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Abstract: In this work, control of redundant robot

manipulators in an uncertain environment is considered.

The manipulator is equipped with finite range sensors to

detect obstacles in its workspace. A navigation function-

based kinematic controller is proposed to ensure the regu-

lation of the end-effector to a desired set-point while the

entire manipulator simultaneously avoids the obstacle points

detected by the sensors. A joint-space controller is then

utilized to ensure asymptotic tracking of the desired joint-

space trajectory.

I. INTRODUCTION

While there are multiple definitions available to explain

redundancy in robots [1], the most widely used form in

the literature is kinematic redundancy, where the number of

joints of a robot manipulator is greater than the degrees of

freedom in its task-space. This property of redundant robot

manipulators is essential for various applications, especially

those requiring the manipulator to perform complex tasks.

As explained in [2], [3], [4] and [5], there are an infinite

number of solutions possible for the inverse kinematics

since redundant robot manipulators can have multiple joint

configurations for the same end-effector position. As a result,

there exists joint motion which can be propagated in the null-

space of the manipulator Jacobian matrix without affecting

the end-effector position, a phenomenon commonly referred

to as self-motion.

Some of the previous research has focused on utilizing

the kinematic redundancy of such manipulators to achieve

task-space tracking while also meeting various secondary

objectives. Seraji [6] explained configuration control methods

by achieving task-space tracking while using the redundancy

of the robot manipulator to satisfy kinematic and dynamic

constraints. Hsu et al. [7] outlined a control law that guar-

anteed tracking of a desired end-effector trajectory while

controlling the joint velocities of the redundant manipula-

tor. Kircanski and Vukobratovic [8] discussed the use of

kinematic redundancy to simplify the control problem in

obstructed workspaces. Zergeroglu et al. [9] developed an
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adaptive controller for redundant manipulators to compensate

for uncertainties in the dynamic model by proposing a non-

linear controller dependent on the system model to perform

task-space tracking while meeting sub-task objectives. This

issue was further addressed by Tatlicioglu et al. [10] by

implementing the controller from [11] while integrating the

sub-task controller in the stability analysis.

Past research has also analyzed utilizing the self-motion

property of redundant manipulators to avoid obstacles in its

workspace. Maciejewski et al. [12], and Lozano-Perez [13]

proposed control schemes to avoid obstacles present in the

workspace of the redundant robot manipulator. Baillieul [14]

presented a method realizing constrained motions for the

joint variables of a redundant robot manipulator to avoid

disc-like obstacles. Jou et al. [15] developed one of the

first methods for a 3-link revolute planar redundant robot

manipulator to navigate through a known environment with

pre-defined disc-like obstacles which could be extended to

more general shapes. In order to avoid collisions between

the manipulator and the obstacles, the authors defined two

regions; the obstructed region and the collision-free region in

which manipulator operated, with the algorithm also ensuring

singularity avoidance and minimum joint rate. Khatib [16]

presented a real-time obstacle avoidance approach for gen-

eral manipulators using the artificial potential field method

first outlined by Koditschek and Rimon [17] which could

be adapted for redundant robot manipulators. Nemec and

Zlajpah [18] devised a force control method for redundant

manipulators operating in an unstructured static environment.

To compensate for the unknown workspace, Nemec and Zla-

jpah allowed the manipulator to bump into the obstacle while

ensuring that the resulting forces are minimized to prevent

damage to the manipulator and the obstacle. Charifa and

Masoud [19] described a potential-field based motion planner

for a mobile robot in a complex, static unknown environment

using information acquired from finite range sensors. The

aforementioned papers were susceptible to the local minima

problem inherent in potential-field approaches as well as

potentially damaging contact between the manipulator joints

and the obstacles, issues that are still open research problems.

In this paper, a kinematically redundant robot manipulator,

equipped with finite range sensors, is considered to be placed

in an uncertain environment. These sensors detect obstacles

as points that must be avoided by the entire manipulator. The

control objective is to regulate the robot manipulator’s end-

effector to a desired set-point while simultaneously avoiding

the unknown obstacles in the workspace as they are detected.

