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Abstract— The link between Zeno behavior and homogeneity
in hybrid systems is pursued. Zeno behavior is associated
with homogeneous hybrid systems having negative degree.
Zeno behavior is typically ruled out in homogeneous hybrid
systems with nonnegative degree. Next, asymptotic stability in
homogeneous systems is shown to be robust to homogeneous
perturbations. In turn, homogeneous perturbations are used to
characterize local, approximate homogeneity. For systems that
are locally, approximately homogeneous with negative (respec-
tively, nonnegative) degree, Zeno behavior can be established
(respectively, ruled out typically). In addition, stability results
based on linear and conical approximations are established.

I. INTRODUCTION

In hybrid systems, Zeno solutions are those that, roughly
speaking, experience an infinite number of jumps in a
finite amount of ordinary time. Researchers have investigated
Zeno behavior, studying how to simulate systems with Zeno
solutions [20], [21], [3], how to continue solutions past Zeno
times [33], [9], [6], and giving conditions that guarantee or
rule out Zeno behavior [11], [19], [30], [4], [1], [5], [2], [23].
Among this last group of references, [19] and [2] are most
closely related to the results in this paper. Zeno equilibria
are those that attract Zeno solutions. Thus, solutions converge
toward Zeno equilibria by taking an infinite number of jumps
while taking a finite amount of ordinary time.

In differential and difference equations/inclusions, homo-
geneity is a property of a vector field, map, or set-valued
mapping that has been employed frequently in the context
of stability theory. Standard homogeneity appears in stability
studies in [25] and [16, Section 57]. Homogeneity with
respect to non-standard dilations is used in stability studies
in [18], [28], [17], [26], and in several control design results
including [22], [17], [15] and [31]. Homogeneity has also
been extended to hybrid systems in [32]. Among other
things, homogeneity allows asserting global asymptotic sta-
bility from local asymptotic stability [28, Proposition 1] and
enables establishing convergence rates based on the degree
of homogeneity [16, Theorem 57.1], [26, Theorem 11], [8,
Theorem 7.1], [32, Proposition 3]. Non-exponential asymp-
totic convergence is associated with homogeneous systems
of positive degree, exponential convergence is associated
with homogeneous systems of degree zero, and finite-time
convergence is associated with homogeneous systems having
negative degree. Moreover, local approximate homogeneity
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implies that local asymptotic stability and the associated
convergence rates are robust to “higher order” perturbations.
This fact generalizes classical results that permit concluding
local exponential stability for a continuously differentiable
nonlinear system when the linearization is exponentially
stable. A result related to linearization in the context of
hybrid systems is given in [24, Theorem IV.2]. Results
based on local, approximate homogeneity were provided
in [25, Theorem 24*] for differential equations that are
homogeneous in the standard sense, in [18, Theorem 3.3]
for differential equations that are homogeneous with respect
to non-standard dilations and have unique solutions, and in
[28, Theorem 3] dropping the uniqueness assumption.

With the observations of the previous two paragraphs
as background, it is natural to investigate the connection
between homogeneity and the existence of Zeno equilibria or
lack thereof in a hybrid system. (In the course of writing this
paper, we were directed to a recent submission [29] which
uses homogeneity, under the name “time-scaling symmetry”,
to study Zeno solutions in discontinuous differential equa-
tions with a focus on dimension reduction.) In this paper, we
establish the link between homogeneity with negative degree
and Zeno behavior in hybrid systems. In particular, through
the notion of homogeneous perturbations and robustness, we
establish the existence of Zeno behavior (or lack thereof) by
considering a system’s local, homogeneous approximation
when one exists. These results extend the recent contribution
in [2] where Zeno behavior is predicted by considering
constant approximations, a special case of homogeneous
approximations with negative degree. We also give results on
determining asymptotic stability by establishing asymptotic
stability for the “linearization” of the given hybrid. Our
approach is complementary to the techniques used in [32]
which focus on converse Lyapunov theorems for homoge-
neous hybrid systems, and do not address Zeno behavior nor
linearizations explicitly.

