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Abstract— This paper presents both necessary and sufficient
conditions for the stability of Zeno equilibria in Lagrangian
hybrid systems, i.e., hybrid systems that model mechanical
systems undergoing impacts. These conditions for stability are
motivated by the sufficient conditions for Zeno behavior in
Lagrangian hybrid systems obtained in [10]—we show that the
same conditions that imply the existence of Zeno behavior near
Zeno equilibria imply the stability of the Zeno equilibria. This
paper, therefore, not only presents conditions for the stability
of Zeno equilibria, but directly relates the stability of Zeno
equilibria to the existence of Zeno behavior.

I. INTRODUCTION

Zeno behavior occurs in a hybrid system when an infinite

number of discrete transitions occur in a finite amount

of time. Despite the simplicity of the definition of Zeno

behavior, understanding this behavior on a fundamental level

presents difficult and intriguing problems in hybrid systems.

Can simple conditions for the existence of Zeno behavior be

obtained? How does the existence of Zeno behavior relate to

the convergence properties, or stability, of hybrid systems? In

order to obtain an intuitive understanding of this phenomena,

and help to answer some of the fundamental questions that

arise when studying Zeno behavior, it is useful to study it in

the context of hybrid systems that model real world systems.

In this paper, we study hybrid systems modeling mechani-

cal systems undergoing impacts: Lagrangian hybrid systems.

In particular, we consider a configuration space, a Lagrangian

modeling a mechanical systems, and a unilateral constraint

function that gives the set of admissible configurations for

this system. From this data, we obtain a Lagrangian hybrid

system. Moreover, hybrid systems of this form commonly

display Zeno behavior (when an infinite number of collisions

occur in a finite amount of time), and therefore provide

the ideal class of systems in which to gain an intuitive

understanding of Zeno behavior.

In [10], sufficient conditions for the existence of Zeno be-

havior in Lagrangian hybrid systems were presented. These

conditions were obtained by considering Zeno equilibria—

subsets of the continuous domains of a hybrid system that are

fixed points of the discrete dynamics but not the continuous

dynamics. It was shown that one only needs to check the sign

of the second derivative of the unilateral constraint function
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evaluated at a Zeno equilibrium point to verify the existence

of Zeno behavior. These conditions, and the framework in

which they were presented, naturally raises the question:

can similar conditions for the stability of Zeno equilibria

in Lagrangian hybrid systems be obtained?

The main result of this paper are both necessary and

sufficient conditions for the stability of Zeno equilibria in

Lagrangian hybrid systems. Moreover, the sufficient condi-

tions that we obtain are exactly the same as the conditions

for the existence of Zeno behavior presented in [10]. That

is, given a Zeno equilibrium point of a Lagrangian hybrid

system, if the second derivative of the unilateral constraint

function evaluated as this point is negative, then this point is

stable and the hybrid system is Zeno. This result is appealing

not only because it presents conditions for the stability of

Zeno equilibria, but also because it relates the stability of

such equilibria to Zeno behavior and vice versa. That is,

this paper allows for a deeper insight into the relationship

between stability of Zeno equilibria and Zeno behavior in

hybrid systems modeling mechanical systems undergoing

impacts.

Due to the subtle and complex nature of Zeno behavior,

it has been studied in many forms and from many different

perspectives. Most of the conditions for Zeno behavior are

necessary and tend to be very conservative; see [20] for

general hybrid systems, and [6], [19] for linear comple-

mentarity systems. Until recently, sufficient conditions for

Zeno behavior were more rare [2]. Necessary and sufficient

conditions for Zeno behavior in a significantly different class

of controlled hybrid systems were found in [8]. We also note

that this paper studies Zeno behavior in Lagrangian hybrid

systems, which were studied in [1], [3] and [4] as motivated

by [5].

II. LAGRANGIAN HYBRID SYSTEMS

In this section, we introduce the notion of a hybrid

Lagrangian and the associated Lagrangian hybrid system.

Hybrid Lagrangians of this form have been studied in the

context of Zeno behavior and reduction; see [1], [3], [4] and

[9]. First, we review the notion of a simple hybrid system.

Definition 1: A simple hybrid system is a tuple:

H = (D, G, R, f),

where

• D is a smooth manifold called the domain,

• G is an embedded submanifold of D called the guard,

• R is a smooth map R : G → D called the reset map,

• f is a vector field on the manifold D.
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This paper focuses on simple hybrid systems, having

a single domain, guard and reset map. A general hybrid

system (see [12]), which is not discussed here, consists of a

collection of domains, guards, reset maps and vector fields

as indexed by an oriented graph.