To meet the control objectives, a kinematic controller is
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presented in the form of two sub-controllers namely, the task-

space and null-space controllers. The end-effector controller

(task-space controller) drives the end-effector to a desired

set-point by utilizing a navigation function-based control

scheme. Taking advantage of self-motion in kinematically

redundant robots, the null-space controller repels the body

of the manipulator away from the detected obstacle points

while the end-effector is driven to the goal point. A desired

joint level trajectory is developed by filtering the kinematic

controller [20] and the control algorithm developed by Xian

et al. [21] is then utilized as the jont-space controller.

This controller provides asymptotic tracking of a desired

trajectory for a class of non-linear systems with uncertain

dynamic models.

The paper is organized as follows, Section II defines and

develops the robot models as well as the necessary functions

for controller development. Section III describes the devel-

opment of the primary controller, i.e. the end-effector con-

troller, along with the associated stability analysis. Section

IV describes the null-space controller and the accompanying

stability analysis. Section V details the robot manipulator

trajectory generator and the joint-space controller. We end

with concluding remarks in Section VI and some of the

important properties of the Moore-Penrose pseudo-inverse

are provided in Appendix I.

II. MODEL DEVELOPMENT

An n-joint, revolute, direct drive redundant robot manipu-

lator (n ≥ 6) is equipped with nd ∈ R+ finite-range sensors

mounted on its surface. These sensors are used to identify

obstacles that might obstruct the path of the manipulator as

it traverses the workspace.

A. Kinematic Model

Using the Denavit-Hartenberg method described in [22],

the kinematic model for the n-joint robot manipulator is

described as

xi = fi(q), (1)

where i ∈ {1, nd} represents the detection points with

nd being the number of sensors and xi(t) ∈ Rm are

the coordinates of the ith detection point. Without loss of

generality, the sensors are assumed to be equidistant from

each other and uniformly distributed over the links of the

robot manipulator. The final sensor is assumed to be placed

on the end-effector, resulting in xnd = xe where xe(t) ∈ Rm

representing the task-space position of the end-effector. In

(1), fi(·) : Rn → Rm is the forward kinematics of the

manipulator, while q(t) ∈ Rn refers to the manipulator joint

position. The velocity kinematics for the manipulator can be

obtained by taking the time derivative of the kinematic model

in (1)

ẋi = Ji(q)q̇, (2)

where Ji(·) ∈ Rm×n is the Jacobian matrix defined as

follows

Ji ,
∂fi(·)

∂q
, (3)

where ẋi(t) represents the task-space velocity and q̇(t) is the

joint velocity.

B. Dynamic Model

The dynamic model of the robot manipulator is assumed

to be of the following form

M(q)q̈ + N(q, q̇) = τ(t), (4)

where q̈(t) refers to the joint acceleration, M(·) ∈ Rn×n

is the unknown inertia matrix, N(·) ∈ R
n represents the

unknown dynamic effects due to Centripetal and Coriolis

forces, gravity and dynamic friction, and τ (t) ∈ Rn is the

control input torque vector. The subsequent development

requires the standard assumption that M(q) is symmetric

and positive-definite, and satisfies the following inequalities

[23]

m1‖ξ‖
2 ≤ ξT M(q)ξ ≤ m2‖ξ‖

2 ∀ξ ∈ R
n,

where m1, m2 ∈ R are positive constants and ‖ · ‖ de-

notes the standard Euclidean norm. In the subsequent de-

velopment, it will be assumed that M(q), N(q, q̇) ∈ C2,

and M(·), Ṁ(·), M̈(·), N(·), Ṅ (·), N̈(·) ∈ L∞ provided

that q(t), q̇(t), q̈(t),
...
q (t) ∈ L∞. It is also assumed that

q(t), q̇(t) ∈ R are measurable.

The primary control objective is to ensure that the end-

effector is regulated to a desired set-point, x∗ ∈ Rm. The

self-motion of the redundant robot manipulator is utilized

to introduce a secondary control objective to avoid the

obstacles while keeping the entire manipulator inside a

restricted workspace. To facilitate the design of the self-

motion controller, an obstacle detection function and a

workspace boundary function are introduced. To assist in

the development of these functions, a smooth bump function

ρh(·) : R+ → [0, 1], where ρh(x) is defined as

ρh(x) ,











1 for 0 ≤ x ∈ [0, h]
1

2

{

1 + cos
(

π x−h
1−h

)}

for x ∈ (h, 1)

0 otherwise.
(5)

where h ∈ (0, 1) is a positive constant. For different values

of h, the smooth bump function is given in Figure 1. An

important property of the smooth bump function is that

it allows for an analytically smooth transition over a unit

interval, with the derivatives of the function being equal

to zero at the end-points. Given that the sensors have a

finite range, the smooth bump function provides an analytical

switch from zero to one of the repulsion due to the obstacles

present in the workspace and the workspace boundary.