II. PRELIMINARIES

A. Hybrid systems

Let F,G : Rn ⇒ Rn be set-valued mappings and C,D ⊂
Rn be sets. We consider hybrid systems of the form

H :
{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(1)

For more background on hybrid systems in this framework,
see [7], [12], and [13].

A subset E ⊂ R≥0×N is a compact hybrid time domain if
E =

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . It is a hybrid time domain if
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for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact
hybrid time domain. Equivalently, E is a hybrid time domain
if E is a union of a finite or infinite sequence of intervals
[tj , tj+1]×{j}, with the “last” interval possibly of the form
[tj , T ) with T finite or T = +∞. A hybrid arc is a function φ
whose domain domφ is a hybrid time domain and such that
for each j ∈ N, t→ φ(t, j) is locally absolutely continuous
on Ij := {t | (t, j) ∈ domφ}. A hybrid arc φ is a solution
to the hybrid system H if φ(0, 0) ∈ C ∪D and

(S1) for all j ∈ N such that Ij has nonempty interior and
for almost all t ∈ Ij ,

φ(t, j) ∈ C, φ̇(t, j) ∈ F (φ(t, j));

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

Results on structural properties of solutions to H, like
sequential compactness of the space of solutions and
outer/upper semicontinuous dependence of solutions on ini-
tial conditions, were obtained in [13], under the following
assumptions (simplified slightly for this paper):1

Assumption 2.1:
(A1) C and D are closed subsets of Rn;
(A2) F : Rn ⇒ Rn is outer semicontinuous and locally

bounded, and F (x) is nonempty and convex for all
x ∈ C;

(A3) G : Rn ⇒ Rn is outer semicontinuous and locally
bounded, and G(x) is nonempty for all x ∈ D.

B. Asymptotic, “USOT”, and Zeno stability

The following asymptotic stability definition is taken from
[10]. It follows standard definitions, however it does not
insist on complete solutions from initial conditions near
the attracting set. The advantage of this is that technical
conditions for the local existence of solutions are avoided.
To distinguish it from a stability notion where completeness
is assumed, the prefix “pre” is added.

Definition 2.2: [pre-AS] A compact set A ∈ Rn is pre-
asymptotically stable for the hybrid system (1) if:
(a) for each ε > 0 there exists δ > 0 such that, for

each solution φ to (1) with |φ(0, 0)|A ≤ δ one has
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

(b) each solution φ to (1) is bounded, and if it is complete,
then also |φ(t, j)|A → 0 as t+ j →∞, (t, j) ∈ domφ.

Above and in what follows, with some abuse of notation
we write |·|A for the distance from the set A, in the Euclidean
norm. That norm itself will be denoted by | · |. The property
above corresponds to global pre-asymptotic stability since
the condition (b) is required to hold for each solution.

We also consider uniformly small ordinary time pre-
asymptotic stability (USOT pre-AS), in which the “ordinary
time” it takes a solution to reach the attractor decreases to

1A set-valued map Φ : Rn ⇒ Rm is outer semicontinuous if for every
convergent sequence of xi’s with and every convergent sequence of yi ∈
Φ(xi), lim yi ∈ Φ(lim xi). Φ is locally bounded if for every compact
K ⊂ Rn there exists a compact K′ ⊂ Rm such that Φ(K) ⊂ K′.

zero with initial conditions approaching the attractor. This
stability notion, defined below, was introduced in [14] where
necessary and sufficiently Lyapunov-based conditions were
given for it and it was related to Zeno behavior.

We will use the following object: given a set X ⊂ Rn and
a hybrid arc φ, let

TX(φ) := sup {t | ∃j s.t. (t, j) ∈ domφ, φ(t, j) ∈ X} .

Definition 2.3: [USOT pre-AS] A compact set A ⊂ Rn

is called uniformly small ordinary time pre-asymptotically
stable for the hybrid system H if the following hold:

(i) A pre-asymptotically stable, and
(ii) for each ε > 0 there exists δ > 0 such that every

maximal solution φ to H with |φ(0, 0)|A ≤ δ satisfies
TRn\A(φ) ≤ ε.