Hybrid executions. An execution of a simple hybrid system

H is a tuple χH = (Λ, I,C), where

• Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.

• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1]
if i, i+1 ∈ Λ and IN−1 = [τN−1, τN ] or [τN−1, τN ) or

[τN−1,∞) if |Λ| = N , N finite. Here, τi, τi+1, τN ∈ IR
and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e.,

ċi(t) = f(ci(t)) for t ∈ Ii, i ∈ Λ,

And the following conditions hold for every i, i + 1 ∈ Λ:

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1),
(iii) τi+1 = min{t ∈ Ii : ci(t) ∈ G}.

The initial condition for the execution is c0(τ0).

Lagrangians. Let Q be the n-dimensional configuration

space for a mechanical system (assumed to be a smooth

manifold) and TQ the tangent bundle of Q. In this paper,

we will consider Lagrangians, L : TQ → IR, describing

mechanical, or robotic, systems, which are Lagrangians of

the form

L(q, q̇) =
1

2
q̇T M(q)q̇ − V (q), (1)

where M(q) is the (positive definite) inertial matrix,
1
2 q̇T M(q)q̇ is the kinetic energy and V (q) is the potential

energy. In this case, the Euler-Lagrange equations yield the

(unconstrained) equations of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0, (2)

where C(q, q̇) is the Coriolis matrix (cf. [14]) and N(q) =
∂V
∂q

(q). Setting x = (q, q̇), the Lagrangian vector field, fL,

associated to L takes the familiar form:

ẋ = fL(x) =

(

q̇
M(q)−1(−C(q, q̇)q̇ − N(q))

)

. (3)

This process of associating a dynamical system to a La-

grangian will be mirrored in the setting of hybrid systems.

First, we introduce the notion of a hybrid Lagrangian.

Definition 2: A simple hybrid Lagrangian is defined to

be a tuple

L = (Q,L, h),

where

• Q is the configuration space,

• L : TQ → IR is a hyperregular Lagrangian,

• h : Q → IR provides a unilateral constraint on the

configuration space; we assume that the level set h−1(0)
is a smooth manifold.

Simple Lagrangian hybrid systems. For a Lagrangian (1),

there is an associated dynamical system (3). Similarly, given

a hybrid Lagrangian L = (Q,L, h) the simple Lagrangian

Fig. 1. (a) The bouncing ball on a sinusoidal surface (b) The double
pendulum

hybrid system (SLHS) associated to L is the simple hybrid

system:

HL = (DL, GL, RL, fL).

First, we define

DL = {(q, q̇) ∈ TQ : h(q) ≥ 0},
GL = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0},

where dh(q) =

(

∂h

∂q
(q)

)T

=
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

In this paper, we adopt the reset map ([5]):

RL(q, q̇) = (q, PL(q, q̇)),

which based on the impact equation

PL(q, q̇) = q̇−(1+e)
dh(q)q̇

dh(q)M(q)−1dh(q)T
M(q)−1dh(q)T ,

(4)

where 0 ≤ e ≤ 1 is the coefficient of restitution, which

is a measure of the energy dissipated through impact. This

reset map corresponds to rigid-body collision law under the

assumption of frictionless impact [5]. Examples of more

complicated collision laws that account for friction can be

found in [5], [7].

Finally, fL = fL is the Lagrangian vector field associated

to L in (3).

Example 1 (Ball): The first running example of this pa-

per is a planar model of a ball bouncing on a sinusoidal

surface (cf. Fig. 1(a)). The ball is modelled as a point mass

m. In this case

B = (QB, LB, hB),

where QB = IR2, and the configuration is the position of

the ball q = (x, y),

LB(x, ẋ) =
1

2
m‖q̇‖2 − mgy.

Finally, we make the problem interesting by considering the

sinusoidal constraint function

hB(q) = y − sin(x) ≥ 0.

So, for this example, there are trivial dynamics and a

nontrivial constraint function.

