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Abstract— Integral resonant control (IRC) is a feedback
control technique used for damping active structures with
a collocated sensor/actuator pair. This paper extends this
control technique to structures having several collocated sen-
sor/actuator pairs. Conditions for the closed loop stability are
derived, and the set of such stabilizing IRC controllers is shown
to be a convex set. An experimental implementation of an IRC
controller on an active structure (Cantilever beam) with two
pairs of bonded collocated piezoelectric sensors/actuators is also
presented.

I. INTRODUCTION

Flexible structures are resonant systems prone to high

amplitude mechanical vibrations. Many industrial, aerospace

and scientific applications incorporate flexible structures,

see [1] and [2]. As they are highly resonant, even small

disturbances can trigger high amplitude vibrations. Most

flexible structures are distributed parameter systems with

their dynamics being governed by partial differential equa-

tions. Therefore, in theory, they posses an infinite number

of lightly damped resonant modes. In other words their

transfer-functions are of infinite order with poles close to

the imaginary axis, making them very difficult to control.

In a practical scenario, the PDE model is discretized

to form a lumped model or alternatively the infinite order

transfer-function is truncated and only the first few modes

are retained. Using the truncated model, feedback controllers

are designed to damp the resonant modes of the structure.

The truncated modes or the discarded modes are referred

to as the out of bandwidth modes and play no part in the

controller design. The presence of the uncontrolled truncated

modes can lead to what is known as the spillover effect, [3].

That is, the control energy is channeled to the residual modes

which may destabilize the closed loop system.

In order to overcome the spillover effect, collocated

sensors and actuators have been used, and feedback con-

trollers linking these sensors and actuators, that guarantee

unconditional closed loop stability have been investigated.

Velocity feedback, [4] and [5] and Resonant controllers, [6]

are two well known examples of controllers that guarantee

unconditional closed loop stability of the system. Positive

position feedback (PPF), [7] and [8], is another technique

which is insensitive to the spill over effect and have sim-

ilar stability properties. In [10] the authors had shown
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the conditional closed loop stability of PPF on collocated

structures. Unlike velocity feedback and resonant control, the

frequency response of a PPF controller rolls off quickly at

high frequencies, thus leaving the unmodeled high frequency

modes of the plant undisturbed.

In [9], the authors proposed a control technique known as

Integral resonant control (IRC). This technique was proposed

for a flexible structure with a single sensor/actuator pair (i.e.,

for the SISO case). It was observed in [9] that IRC resulted

in good damping and also the controller rolled off quickly at

high frequencies. This paper extends the work of [9] to the

case of multiple collocated sensor/actuator pairs (i.e., MIMO

systems). Stability conditions for MIMO IRC are derived

and the possibility of making them unconditionally stable is

also discussed. Moreover due to its parametric structure, the

MIMO IRC, like the SISO case, rolls off quickly at the high

frequencies.

II. PROBLEM STATEMENT

Flexible structures with collocated sensor/actuator pairs

posses a model structure of the following form (see [8] and

[11]):

Ẍ +MẊ + ΩX = Ψu

y = Ψ⊤X +Duu, (1)

where X is an n × 1 vector, M and Ω are n × n positive

definite diagonal matrices, Ψ is an n × m matrix, u is an

m×1 vector of inputs and Du is an m×m matrix. It is worth

noting that both y and u are of the same dimension m as the

sensors (outputs) and actuators (inputs) appear in pairs. In

summary (1) represents a system with m collocated sensor-

actuator pairs, and describing the dynamics of the system

up to the nth mode. The goal of this paper is to construct

multivariable controllers for resonant structures of the form

(1).

In [9] the authors considered a special case of (1) with Ψ
being an m×1 vector, the input u being a scalar function and

Du being replaced by the scalar du. In the Laplace domain

the transfer-function of this SISO system can be written as

Gn(s) =
n

∑

k=1

ψ2
k

s2 + 2σkωks+ ω2
k

+ du, (2)

where Ψ = [ψ1, ψ2, . . . , ψn]
⊤

, M =
diag (2σ1ω1, 2σ2ω2, . . . , 2σnωn) and Ω =
diag

(

ω2
1 , ω

2
2 , . . . , ω

2
n

)

. The approach of [9] achieved

significant damping by adding a feed through term d and

wrapping an integral controller C(s) = γ
s

around it; see
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Figure 1. In [9], to analyze the stability of the closed loop

system, Gn(s), (2), was approximated by

Ĝn(s) =

n
∑

k=1

ψ2
k

s2 + ω2
k

+ du. (3)

It was shown that the poles and zeros of Ĝn(s), (3), were

purely imaginary and their Pole-Zero map (PZ map) had a

pole-zero alternating pattern as shown in Figure 2(a). Adding

a suitable d term to Ĝn(s) shifted the zeros in such a way

that Ĝn(s) + d had a PZ map with a zero-pole alternating

pattern, see Figure 2(a). It was found that the root-locus

plot of 1
s

(

Ĝn(s) + d
)

lied entirely in the left half plane.