Zeno hybrid arcs φ are defined in terms of the quantity

supt domφ := sup{t ∈ R≥0 | ∃j s.t. (t, j) ∈ domφ}.

We use the following definition of a Zeno arc. For details,
see [14]. Also, compare the definition to [5], [2], and [23].

Definition 2.4: [Zeno arc] A hybrid arc φ is Zeno if
(i) φ is complete,

(ii) supt domφ <∞,
(iii) there is no j such that (supt domφ, j) ∈ domφ.

It is straightforward, from (i) and (iii) above, that each
Zeno arc φ satisfies supt domφ > 0. Note that TRn(φ) =
supt domφ, and so any Zeno arc satisfies 0 < TRn(φ) <
∞. Since Zeno arcs are complete, they experience infinitely
many jumps in finite (ordinary) time. Item (iii) rules out such
arcs for which the “tail”, or even the whole arc itself, consists
of infinitely many instantaneous jumps.

Example 2.5: Consider a hybrid system in R2 with data

F (x) =
(

0
x1

)
, G(x) =

(
0.5x1

0

)
C =

{
x : 0 ≤ x2 ≤ x3

1

}
, D =

{
x : x1 ≥ 0 , x2 = x3

1

}
.

By inspection, it can be verified that the origin is pre-
asymptotically stable for this system. (This system will be
revisited in several subsequent examples, and pre-AS of
the origin will be established via different tools.) It can be
also verified that each maximal solution with nonzero initial
condition in C is Zeno. Furthermore, a simple calculation
shows that TR2\{0}(φ) = 4 (φ1(0))2 /3 for each solution φ

with φ2(0) = 0 and then TR2\{0}(φ) ≤ 4 (φ1(0))2 /3 for all
solutions φ. Thus, the origin is USOT pre-AS. �

A combination of pre-asymptotic stability and Zeno be-
havior suggests the following two definition, which were
used in [14]. We add here that the system in Example 2.5
has the origin uniformly Zeno stable. (This conclusion was
also shown via Lyapunov arguments in [14].)

Definition 2.6: [Zeno stability] A compact set A ⊂ Rn

is called Zeno asymptotically stable for the hybrid system H
if the following hold:

(i) A is pre-asymptotically stable, and
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(ii) there exists ε > 0 such that every maximal solution φ
to H with |φ(0, 0)|A ∈ (0, ε] is Zeno and

TRn(φ) = TRn\A(φ).

Definition 2.7: [Uniform Zeno stability] A compact set
A ⊂ Rn is called uniformly Zeno asymptotically stable for
the hybrid system H if the following hold:

(i) A is Zeno asymptotically stable, and
(ii) A is USOT pre-AS.

In Zeno asymptotic stability, all solutions starting near
the stable set have time domains bounded in the ordinary
time direction, while in uniform Zeno asymptotic stability
the amount of ordinary time decreases to zero as the initial
conditions approach the stable set.

In words, a uniformly Zeno asymptotically stable compact
set A is one that is pre-asymptotically stable with trajectories
that converge toward A using a finite amount of ordinary
time (that decreases to zero with initial conditions approach-
ing A) but that never actually reaches a final ordinary time
and never actually reaches A [14, Lemma 4.3]. The first
condition in the definition can be verified by making sure
that i) there are no solutions of ẋ ∈ −F (x), x ∈ C that
start in A and leave A, and ii) there are no solutions of
x+ ∈ G(x), x ∈ D that start outside of A and converge to
A [14, Proposition 4.5].

To keep this paper self-contained, we focus on establishing
(respectively, ruling out) the USOT pre-AS property, which
appears in the uniform Zeno stability definition, based on
approximate homogeneity properties of the hybrid system.
A more complete discussion of Zeno behavior is in [14].

III. HOMOGENEITY

In this section, we review the concept of homogeneity,
apply it to hybrid systems, and derive some results for
homogeneous, asymptotically stable systems. A generalized
notion of homogeneity for hybrid systems was introduced in
[32]. In this paper we stick to homogeneity with respect
to dilations with nonzero exponents. For hybrid systems,
this rules out systems with logic variables and timers taking
values in a compact set. The results can be extended, though.
In the last section, we briefly outline how systems with logic
variables can be addressed.