Example 2 (Double Pendulum): Our second running ex-

ample is a constrained double pendulum with a mechanical
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stop (cf. Fig. 1(b)). The double pendulum consists of two

rigid links of masses m1, m2, lengths L1, L2, and uniform

mass distribution, which are attached by passive joints, while

a mechanical stop dictates the range of motion of the second

link. The example serves as a simplified model of a leg

with a passive knee and a mechanical stop, which is widely

investigated in the robotics literature in the context of passive

dynamics of bipedal walkers (cf. [13],[18]). In this case

P = (QP, LP, hP),

where QP = S
1 × S

1, q = (θ1, θ2), and

LP(q, q̇) = 1
2 q̇T M(q)q̇ + ( 1

2m1L1 + m2L1)g cos θ1

+ 1
2m2L2g cos(θ1 + θ2),

with the elements of the 2×2 inertia matrix M(q) given by

M11 = m1L
2
1/3 + m2(L

2
1 + L2

2/3 + L1L2 cos θ2)

M12 = M21 = m2(3L1L2 cos θ2 + 2L2
2)/6

M22 = m2L
2
2/3.

Finally, the constraint that represents the mechanical stop is

given by hP(q) = θ2 ≥ 0. So, for this example, there are

nontrivial dynamics and a trivial constraint function.

III. ZENO BEHAVIOR AND ZENO EQUILIBRIA

This section discusses Zeno behavior and the correspond-

ing notion of Zeno equilibria. More importantly, we state

the sufficient conditions for Zeno behavior that will motivate

the main result of this paper in that our sufficient conditions

for the stability of Zeno equilibria utilize exactly the same

conditions; that is, in Lagrangian hybrid systems, the exis-

tence of Zeno behavior and the stability of Zeno equilibria

can be detected with the same simple and easily verifiable

conditions.

Zeno behavior. An execution χH is Zeno if Λ = N and

lim
i→∞

τi = τ∞ < ∞.

Here τ∞ is called the Zeno time. If χHL is a Zeno execution

of a Lagrangian hybrid system HL, then its Zeno point is

defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci(τi) = lim
i→∞

(qi(τi), q̇i(τi)).

These limit points are intricately related to a type of equilib-

rium point that are unique to hybrid systems: Zeno equilibria.

Definition 3: A Zeno equilibrium point of a simple hybrid

system H is a point x∗ ∈ G such that

• R(x∗) = x∗,

• f(x∗) 6= 0.

Zeno equilibria. If HL is a Lagrangian hybrid system,

then due to the special form of these systems we find that

the point (q∗, q̇∗) is a Zeno equilibria iff q̇∗ = PL(q, q̇∗),
with PL given in (4). In particular, the special form of PL

implies that this hold iff dh(q∗)q̇∗ = 0. Therefore the set of

all Zeno equilibria for a Lagrangian hybrid system is given

by the hypersurfaces in GL:

Z = {(q, q̇) ∈ GL : dh(q)q̇ = 0}.

Note that if dim(Q) > 1, the Zeno equilibria in Lagrangian

hybrid systems are always non-isolated (see [9])—this mo-

tivates the study of such equilibria.

Sufficient conditions for Zeno behavior. Let ḧ(q, q̇) be

the acceleration of h(q(t)) along trajectories of the uncon-

strained dynamics (2), which is given by:

ḧ(q, q̇) = q̇T H(q)q̇ + dh(q)M(q)−1(−C(q, q̇)q̇ − N(q)),
(5)

where H(q) is the Hessian of h at q. The following theorem,

which was proven in [10], provides sufficient conditions

for existence of Zeno executions in the vicinity of a Zeno

equilibrium point.

Theorem 1 ([10]): Let HL be a simple Lagrangian hy-

brid system and Let (q∗, q̇∗) be a Zeno equilibrium point

of HL. Then if e < 1 and ḧ(q∗, q̇∗) < 0, there exists

a neighborhood W ⊂ DL of (q∗, q̇∗) such that for every

(q0, q̇0) ∈ W , there is a unique Zeno execution χHL of HL

with c0(τ0) = (q0, q̇0).

IV. STABILITY OF ZENO EQUILIBRIA

In this section, we present and prove the main result of

this paper: sufficient conditions for the stability of Zeno

equilibria. In particular, we introduce a type of stability that

Zeno equilibria in SLHS can display: bounded-time local

stability (BTLS). We show that the same conditions on the

coefficient of restitution and the second derivative of the

unilateral constraint function implies this type of stability.

Conversely, if these conditions are not satisfied, the Zeno

equilibrium point is not BTLS.

Definition 4: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL. Then x∗

is defined as bounded-time locally stable if for each open

neighborhood U ⊆ TQ of x∗ and ǫt > 0, there exists another

open neighborhood W of x∗, such that for every initial

conditions c0(τ0) ∈ W ∩ DL, the corresponding execution

χHL is Zeno, and satisfies ci(t) ∈ U for all t ∈ Ii and i ∈ Λ,

while its Zeno time satisfies τ∞ − τ0 < ǫt.