Therefore by choosing a suitable gain γ > 0, a significant

amount of damping could be achieved; see Figure 3. Note

that this amounts to wrapping C(s) = γ
s

around Ĝn(s) + d.

Gn(s)
r

C(s)
U(s) Y (s)e(s) Ȳ (s)

d

Fig. 1. Closed-loop system with the Integral controller C(s) = Γ

s
around

Gn(s) + d.

(a) (b)

+ d =
Real Real

Imag Imag

Fig. 2. Illustration of the Pole-Zero positions of Ĝn(s), (3), and Gn(s)+d,
’x’ denoting poles and ’o’ denoting zeros.

In this paper, the IRC scheme is extended to the MIMO

case; i.e., the general case presented in (1). A natural

extension of the above mentioned scheme to the MIMO case

is to replace the scalar feed through term d by an m × m
matrix D, and the scalar gain γ to an m × m matrix Γ.

However, unlike the SISO case, proving the closed loop

stability needs more advanced mathematical machinery than

standard root-locus techniques.

Let

Gn(s) , Ψ
[

s2I +Ms+ Ω
]−1

Ψ⊤ (4)

denote the transfer-function corresponding to the MIMO sys-

tem (1), C(s) denote the MIMO integral controller C(s) = Γ
s

Real

Imag

Fig. 3. Illustration of the root locus of 1

s

“

Ĝn(s) + d
”

.

with Γ being an m ×m matrix, and D denote the m ×m
feed-through matrix. Before proving the closed-loop stability,

for technical ease, the above mentioned control scheme

is rewritten into an equivalent form. This equivalent form

makes it easier to analyze the stability.

Note, from Figure 1 that the input to the controller C(s)
is given by

e(s) = r(s) + Ỹ (s), (5)

where

Ỹ (s) = Y (s) +DU(s), (6)

with U(s) and Y (s), (1), being the plant inputs and outputs

respectively. The output of the controller, which is the plant

input U(s), is given by U(s) = Γ
s
e(s). Therefore,

U(s) =
Γ

s
r(s) +

Γ

s
Y (s) +

Γ

s
DU(s), (7)

which implies

[sI − ΓD]U(s) = Γr(s) + ΓY (s), (8)

and hence

U(s) = [sI − ΓD]
−1

Γr(s)

+ [sI − ΓD]
−1

ΓY (s). (9)

As Y (s) = Gn(s)U(s), it can be further deduced that

Y (s) = Gn(s) [sI − ΓD]
−1

Γr(s)

+Gn(s) [sI − ΓD]
−1

ΓY (s), (10)

which implies
[

I −Gn(s) [sI − ΓD]
−1

Γ
]

Y (s) =

Gn(s) [sI − ΓD]
−1

Γr(s). (11)

It can be inferred from equation (11) that the control

strategy presented in Figure 1 is equivalent to the one

presented in Figure 4, with

K(s) = [sI − ΓD]
−1

Γ. (12)

Therefore proving the stability of the control strategy pre-

sented in Figure 1 is equivalent to proving the stability of

the control strategy presented in Figure 4.
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Gn(s)
r

K(s)
Y

Fig. 4. Closed-loop system with the controller K(s) around Gn(s).

A. Proof of closed loop stability

The proof presented here for the internal stability of the

feedback system with the controller K(s) uses the mathe-

matical machinery provided by [10].

Let

C1 ,
{

R(s) ∈ RHm×m
∞ :

j [R(jω) − R∗(jω)] ≥ 0,∀ω ∈ (0,∞)} (13)

and

C2 ,
{

R(s) ∈ RHm×m
∞ : R(∞) ≥ 0,

j [R(jω) − R∗(jω)] > 0,∀ω ∈ (0,∞)} , (14)

where RHm×m
∞ denotes the set of all m × m matrices of

stable rational transfer-functions that are uniformly bounded

on the imaginary axis, [12].