A dilation is a map induced by the matrix

M(λ) = diag {λr1 , λr2 , . . . , λrn} , (2)

where r1, r2, . . . , rn > 0 and λ > 0, given by x 7→M(λ)x.
By abuse of terminology, we will use M(λ) to denote the
dilation. The standard dilation refers to the case where r1 =
r2 = · · · = rn = 1. A function ω : R → R≥0 is called a
homogeneous norm if it is continuous, positive definite, and
homogeneous (of degree 1) with respect to M(λ), namely,
for all x ∈ Rn, ω(M(λ)x) = λω(x). In the rest of the paper,
ω will denote a homogeneous norm. Given such an ω, we
define B := {x ∈ Rn |ω(x) ≤ 1} .

Definition 3.1: [Homogeneity] The hybrid system (1) is
homogeneous of degree d ∈ R with respect to the dilation

M(λ) if the following conditions are satisfied for all λ > 0:

F (M(λ)x) = λdM(λ)F (x) ∀x ∈ C,

G(M(λ)x) = M(λ)G(x) ∀x ∈ D,

C = M(λ)C, D = M(λ)D.

Example 3.2: Consider a simple model of a ball bouncing
on the floor. For x ∈ R2, let the first coordinate represent the
position (height above the floor) and the second coordinate

be the velocity. With x =
(
x1

x2

)
, let

F (x) =
(
x2

−g

)
, C =

{
x ∈ R2 |x1 ≥ 0

}
,

G(x) =
(

0
−γx2

)
, D =

{
x ∈ R2 |x1 = 0, x2 ≤ 0

}
.

The hybrid system with such data is homogeneous of degree

d = −1 with respect to M(λ) =
(
λ2 0
0 λ

)
. Indeed,

F (M(λ)x) = F

(
λ2x1

λx2

)
=

(
λx2

−g

)
=

(
λ 0
0 1

) (
x2

−g

)
= λ−1

(
λ2 0
0 λ

) (
x2

−g

)
= λ−1M(λ)F (x)

and a similar calculation applies for G. Also, as M(λ)x =(
λ2x1

λx2

)
, if x ∈ C which amounts to x1 ≥ 0, then λ2x1 ≥ 0

which amounts to M(λ)x ∈ C. Thus M(λ)C ⊂ C, while a
reverse inclusion follows from this one by considering λ−1.
Similar arguments can be made for D. �

Example 3.3: Recall the system from Example 2.5. We
note here that it is homogeneous of degree d = −2 with

respect to the dilation M(λ) =
(
λ 0
0 λ3

)
. Indeed,

F (M(λ)x) = F

(
λx1

λ3x2

)
=

(
0
λx1

)
=

(
λ−1 0
0 λ

) (
0
x1

)
= λ−2

(
λ 0
0 λ3

) (
0
x1

)
= λ−2M(λ)F (x)

and a similar calculation applies for G. Also, if x ∈ C then
x2 ≥ 0 and x2 ≤ x3

1. These conditions imply λ3x2 ≥ 0
and λ3x2 ≤ (λx1)3 for all λ > 0, i.e., M(λ)x ∈ C. Thus
M(λ)C ⊂ C. while a reverse inclusion follows from this
one by considering λ−1. Similar arguments apply to D. �

The significance of homogeneity is that the behavior of
solutions from different initial conditions that are related
through the dilation matrix can be related through the dilation
and a scaling of ordinary time.

Given a λ > 0 and d ∈ R, consider a hybrid system
obtained from (1) by scaling the flow map F :

Hλ,d :
{

ẋ ∈ λ−dF (x) x ∈ C,
x+ ∈ G(x), x ∈ D.

(3)

Lemma 3.4: Let x be a hybrid arc. For each λ > 0,
d ∈ R, the function ψ defined at each (t, j) ∈ domφ by

ψ(t, j) = M(λ)φ(t, j)
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is a hybrid arc, with domψ = domφ. Moreover, if the hybrid
system (1) is homogeneous with respect to the dilation (2)
and degree d ∈ R, then for each λ > 0, φ is a solution to
(1) if and only if ψ is a solution to (3).