C. Workspace Boundary Function

As seen in [24], the workspace boundary function for

the robot manipulator denoted by βw(·) ∈ R is defined as

follows

βw ,

nd
∏

i=1

ρhw

(

1

rw − rs,min

‖xi − xw‖

)

, (6)
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Fig. 1. Smooth Bump Function Plots for Different Values of h.

where rw ∈ R is the radius of the workspace, xw ∈ R3 is

the coordinates of the workspace center, rs,max ∈ R and

rs,min ∈ R are the sensor’s maximum and minimum range,

respectively, and hw ,
rw−rs,max

rw−rs,min
. The application of the

smooth bump function in (5) on the workspace boundary

is denoted by ρhw
. The boundary function establishes the

relationship between the workspace boundary and the posi-

tion of the joints of the manipulator and its objective is to

prevent any manipulator link from coming into contact with

any part of the workspace edge. From (6), it can be seen that

βw(·) ∈ R satisfies

βw =















0 At least one manipulator link makes

contact with the workspace boundary.

∈ (0, 1] Otherwise.

D. Obstacle Detection Function

The obstacles are detected as points that must be avoided

by the manipulator as the end-effector of the manipulator

moves towards its goal position. If any of the manipulator

links approaches the ith obstacle (i ∈ N), it is detected using

the following function

βi , 1 − ρho

(

1

rs,max

‖xi − xo‖

)

, (7)

where ho ,
rs,min

rs,max
and xo ∈ Rm is the coordinates of the

detected obstacle point that is to be avoided and its use in the

smooth bump function is given by ρho
. It can be seen that the

obstacle function βi(·) = 0 when the manipulator touches an

obstacle while βi(·) > 0 when no contact is made.

Remark 1: The sensors can also detect manipulator links

as obstacle points, allowing our algorithm to also be used

to assist the manipulator avoid its joint limits.

Remark 2: It should be noted that the control methodology

presented in this paper could also be implemented using

calibrated cameras instead of the finite range sensors. The

camera could detect the edges of the obstacles in its field

of view as feature points which can be tracked as obstacle

points to be avoided.

E. Navigation Function Development

While navigating from its initial position to the goal point,

the manipulator has to remain inside the workspace while

simultaneously avoiding obstacles. Thus the free configu-

ration space of the manipulator D ⊂ R
m, is defined as a

subset of the entire workspace where all the manipulator

configurations involving collisions with the detected obstacle

points are removed. It is assumed that both the initial and

final positions are in D. The navigation function ϕ (xe) ∈ R

that will be used to regulate the end-effector to the desired

set-point is based on the definition in [17]

ϕ (xe) ,
‖xe − x∗‖2

(‖xe − x∗‖2κ + β)
1

κ

, (8)

where κ ∈ R is a positive constant and β(t) ∈ R is defined

as follows

β , βw

nd
∏

i=1

βi. (9)

It should be noted that ϕ(xe) is designed such that when

ϕ (xe) ∈ L∞, then xe(t) ∈ L∞.

Remark 3: It should be noted that Koditschek and Rimon

[25] formally showed that it was not mathematically possible

to construct a navigation function ϕ (xe), that satisfies
∂

∂xe
ϕ (xe) = 0 only at xe(t) = x∗

e thus having strict global

navigation capabilities. This is because the appearance of

unstable equilibrium points (also called saddle points) as

local minima in the free configuration space of the manipu-

lator is inevitable, as shown in [17]. However, this does not

cause problems in practice because the domain of attraction

of these saddle points is infinitely thin. For more information

on navigation functions, see [24] and [25].

III. CONTROL DEVELOPMENT

A. Kinematic Controller Design

For the design of the kinematic controller, it is assumed

that the manipulator joint velocities will serve as the control

input such that

q̇ = u, (10)

where u(t) ∈ R
n is of the following form

u , J+
e ue +

(

In − J+
e Je

)

um, (11)

where In ∈ Rn×n is the standard identity matrix, Je =
Jnd, J+

e (q) ∈ Rn×m is the pseudo-inverse1 of Je(t) defined

as J+
e , JT

e

(

JeJ
T
e

)

−1
, ue(t) ∈ R

m is the end-effector

controller and um(t) ∈ Rn is the null-space controller.