It can be shown that, if P (s) ∈ C1 and Q(s) ∈ C2

are such that P (∞)Q(∞) = 0, then a positive feedback

connection of P (s) and Q(s) is internally stable iff

λmax (P (0)Q(0)) < 1. Formally stated

Theorem: Given P (s) ∈ C1 and Q(s) ∈ C2 such that

P (∞)Q(∞) = 0, then their positive feedback interconnec-

tion is internally stable if and only if the eigenvalues of the

matrix P (0)Q(0) are strictly less than one.

Proof: Refer to [10].

It can be inferred directly from (4) and (12) that Gn(s) ∈
C1 and K(∞) = 0 respectively. Therefore, for K(s) to be

in C2, K(s) must be stable and K(jω) must satisfy

j [K(jω) −K∗(jω)] > 0. (15)

In the following it will be shown that for Γ and D both

symmetric, with Γ being positive definite and D being

negative definite (or −D being positive definite), K(s) would

belong to the set C2.

Note that as the product −ΓD is strictly positive definite,

stability of K(s), is direct from (12). As Γ and −D−1 are

symmetric and positive definite there exists a non-singular

n× n matrix X such that

X⊤D−1X = Λ (16)

and

X⊤ΓX = I, (17)

where Λ is a diagonal matrix and I is the identity matrix. The

elements of Λ are eigenvalues of Γ−1D−1, see [13]. As Γ

and −D are positive definite, every eigenvalue of the product

ΓD, and hence (ΓD)
−1

, is negative, see [14]. Therefore,

Λ = diag (−λ11,−λ22, . . . ,−λnn), for some λkk’ strictly

positive.

Note that Γ = X−⊤X−1 and D−1 = X−⊤ΛX−1, which

implies D = XΛ−1X⊤ and ΓD = X−⊤Λ−1X⊤ . Hence

K(s) = [sI − ΓD]
−1

Γ

=
[

sI −X−⊤Λ−1X⊤
]−1

X−⊤X−1

= X−⊤
[

sI − Λ−1
]−1

X−1, (18)

This in turn implies

K(jω) = X−⊤
[

jωI − Λ−1
]−1

X−1 (19)

and

K∗(jω) = X−⊤
[

−jωI − Λ−1
]−1

X−1, (20)

and hence

j [K(jω) − K∗(jω)] = jX−⊤

(

[

jωI − Λ−1
]−1

−
[

−jωI − Λ−1
]−1

)

X−1. (21)

Setting αk = 1
λkk

, k = 1, 2, . . . , n, it can be seen that

[

jωI − Λ−1
]−1

=











1
jω+α1

0 . . . 0

0 1
jω+α2

. . . 0

0 0
. . . 0

0 0 . . . 1
jω+αn











=













−jω+α1

ω2+α2

1

0 . . . 0

0 −jω+α2

ω2+α2

2

. . . 0

0 0
. . . 0

0 0 . . . −jω+αn

ω2+α2
n













(22)

It is evident from (21) and (22) that j [K(jω) − K∗(jω)] is

strictly positive definite. Thus for Γ and −D positive definite

K(s) ∈ C2. Furthermore, for the closed loop to be stable

λmax (Gn(0)K(0)) < 1 has to hold. As Gn(0) = Ψ⊤Ω−1Ψ
and K(0) = −D−1, this implies

−D > Ψ⊤Ω−1Ψ. (23)

Remark 1: If the controllers K1(s) = [sI − Γ1D1]
−1

Γ1

and K2(s) = [sI − Γ2D2]
−1

Γ2 satisfy (15), then so

does K(2)(s) = K1(s) + K2(s). Infact for any fi-

nite sum K(n)(s) =
∑n

k=1Kk(s). with each Kk(s) =

[sI − ΓkDk]
−1

Γk satisfying (15), K(n)(s) would also sat-

isfy (15). For K(n)(s) to provide closed loop stability

Γk > 0, Dk < 0, k = 1, 2, 3, . . . , n and −
∑n

k=1D
−1
k >

Ψ⊤Ω−1Ψ. These constraints can also be posed as LMIs.

Remark 2: The constraint (23) complements the con-

straint that D has to be negative definite. Moreover, if g0 =
supnGn(0) is known, then choosing −D > g0 would give

stability over any finite number of out of bandwidth modes.

In any physical system, power and bandwidth constraints
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v1 v2

vp1 vp2

w

ytip(t)

Fig. 5. Layout of the cantilever beam, v1 and v2 denote the actuator
patches, vp1 and vp2 denote the sensor patches, w denotes the noise patch
and ytip(t) denotes tip displacement.

Fig. 6. Picture of the cantilever beam

ensure that it is not possible to excite all of the infinite modes

of the system. Hence, for −D > g0I and Γ > 0, the IRC

controller will guarantee closed loop stability for all practical

purposes.