The next result states that, in the context of homogeneity, a
negative degree is necessary for USOT pre-AS, unless there
are purely discrete solutions that converge to the origin.

Theorem 3.5: Under Assumption 2.1, if the origin of H
is pre-asymptotically stable, H is homogeneous of degree
d ≥ 0, and TRn\{0}(φ) > 0 for all complete solutions φ
with ω(φ(0, 0)) = 1 then TRn\{0}(φ) = ∞ for all complete
solutions φ with ω(φ(0, 0)) > 0.

Corollary 3.6: Under Assumption 2.1, if the origin of
H is Zeno asymptotically stable and H is homogeneous of
degree d ∈ R then d < 0.

If H is homogeneous of degree d ≥ 0 and yet
TRn\{0}(φ) = 0 for some φ with ω(φ(0, 0)) = 1 then it
is possible that TRn\{0}(φ) < ∞ for all solutions φ with
ω(φ(0, 0)) > 0. This is illustrated by the following example.

Example 3.7: Consider the hybrid system in R2 with data

F (x) = ρ(x)
(
x2

−x1

)
, C = {x : x1 ≥ 0 , x2 ≥ 0} ,

G(x) = x/2, D = {x : x2 = 0 , x1 ≥ 0} ,

and ρ is a continuous function that is positive on R2\{0} and
homogeneous of degree d ≥ 0 with respect to the standard
dilation, i.e., ρ(λx) = λdρ(x) for all x ∈ R2 and λ > 0. It
follows that F (λx) = λdλF (x), G(λx) = λG(x), λC = C
and λD = D, i.e, the hybrid system is homogeneous of
degree d ≥ 0 with respect to the standard dilation. It is
not difficult to see that, for each initial condition, solutions
evolve on a circle and flow to the set D from which flowing
is not possible and solutions jump toward the origin. Thus,
for each solution φ, TR2\{0}(φ) is finite and given by the time
required to flow from the initial condition to D. Even though
all solutions have time domains that are bounded in the
ordinary time direction, the origin is not Zeno asymptotically
stable in the sense of Definition 2.6 since there are solutions
starting near the origin that are not Zeno in the sense of
Definition 2.4. In particular, all solution φ have an positive
integer j such that (supt domφ, j) ∈ domφ. �

The next example shows that “truly” Zeno behavior is
possible when d = 0 but there are purely discrete solutions.

Example 3.8: Consider the hybrid system with data
F (x) =

(
x2 −x1

)T
and G, C and D are formed as

follows. For each positive integer i, let

Ci :=
{
|x| = 1, x1 ≥ 0, x2 ∈ [(2i+ 1)−1, 2i−1]

}
Di :=

{
|x| = 1, x1 ≥ 0, x2 ∈ [(2i+ 2)−1, (2i+ 1)−1]

}
C := {x : x = λz , λ > 0 , z ∈ Ci for some i}
D := {x : x = λz , λ > 0 , z ∈ Di for some i}

Let g
(

1
0

)
= 0.5

(
1
0

)
and g(z) = 0.5

(√
1− (2i+ 4)−2

(2i+ 4)−1

)
for each point z ∈ Di. Then, for each x ∈ D, define G(x) :=
|x|g(x/|x|). All solutions of this system have TR2\{0}(φ) ≤

π/2 and those not starting on the x1-axis are Zeno in the
sense defined earlier. Because of the behavior of the solutions
starting on the x1 axis, the origin is not Zeno asymptotically
stable in the sense of Definition 2.6. �

For homogenous hybrid systems, the next theorem relates
asymptotic stability, which is a global property, to the be-
havior of those solutions starting a fixed distance from the
origin as measure using a homogeneous norm.