Remark 4: It is assumed that the minimum singular value

of the manipulator Jacobian matrix, denoted by φm, is

lower bounded by a known constant δ ∈ R+. This ensures

max{‖J+
n (q)‖} is always known a priori allowing for all

kinematic singularities to be avoided.

1The properties of the pseudo-inverse used in the development of our
controller are provided in Appendix I.
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B. Path Planner Design

Based on the subsequent stability analysis, the end-effector

controller is designed as follows

ue , −Ke

(

∂ϕ (xe)

∂xe

)T

, (12)

where Ke ∈ Rm×m is a positive definite, diagonal gain

matrix.

C. Stability Analysis

Theorem 1: Contingent upon xe(0) ∈ D the end-effector

controller in (12) ensures xe(t) ∈ D ∀t and the end-effector

is driven to the desired goal point such that

xe(t) → x∗ as t → ∞. (13)

Proof: Refer to [24] for a similar result.

IV. NULL SPACE CONTROLLER

To harness the property of self-motion for redundant robot

manipulators, a null-space controller is designed to ensure

the end-effector as well as the body of the manipulator are

repelled from any detected obstacle, while the end-effector

controller simultaneously navigates the end-effector to the

desired goal point. An auxiliary positive function ya(t) ∈ R

is defined as

ya ,

nd
∑

i=1

hi (xi) , (14)

where hi (xi) , khiexp
(

−αiβ
2

i (xi)
)

, where khi, αi ∈ R

are positive constants, βi (xi) ∈ R is the obstacle detection

function defined in (7) and exp (·) is the standard logarithmic

exponential function. The usefulness of this auxiliary positive

function is due to the fact that it relates the geometric

information of the surface of an obstacle to the manipulator

joint positions while attempting to keep the manipulator body

away from the obstacles, utilizing the self-motion property

of redundant manipulators. For a detailed explanation of this

auxiliary function, refer to [10].

The following expression can be obtained from the time

derivative of (14)

ẏa =
∂ya (x1, . . . , xe)

∂
[

xT
1 . . . xT

e

]







ẋ1

...

ẋe






. (15)

From (2) and (10), we obtain

ẋi = Jiu ∀i. (16)

After substituting (16) into (15), we get

ẏa = Jsu, (17)

where Js(t) ∈ R1×n is a Jacobian-type vector

Js ,
∂ya (x1, . . . , xe)

∂
[

xT
1 . . . xT

e

]







J1

...

Je






. (18)

After substituting (11) into (17), the following expression is

obtained

ẏa = JsJ
+
e ue + Js

(

In − J+
e Je

)

um. (19)

Based on the subsequent stability analysis, the null-space

controller is designed as

um , −km

[

Js

(

In − J+
e Je

)]T
ya, (20)

where km ∈ R is a positive constant. After substituting (20)

into (19) the following expression is obtained

ẏa = JsJ
+
e ue − km

∣

∣

∣

∣Js

(

In − J+
e Je

)∣

∣

∣

∣

2
ya. (21)

A. Stability Analysis

Theorem 2: The null-space controller described in (20)

guarantees that ya(t) is globally uniformly ultimately

bounded such that

|ya| ≤

√

y2
a (t0) exp(−2µt) +

ω

µ
, (22)

provided the following sufficient condition is satisfied

km >
1

δ1δ2

, (23)

where ω, µ, δ1 and δ2 ∈ R are positive constants.

Proof: See [10] for a similar proof.

V. DYNAMIC CONTROLLER

In this section, a desired joint trajectory is designed. The

structure of the desired trajectory generator is influenced by

the subsequently designed joint-space controller [21] which

requires that the desired trajectory be bounded up to its fourth

order derivative.