III. EXPERIMENTAL SETUP

Here, a Cantilever beam representing a physical resonant

system is considered. This beam, which is clamped at one

end and free at the other end, is susceptible to high amplitude

vibrations when disturbed. In this section, a controller of the

form (12) will be designed to damp these highly resonant

vibration modes of the beam.

As mentioned above, the cantilever beam is clamped at

one end and free at the other. Two pairs of piezoelectric

patches are attached to this beam, one pair located close to

the clamped end and the other pair located close to the free

end of the beam. For each pair, one piezoelectric patch will

be used as an actuator (where input signals are applied) and

the other patch will act as a sensor (where output signals are

recorded). Another solitary piezoelectric patch is attached to

the center of the beam and will be driven by a voltage source

w. This voltage w represents the disturbance on the beam.

See Figures 5 and 6 for a schematic beam set up and an

actual picture of the beam respectively.

A. System identification

The experimental setup is treated as a three-input-three-

output multivariable system, see Figure 7. The inputs (v1 and

v2) in Figure 7 are the voltages applied to the actuators of

the collocated piezoelectric patches and the outputs vp1 and

vp2 are the voltages induced at the corresponding sensors.

The third input w is the disturbance on the beam and the

output ytip is the displacement of the tip of the beam.

v1

v2

vp1

vp2

w ytip

G(s)

Fig. 7. Augmented MIMO plant

Since the system is modeled as a three-input-three-output

system, the frequency response function (FRF) G(jω) is a

3 × 3 matrix with each element Gij(jω), i, j = 1, 2 and

3, corresponding to a particular combination of the input

and the output i.e., Gij(jω) = Gyiuj
= Yi(jω)/Uj(jω),

where y1 = ytip, y2 = vp1 and y3 = vp2, and u1 =
w, u2 = v1 and u3 = v2. Yi(jω) and Uj(jω) are the

Fourier transforms of yi and uj respectively. These FRFs

are determined (non-parametrically) by applying swept sine

waves, in the frequency band of 5 − 200Hz, to the piezo-

electric actuators (including the central patch corresponding

to the disturbance term w) and measuring the corresponding

output signals ytip, vp1 and vp2. The inputs and the outputs,

with exception to ytip were generated and measured respec-

tively using an HP36570A dual channel spectrum analyser.

The tip displacement ytip, was measured using a Polytec

laser scanning vibrometer (PSV-300). In Figure 8, the non-

parametric FRFs Gij(jω), i, j = 1, 2 and 3 are plotted. It

is apparent from the plots that all the FRFs have three

resonance frequencies in the plotted frequency band, and not

surprisingly the resonance frequencies are the same for all

the FRFs. A model of the form

Ẍ +MẊ + ΩX = Ψu(t) + βw(t)

Vp(t) = Ψ⊤X +Dvuu(t) +Dvww(t) (24)

ytip(t) = P⊤X +Dytipuu(t) +Dytipww(t)

was fit for the data plotted in Figure 8. It can be observed

from Figure 8 that the model fits the data reasonably well.

As there are three modes X is a 3× 1 vector, M and Ω are

3 × 3 diagonal matrix, Ψ, Dvu and Dvw are 3 × 2, 2 × 2
and 2 × 1 matrices respectively, β and P are 3 × 1 vectors,

and Dytipu and Dytipw are scalars. Here, u(t) , [v1, v2]
⊤

and Vp(t) , [vp1, vp2]
⊤

. The details of the estimation of the

model (24), though by no means trivial, are not crucial for

the paper and hence omitted.

B. Controller Design

The tip displacement ytip of the beam gives a measure of

the vibrations in the beam. As w represents a disturbance,

the FRF G11(jω) , Gytipw(jω) = Ytip(jω)/W (jω), where

Ytip(jω) and W (jω) are the Fourier transforms of ytip(t)
and w(t) respectively, is a good indicator of the effect of

noise on the beam. A well damped FRF Gytipw(jω) would

imply a well damped system. Hence, here, a controller K(s),
(12), is designed such that the closed loop FRF GCl,yw(jω)
corresponding to the input w and output ytip is well damped.
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Fig. 8. Identified model (-.) with measured data (-)

Alternatively stated, a controller is designed such that the

poles of the closed loop FRF GCl,yw(jω) are well inside the

left half plane.