Theorem 3.9: Consider a hybrid system H such that
(a) H is homogeneous with respect to dilation M in (2)

with degree d ∈ R;
(b) there exist R > r > 0 and m > 0 such that for any

solution φ to H with ω(φ(0, 0)) = r either
(i) domφ is compact, with t+ j ≤ m for all (t, j) ∈

domφ, and for all such (t, j), ω(φ(t, j)) ≤ R, or
(ii) there exists (T, J) ∈ domφ with T + J ≤ m,

ω(φ(T, J)) ≤ r/2, and such that ω(φ(t, j)) ≤ R
for all (t, j) ∈ domφ, t ≤ T , j ≤ J .

Then, 0 ∈ Rn is pre-AS for H. Moreover, if d < 0 then
0 ∈ Rn is USOT pre-AS for H.

Example 3.10: Recall the system in Example 2.5. It was
shown to be homogeneous of degree d = −2 in Example
3.3. Here we note that conditions (i) and (ii) in Lemma 3.9
are simple to verify, and hence the system has the origin
USOT pre-AS. �

The next result is a consequence of Theorem 3.9.
Corollary 3.11: Under Assumption 2.1, if the origin of H

is pre-asymptotically stable and H is homogeneous of degree
d < 0 with respect to some dilation then the origin of H is
USOT pre-AS.

IV. HOMOGENEOUS PERTURBATIONS

The stability properties for homogeneous perturbations of
homogeneous systems will play a fundamental role in subse-
quent results on stability from homogeneous approximations.

Definition 4.1: Given a hybrid system H, a dilation M ,
and a homogeneous norm ω, a homogeneous perturbation of
H of size ρ > 0 is the hybrid system

Hρ :
{

ẋ ∈ Fρ(x) x ∈ Cρ,

x+ ∈ Gρ(x), x ∈ Dρ,
(4)

with the data given by

Fρ(x) = conF (x+ ρM(ω(x))B) + ρωd(x)M(ω(x))B

Gρ(x) = {v | v∈u+ρM(ω(u))B, u ∈ G (x+ρM(ω(x))B)} ,

Cρ = {x | (x+ ρM(ω(x))B) ∩ C 6= ∅} ,

Dρ = {x | (x+ ρM(ω(x))B) ∩D 6= ∅} .
Using “homogeneous” in the name of the perturbation

above is justified by the following result.
Proposition 4.2: If the hybrid system H in (1) is homo-

geneous with respect to the dilation M(·) in (2) and degree
d ∈ R then, for each ρ > 0, the hybrid system Hρ in (4)
is homogeneous with respect to the dilation M(·) in (2) and
degree d.
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It needs to be noted that homogeneous perturbations of a
hybrid system, i.e., those defining the data in (4), may lead
to Fρ that is not locally bounded in a neighborhood of 0.
Indeed, when d < 0 it may happen that ωd(x)M(ω(x)) is
unbounded on a neighborhood of 0. For example:

Example 4.3: For x =
(
x1

x2

)
∈ R2, consider F (x) =(

0
x1

)
, C =

{
x ∈ R2 |x2 = 0

}
, D empty, and G(x) =

0 for all x ∈ R2. It is easy to verify that the hybrid
system with such data is homogeneous with respect to the

dilation M(λ) =
(
λ 0
0 λ3

)
and the degree is d = −2.

We can take ω(x) =
(
x6

1 + x2
2

)1/6
. Then ωd(x)M(ω(x)) =(

ω−1(x) 0
0 ω(x)

)
and this blows up as x→ 0. �

Theorem 4.4: Suppose that the hybrid system H in (1)

• satisfies Assumption 2.1,
• is homogeneous with respect to dilation M(·) in (2)

with degree d ∈ R,
• has 0 ∈ Rn pre-asymptotically stable.

Then there exists ρ > 0 such that, for the system Hρ, when
d ≥ 0 the point 0 ∈ R is pre-asymptotically stable and when
d < 0 the point 0 is USOT pre-AS.

V. LOCAL APPROXIMATE HOMOGENEITY AND
LINEARIZATIONS

Frequently systems are not homogeneous but, locally,
their stability properties are determined by a homogeneous
approximation of the data. This section addresses such situ-
ations. The results parallel results for differential equations
like in [18, Theorem 3.3]. They also extend results in [2]
when applied in the context of Zeno behavior.