A. Statement of Main Result

We now present the main result of the paper: conditions

for BTLS of Zeno equilibria of SLHS.

Theorem 2: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL. Then the

following two conditions hold:

(i) If e < 1 and ḧ(q∗, q̇∗) < 0, then x∗ is BTLS.

(ii) If ḧ(q∗, q̇∗) > 0, then x∗ is not BTLS.

For part (i), we not only prove the existence of the

neighborhood W for given U , but also provide an explicit

relation between W and U . For the sake of concreteness

and simplicity, we use a local coordinate chart for small

neighborhoods of x∗. Therefore, we can identify both q and

q̇ with elements of IRn, and use the induced Euclidean norm

‖ · ‖ to define neighborhoods of x∗ = (q∗, q̇∗) as

N(ǫq, ǫv) = {(q, q̇) ∈ DL : ‖q − q∗‖ < ǫq, ‖q̇ − q̇∗‖ < ǫv}
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Fig. 2. Illustration of the neighborhoods U, V, W and W ′ of x∗.

Using this notation, for a given U there exist ǫq and ǫv such

that U ⊆ N(ǫq, ǫv). Assuming that e < 1 and ḧ(q∗, q̇∗) < 0,

our goal is to construct a neighborhood W = N(δq, δv) that

satisfies the requirements given in Definition 4.

B. Proof of Main Result

The rest of this section proves Theorem 2 in stages through

a series of lemmas. Before presenting these lemmas, we will

first give a general outline of the proof. In particular, the

proof of part (i) of Theorem 2 is divided into three steps:

1) We define an intermediate neighborhood V ⊂ U , such

that any execution that stays within V at all times is

guaranteed to be Zeno.

2) We define another neighborhood W ′ ⊂ GL∩V , which

lies on the guard GL, such that any execution whose

first discrete event c0(τ1) lies within W ′ is guaranteed

to stay within V .

3) We construct the neighborhood W , such that any exe-

cution with initial conditions within W is guaranteed

to pass through a point of W ′ at time τ1, and thus it is

a Zeno execution that stays within U, as required. An

illustration of these neighborhoods appears in Fig. 2.

We now formally proceed through these steps in order

to establish the main result of the paper. Due to space

limitations, the detailed proofs of the lemmas are relegated

to [16].

Step 1. We begin by defining the intermediate neighborhood

V = N(ǫ′q, ǫ
′

v), where ǫ′q < ǫq and ǫ′v < ǫv are chosen so

that for

amin = − max
(q,q̇)∈V

ḧ(q, q̇),

amax = − min
(q,q̇)∈V

ḧ(q, q̇),

The following conditions hold:

amax > amin > 0 and e
amax

amin

< 1. (6)

Note that the fact that e < 1 and ḧ(q∗, q̇∗) < 0, along with

the continuity of ḧ(q, q̇), imply that such ǫ′q, ǫ
′

v exist. This

definition of V implies that when (q(t), q̇(t)) ∈ V , h(q(t))
satisfies the second-order differential inclusion

ḧ(q(t), q̇(t)) ∈ [−amax,−amin]. (7)

For simplicity of notation, for an execution χHL , define

v−

i = dh(qi−1(τi))q̇i−1(τi),

v+
i = dh(qi(τi))q̇i(τi),

which are the pre- and post- collision velocities at the time

τi. Note that (4) implies that v+
i = −ev−i . Also, let Ti =

τi − τi−1, which is the time difference between consecutive

collisions. The following lemma states that any execution

which is bounded within V is guaranteed to be Zeno.

Lemma 1 ([16]): Let x∗ = (q∗, q̇∗) be a Zeno equilib-

rium point of a simple Lagrangian hybrid system such that

ḧ(q∗, q̇∗) < 0 and e < 1, and let V = N(ǫ′q, ǫ
′

v) be a

neighborhood of x∗ that satisfies (6). Then for any execution

χHL such that ci(t) ∈ V for all t ∈ Ii and i ∈ Λ, the

discrete-time series of v+
i and Ti satisfy:

e
√

amin

amax
≤ v+

i+1

v+

i

≤ e
√

amax

amin
, (8)

Ti+1

Ti
≤ eamax

amin
. (9)

Therefore, χHL is Zeno.

The proof of this lemma, which appears in [16], utilizes tech-

niques of optimal control to establish bounds on solutions of

the differential inclusion (7), in a way similar to the work of

Liberzon and Margaliot [11].