Here, for technical ease (24) is rewritten in the standard

state space from

ẋ(t) = Ax(t) +Bvu(t) +Bww(t)

Vp(t) = Cvx(t) +Dvuu(t) + +Dvww(t) (25)

ytip(t) = Cytip
x(t) +Dytipuu(t) +Dytipww(t),

where

A =















0 1 0 0
−ω2

1 −2ζ1ω1 0 0
. . .

0 0 0 1
0 0 −ω2

3 −2ζ3ω3















B = [Bw Bv1
Bv2

] =















0 0 0
β1 Ψv1

1 Ψv2

1
...

...
...

0 0 0
β3 Ψv1

3 Ψv2

3















C =





Cytip

Cv1

Cv2



 =





P1 0 . . . P3 0
Ψv1

1 0 . . . Ψv1

3 0
Ψv2

1 0 . . . Ψv2

3 0



 , (26)

where {ω2
k}

3
k=1 and {2ζkωk}

3
k=1 are the diagonal elements

of the matrices Ω and M respectively, {β}3
k=1 are the

elements of the 3×1 vector β, {Ψv1

k }3
k=1 and {Ψv2

k }3
k=1 are

elements of the first and the second columns of Ψ matrix and

{Pk}
3
k=1 are the elements of the P vector. As K(s) acts as

a feedback controller connecting the plant output Vp to the

input u, the control dynamics, in time domain, is governed

by

x̃ = ΓDx̃+ ΓVp

u = x̃. (27)

Setting Z = [x, x̃] the closedloop system can be written as

Ż =

[

A Bu

ΓCv Γ (D +Dvu)

]

Z +

[

Bw

ΓDvw

]

w

ytip =
[

Ctip, Dytipu

]

Z +Dytipww(t). (28)

The goal is to choose Γ and D such the poles of (28) are

well into to the left half plane. To this end the following

optimization problem is posed,

min
Γ,D

10
∑

k=1

| P
(d)
k − P

(c)
k (Γ, D) | (29)

under the constraints, Γ > 0 and −D > G(0) = ΨΩ−1Ψ⊤.

In (29) P
(d)
k ’s denote the set of desired closed loop poles,

while P
(c)
k (Γ, D) are the closed loop pole positions for a

given Γ and D. In an ideal scenario one would like the

have Γ and D such that P
(d)
k = P

(c)
k (Γ, D) for all k.

Here, the desired closed loop poles are set to {P
(d)
k =

pk − 15}6
k=1, where {pk}

6
k=1 are the open loop poles and

P
(d)
7 = P

(d)
8 = −30. The cost-function is minimised using
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Fig. 9. Magnitude plot of the controller K(s)
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Fig. 10. Magnitude plot of the closed loop transfer function, GCl,ytipw

both simulated and experimentally determined along with the open loop.

a non-linear search with the constraints enforced. Needless

to say, the cost function (29) is non-convex and has many

local minimas. Therefore, the controller obtained here is only

locally optimal. In Figure 9 the magnitude plot of the con-

troller obtained for the desired closed loop poles P
(d)
k , k =

1, 2, . . . , 6 is presented. The effect of this controller is tested

both numerically (Simulated) and experimentally. It can be

observed from Figure 10 that the numerically predicted

(simulated) closed loop transfer-function matches reasonably

with the experimentally determined one. Furthermore a good

damping of all the three resonances can be seen from the

plots.

IV. CONCLUDING DISCUSSION

In this paper an extension of the integral resonant control

(IRC) technique to resonant MIMO systems with collocated

sensor-actuator pairs was considered. The extension of the

IRC from the SISO systems (with one collocated sensor-

actuator pair) to the MIMO systems (with several collocated

sensor-actuator pairs), though a natural progression, was by

no means a straight-forward one. While the closed loop

stability in the SISO case was investigated using root-

locus criterion, the proof in MIMO case necessitated the

use of more advanced and recent mathematical machinery.

It was shown that for collocated resonant structures IRC

controller guarantees closed loop stability subject to certain

LMI constraints. Thereby making the class of such stabi-

lizing controllers a convex set. A constrained optimization

procedure was proposed for designing multivariable IRCs

which can deliver sufficient damping. A multivarible IRC

was designed for and implemented on an active structure

with two pairs of collocated piezoelectric sensor/actuator

pairs. The mulivariable IRC controllers were shown to add

significant damping to the active structure.

The procedure presented in this paper for designing IRC

controllers involves minimizing a nonlinear nonconvex cost

function over a convex set. The nonconvex nature of the

cost function makes the control design heavily reliant on

the initial guess or the starting point of the nonlinear search

used for minimizing the cost function. A convex optimization

approach to IRC design is still an open question.
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