A. Desired Trajectory Generator

The desired joint trajectory qd(t) ∈ Rn is generated using

the following expression [20]

qd(s) ,
1

(

s
ǫ

+ 1
) (

s
κ

+ 1
)3

Sat (u) , (24)

where s ∈ C is the Laplace variable, ǫ ∈ R is a small positive

constant and κ ∈ R is a large positive constant and u(t) is

the kinematic controller defined in (11). In (24), Sat(·) ∈ Rn

is the vector saturation function defined as follows

Sat(η) ,
[

sat (η1) sat (η2) . . . sat (ηn)
]T

, (25)

where η = [η1 η2 . . . ηn]
T

∈ Rn and sat (ηi) ∈ R ∀i =
1, . . . , n is defined as

sat (ηi) ,







−ηmin if ηi ≤ −ηmin

ηi if ηi > −ηmin or ηi < ηmax

ηmax if ηi ≥ ηmax.

where ηmin and ηmax ∈ R are the upper and lower saturation

values, respectively. The trajectory generator in (24) implies

that qd(t), q̇d(t), q̈d(t),
...
qd (t),

....
qd (t) ∈ L∞.
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B. Control Development

The control objective is to ensure that the manipulator

asymptotically tracks the desired trajectory qd(t) such that

q(t) → qd(t) as t → ∞. To ensure asymptotic tracking, we

define an error signal e1(t) ∈ Rn such that

e1 , qd − q. (26)

To facilitate in the control development, a filtered tracking

error signal denoted by e2(t) ∈ Rn is defined as

e2 , ė1 + Υ1e1, (27)

where Υ1 ∈ R
+ is a positive control gain.

Since the dynamic model of the robot manipulator in (4)

is assumed to be uncertain, to achieve the tracking objective

detailed above, the control law outlined in [21] is applied as

the joint-space controller such that

τ = (Kc + In)

(

e2(t) − e2 (t0) + Υ2

∫ t

t0

e2 (Ω) dΩ

)

+Λ

∫ t

t0

Sgn (e2 (Ω)) dΩ, (28)

where Υ2 ∈ R+ is a positive constant while Kc and Λ ∈
Rn×n are positive definite diagonal control gain matrices.

The vector signum function Sgn(·) ∈ Rn is defined as

Sgn(η) ,
[

sgn (η1) sgn (η2) . . . sgn (ηn)
]T

,

(29)

∀η = [η1 η2 . . . ηn]
T
∈ R

n. The use of this controller was

facilitated by its ability to compensate for the uncertainties

present in the dynamic model.

VI. CONCLUSION

In this paper, a navigation function-based controller for

a kinematically redundant robot manipulator, equipped with

finite-range sensors, in an uncertain environment was devel-

oped. A kinematic controller was presented that navigates

the end-effector of the robot manipulator to a desired set-

point while simultaneously repelling the entire manipulator

away from the obstacles all along forcing it to remain in the

workspace. The desired joint-space trajectory was generated

by filtering the kinematic controller and the control devel-

oped in [21] was applied to ensure asymptotic tracking of the

desired trajectory while compensating for the uncertainties in

the manipulator dynamic model.

APPENDIX I

PSEUDO-INVERSE PROPERTIES

For the development of the kinematic controller, the

pseudo-inverse of Je(q), denoted by J+
e (q) ∈ Rn×m, which

is defined as

J+
e , JT

e

(

JeJ
T
e

)−1
, (30)

where J+
e (t) is given by

JeJ
+
e = Im, (31)

and Im ∈ R
m×m is the standard identity matrix. As de-

scribed in [3], the pseudo-inverse defined in (30) satisfies

the Moore-Penrose conditions given by

JeJ
+
e Je = Je J+

e JeJ
+
e = J+

e

(J+
e Je)

T
= J+

e Je (JeJ
+
e )

T
= JeJ

+
e

(32)

In addition the the properties listed above, the matrix

(In − J+
e Je) also satisfies these useful properties,

(In − J+
e Je) (In − J+

e Je) = In − J+
e Je

(In − J+
e Je)

T
= (In − J+

e Je)
Je (In − J+

e Je) = 0m×n

(In − J+
e Je)J+

e = 0n×m.

(33)

REFERENCES

[1] E. Conkur and R. Buckingham, “Clarifying the definition of redun-
dancy as used in robotics,” Robotica, vol. 15, no. 5, pp. 583–586, Aug.
1997.

[2] I. D. Walker and S. I. Marcus, “Subtask performance by redundancy
resolution for redundant robot manipulators,” IEEE Trans. Robot.