Step 2. As the next step towards computing the neighbor-

hood W, we compute the neighborhood W ′ ⊂ GL ∩ V , of

initial conditions on the guard GL (i.e. corresponding to a

collision), such that any execution with initial conditions in

W ′ stays within V .

In order to construct W ′ for given neighborhoods U and

V , we first define the following scalars:

e′ = e
amax

amin

e′′ = e

√

amax

amin

β = ‖q̇∗‖ + ǫ′v

η = max
(q,q̇)∈V

‖M−1(q)dh(q)T ‖
dh(q)M(q)dh(q)T

ζ = max
(q,q̇)∈V

∥

∥M−1(q) (C(q, q̇)q̇ + N(q))
∥

∥ . (10)

The following lemma completes the definition of W ′.

Lemma 2 ([16]): Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL such that

ḧ(q∗, q̈∗) < 0 and e < 1, and let V = N(ǫ′q, ǫ
′

v) be a

neighborhood of x∗ that satisfies (6). For a given ǫ′t > 0, let

W ′ be the neighborhood defined as follows:

W ′ = {(q, q̇) ∈ TQ : h(q) = 0, ‖q − q∗‖ < δ′q, (11)

‖q̇ − q̇∗‖ < δ′v and 0 > dh(q)q̇ > −v1max}.

such that δ′q, δ
′

v and v1max satisfy the conditions:

δ′q < ǫ′q, δ′v < ǫ′v and v1max < min {c1, c2, c3} (12)

where c1 = amin(1−e′)
2e

ǫ′t

c2 =
amin(1−e′)

2eβ
(ǫ′q − δ′q)

c3 =
(

ǫ′v − δ′v
) /

(

(1+e)η
1−e′′

+ 2eζ
amin(1−e′)

)

.
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Fig. 3. Simulation results for the ball example with initial velocities vx(0) = 1.8 and vy(0) = 0.
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Fig. 4. Simulation results for the ball example with initial velocities vx(0) = 2.5 and vy(0) = 0.

Then each execution χHL such that c0(τ1) ∈ W ′ is Zeno

and satisfies ci(t) ∈ V for all t ∈ Ii and i ≥ 1. Moreover,

the corresponding Zeno time satisfies

τ∞ − τ1 < ǫ′t. (13)

Step 3. At this final stage, for a given ǫ′′t > 0, we define

the neighborhood W as

W = N(δq, δv),

where δq < δ′q and δq < δ′q satisfy:

(i)
dh(q)q̇+

√
(dh(q)q̇)2−aminh(q)

amin
< min{δ′

q−δq

β
,

δ′

v−δv

ζ
, ǫ′′t }

(ii)
(

2h(q) + (dh(q)q̇)2

amin

)

amax < (v1max)2

(14)

for all (q, q̇) ∈ N(δq, δv) ∩ DL.

Note that since h(q∗) = 0 and dh(q∗)q̇∗ = 0, continuity

of h(q) and dh(q) imply that such δq, δv exist. The following

lemma states that if the initial condition are within W , then

at the first collision time τ1, (q, q̇) are within W ′.

Lemma 3 ([16]): Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL such that

ḧ(q∗, q̈∗) < 0 and e < 1, and let V, W ′ and W be the

neighborhoods of x∗ defined in (6), (11) and (14) respec-

tively. Then each execution χHL such that c0(τ0) ∈ W ∩DL

satisfies c0(t) ∈ V for t ∈ I0, and c0(τ1) ∈ W ′ and

τ1 − τ0 < ǫ′′t .

Finally, the proof of part (i) of Theorem 2 is a straightfor-

ward application of Lemmas 1, 2, and 3. The details of the

proof, as well as the proof of part (ii), appear in [16].

V. SIMULATION RESULTS

In this section, we present numerical simulations of the

examples considered at the beginning of this paper.

Example 3 (Ball): Continuing with Example 1, by direct

computation the condition for stability of a Zeno equilibrium

point (q, q̇) in this system as given in Theorem 2 is:

ḧ(q, q̈) = v2
x sin(x) − g < 0

where we denote q̇ = (vx, vy). This indicates that Zeno

equilibrium points that satisfy sin(x) < 0 (i.e. near the min-

ima) are more likely to attract Zeno executions. Moreover,

setting the horizontal velocity vx sufficiently small increases

the chances of exhibiting Zeno convergence even at points

such that sin(x) > 0 (i.e. near the maxima). For the sake of

simplicity, we take m = 1, g = 1 and e = 0.5.

