensemble on-demand Kalman filter,
respectively. There is single disturbance to the left boundary edge. Darker
regions around measurement points indicate that the errors are reduced by
data assimilation relative to NoDA.
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Next, we compare EnKF and EnODKF. The 2D heat
conduction system has slow dynamics, and the disturbances
are damped out rapidly while passing through the cells.
Therefore, EnODKF with Ny = 1 works poorly when the
measurement point and the disturbance location are different.
This characteristic is illustrated in top plots of Figure 5,
where all EnNODKEF results are identical to NoDA. However,
as shown in bottom plots of Figure 5, the EnODKF with
Ng = 4 is effective for the cases where the measurement lo-
cations are not far from the disturbances. However, EnODKF
fails to work once the measurement location is placed farther
from the disturbances.

VII. CONCLUSION

In using EnKF, the main issues are how to perturb the
system and how many ensemble members should be gener-
ated. In this paper, we showed that implementation of data
assimilation by EnKF involves first identifying disturbance
sources and then exciting the system using the identified
disturbance sources with the ensemble size guided by the
number 1 + rank(Hj) + rank(Qy).

For large scale systems, the number 1 + rank(Hy) +
rank(Qy) may be prohibitively large for the available com-
puting resources, and thus the reduction of computational
complexity is needed. However, before enforcing the reduc-
tion of computational complexity using, for example, SVD,
projection of disturbance, and, model reduction, removing
unnecessary disturbance sources should be preceded in per-
forming EnKF. We showed the effectiveness of removing
unnecessary disturbances in a 2D heat conduction example
with decreased computational burden and no degradation of
accuracy.

Finally, we showed that EnODKF is computationally in-
expensive but provides acceptable performance for systems
under a single global-type disturbance.
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