Autom., vol. 4, no. 3, pp. 350–354, Jun. 1988.
[3] Y. Nakamura, Advanced Robot Redundancy and Optimization. Read-

ing, MA: Addison-Wesley, 1991.
[4] D. Nenchev, “Redundancy resolution through local optimization: A

review,” Journal of Robotic Systems, vol. 6, no. 6, pp. 769–798, 1989.
[5] B. Siciliano, “Kinematic control of redundant robot manipulators,”

Jour. of Intelligent and Robotic Systems, vol. 3, no. 3, pp. 201–212,
Mar. 1990.

[6] H. Seraji, “Configuration control of redundant manipulators,” IEEE

Trans. Robot. Autom., vol. 5, no. 4, pp. 472–490, Aug. 1989.
[7] P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant

manipulators,” J. Robot. Sys., vol. 6, no. 2, pp. 133–148, 1989.
[8] M. Kircanski and M. Vukobratovic, “Contribution to control of redun-

dant robotic manipulators in an environment with obstacles,” Int. J.

Robot. Res., vol. 5, no. 4, pp. 112–119, 1986.
[9] E. Zergeroglu, D. M. Dawson, I. D. Walker, and P. Setlur, “Nonlinear

tracking control of kinematically redundant robot manipulators,” IEEE

Trans. Mechatronics, vol. 9, no. 1, pp. 129–132, Mar. 2004.
[10] E. Tatlicioglu, M. L. McIntyre, D. M. Dawson, and I. D. Walker,

“Adaptive nonlinear tracking control of kinematically redundant robot
manipulators,” Intl. J. Robotics and Automation, vol. 23, no. 2, pp.
98–105, 2008.

[11] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Nonlin-
ear Control of Engineering Systems: A Lyapunov-Based Approach.
Boston, MA: Birkhauser, 2003.

[12] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinemat-
ically redundant manipulators in dynamically varying environments,”
Int. J. Robot. Res., vol. 4, no. 3, pp. 109–117, 1985.

[13] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comp., vol. C-32, no. 2, pp. 108–120, Feb. 1983.

[14] J. Baillieul, “Avoiding obstacles and resolving kinematic redundancy,”
in Proc. IEEE Int. Conf. Robot. Autom., 1986, pp. 1698–1704.

[15] C.-C. Jou, C.-J. Lin, and K.-Y. Young, “Collision avoidance analysis
of reachable workspaces for redundant manipulators,” in Proc. Int.

Conf. Adv. Robot., Grenoble, Switzerland, 1991, pp. 1222–1227.
[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Proc. IEEE Int. Conf. Robot. Autom., St. Louis, MO, 1985,
pp. 500–505.

[17] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robot. & Autom., vol. 8, no. 5, pp.
501–518, Oct. 1982.

[18] B. Nemec and L. Zlajpah, “Force control of redundant robots in
unstructured environments,” IEEE Trans. Indus. Elec., vol. 49, no. 1,
pp. 233–240, Feb. 2002.

[19] S. M. Charifa and A. A. Masoud, “Solid mechanics inspired sensor
based motion planner,” in Proc. Conf. Control App., Toronto, Canada,
2005, pp. 221–226.

[20] D. Braganza, M. L. McIntyre, D. M. Dawson, and I. D. Walker,
“Whole arm grasping control for redundant robot manipulators,” in
Proc. American Control Conf., Minneapolis, MN, 2006, pp. 3194–
3199.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB05.6

4600



[21] B. Xian, D. M. Dawson, M. S. D. Queiroz, and J. Chen, “A continuous
asymptotic tracking control strategy for uncertain nonlinear systems,”
IEEE Trans. Auto. Cont., vol. 49, no. 7, pp. 1206–1211, Jul. 2004.

[22] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control. New
York, NY: John Wiley and Sons, 1989.

[23] F. L. Lewis, D. M. Dawson, and C. Abdallah, Robot Manipulator

Control: Theory and Practice. Boca Raton, FL: CRC, 2003.
[24] J. Chen, D. M. Dawson, M. Salah, and T. Burg, “Multiple uav

navigation with finite sensing zone,” in Proc. American Control Conf.,
Minneapolis, MN, 2006, pp. 4933–4938.

[25] D. Koditschek and E. Rimon, “Robot navigation functions on mani-
folds with boundary,” Adv. App. Math., vol. 11, no. 4, pp. 412–442,
Dec. 1990.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB05.6

4601