We simulate this system under two different sets of initial

conditions, where in both cases the initial conditions at t = 0
are chosen such that at t1 = 0.05, a first collision occurs at

x(t1) = 0.3, y(t1) = sin(0.3). In the first case, the initial

velocities are chosen as vx(0) = 1.8 and vy(0) = 0. The

execution was simulated until a collision time τk at which

the collision velocity dh(q(τk))q̇(τk) is less than 10−10.

Figures 3(a)-(f) show the simulation results of this running

example. Figures 3(a),(b),(c),(d),(e) show the time plots of

x(t), y(t), vx(t), vy(t) and h(q(t)), respectively. The points

of collision events are marked with squares (“¥”). Figure 3(f)

plots x(t) vs. y(t), with the constraint surface y = sin(x)
appearing as a dashed curve. This simulation results in a

Zeno execution that converges at a Zeno time t∞ = 3.761
to the Zeno equilibrium point q∗ = (1.337, 0.973) and

q̇∗ = (−0.121,−0.028). This Zeno point is close to a

maximum point of the surface; note that the horizontal

velocity vx is significantly decreased from its initial value,

so that ḧ(q∗, q̈∗) = −0.986 < 0 and the stability condition is

satisfied. Note, too, that the motion of h(q(t)) in the vicinity

of the Zeno point is remarkably similar to that of a simple

bouncing ball (cf. Figure 3(e)).
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In the second case, the initial velocities are chosen as

vx(0) = 2.5 and vy(0) = 0. Figures 4(a)-(f) show the

simulation results under these initial conditions. This sim-

ulation results in a Zeno execution that converges at a Zeno

time t∞ = 5.0731 to the Zeno equilibrium point q∗ =
(5.114,−0.920) and q̇∗ = (2.023, 0.791). One can see that

the trajectory is initially “repelled” from the maximum point

due to the large horizontal velocity, and attracted towards

the next minimum point, while the horizontal velocity is

increased, such that ḧ(q∗, q̈∗) = −4.766 satisfies the stability

condition in Theorem 2.

Example 4 (Double Pendulum): In the second running

example (Example 2) consisting of a double pendulum with a

mechanical stop, the condition for stability of Zeno equilibria

given in Theorem 2 is

ḧ(q, q̇) = g sin θ1

L̃
< 0, where L̃ = (4m1+3m2)L1L2

3(m1(L1+2L2)m2L2)
.

This indicates that only points at which sin θ1 < 0 (i.e. the

link L1 is inclined to the left) can be stable Zeno equilibria.

Simulation results of this system, which are not shown here

due to space limitations, are quite similar to those of the ball

example. The reader is referred to [15] for simulation results

of the completed double-pendulum system (i.e. executions are

also carried beyond the Zeno points).

VI. CONCLUSION

In this paper we analyzed the stability of Zeno equi-

libria of simple Lagrangian hybrid systems, and derived

sufficient conditions for stability and for instability of such

equilibria. The stability conditions presented are analogous

to determining the local stability of equilibrium points of a

nonlinear continuous system by computing the eigenvalues

of its linearization. This paper provides almost necessary

and sufficient conditions for stability of Zeno equilibria,

where the exceptional intermediate case of ḧ(q∗, q̇∗) = 0 is

analogous to the case where the linearization of a continuous

system has eigenvalues on the imaginary axis, and stability

cannot be determined via linearization. This analogy moti-

vates future investigation of techniques for global stability

analysis of Zeno equilibria, where a promising direction is

the use of Lyapunov-like functions as was already done in

the analysis of isolated Zeno equilibrium points [9].

The fact that Zeno behavior is fundamentally a modeling

phenomena indicates that the conditions used to detect Zeno

behavior can be used to “complete” the hybrid system model.

That is, carry an execution past the Zeno point by switching

to a holonomically constrained dynamical system. Although

this has been studied to a limited degree in [4], the result

presented in this paper can be used to complete hybrid

systems in a formal manner, which is the subject of our

future work [15].

Finally, the paper analyzes stability only for simple La-

grangian hybrid systems, i.e. systems with a single domain

and a single guard. The extension to mechanical systems

with multiple unilateral constraints is still a challenging open

problem, although preliminary results for stability of a spe-

cific two-constraint mechanical system were obtained in [17].

This extension, along with the completion process described

above, will enable the analysis of complex mechanical and

robotic systems with intermittent contacts, such as bipedal

walkers with knees (e.g. [18] and [13]), under a unified

framework of Lagrangian hybrid systems.
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