Definition 5.1: A hybrid system H := (F,C,G,D) is
said to be locally, approximately contained in the homoge-
neous hybrid system H∗ = (F ∗, C∗, G∗, D∗) if, for each
ρ > 0, there exists a compact set K ⊂ Rn containing the
origin in its interior such that that the hybrid system HK :=
(F,C ∩ K,G,D ∩ K) is contained in the homogeneous
perturbation of H∗ of size ρ, denoted H∗

ρ, i.e., F (x) ⊂ F ∗ρ (x)
for all x ∈ C ∩ K, C ∩ K ⊂ C∗ρ , G(x) ⊂ G∗ρ(x) for all
x ∈ D ∩K, and D ∩K ⊂ D∗

ρ.

The following corollary is derived from Theorem 4.4.

Corollary 5.2: If the hybrid system H is locally, approx-
imately contained in a homogeneous system H∗ for which
the origin is pre-asymptotically stable then there exists a
compact set K ⊂ Rn containing the origin in its interior
such that, for the system HK := (F,C ∩K,G,D ∩K),

1) the origin pre-asymptotically stable;
2) if the degree of H∗ is negative then the origin of HK

is USOT pre-AS;
3) if the degree of H∗ is not negative and TRn\{0}(φ∗) >

0 for each solution φ∗ of H∗ then TRn\{0}(φ) = ∞
for each complete solution φ of HK .

This result can be applied to establish linear/conical ap-
proximation results for hybrid systems, as follows. Let the
hybrid system H = (f, C, g,D) be such that f and g are con-
tinuously differentiable and g(0) = 0. Define f0(x) = f(0)

and, if f(0) = 0, define f1(x) =
(
∂f(x)
∂x

∣∣∣∣
x=0

)
x. Also

define g1(x) :=
(
∂g(x)
∂x

∣∣∣∣
x=0

)
x. Finally, let TC(0), respec-

tively, TD(0), denote the tangent cone to C, respectively, D,
at the origin. In other words TC(0) = lim supτ↘0 C/τ and
similarly for D. For more details, see [27, Section 6A]. When
the sets C and D are given in terms of inequalities involving
smooth constraint functions, the tangent cones can often be
described using inequalities involving linear mappings and
gradients of the constraint functions [27, Theorem 6.31].

Lemma 5.3: The system Hi := (f i, TC(0), g1, TD(0)) is
homogeneous with respect to the standard dilation for i = 0
and, if f(0) = 0, for i = 1. The degree of homogeneity of
Hi is i−1. Moreover, H is locally, approximately contained
in Hi.

In Lemma 5.3, the hybrid system H0, together with the
extensions of the next section, constitutes of a type of
generalization of the constant approximations considered in
[2]. The hybrid system H1 is a generalization of linearization
for continuous-time and discrete-time systems.

Corollary 5.4: Consider a hybrid system H =
(f, C, g,D) and suppose f and g are continuously
differentiable and g(0) = 0. Consider i = 0 and, if
f(0) = 0, i = 1. Define Hi := (f i, TC(0), g1, TD(0)). If the
hybrid system Hi has the origin pre-asymptotically stable
then there exists a compact set K containing the origin in
its interior such that HK = (f, C ∩ K, g,D ∩ K) has the
origin pre-asymptotically stable. When i = 0, HK has the
origin USOT pre-AS. When i = 1 and TRn\{0}(φi) > 0
for each solutions φi of Hi, TRn\{0}(φ) = ∞ for each
complete solution φ of HK .

Example 5.5: Recall the system H in Example 2.5. We
have TC(0) = TD(0) = {x : x1 ≥ 0, x2 = 0}. The approx-
imation of H to consider is H1 = (F, TC(0), G, TD(0))
since both F and G are linear. Flow is impossible for H1

and all maximal solutions are discrete (sometimes called
instantaneously Zeno): we have domx = {0} × N and
x(0, j) = x(0, 0)/2j for j ∈ N for each maximal solution
x to H1. Obviously, the origin is pre-AS for H1. Corollary
5.4 implies that the origin is (locally) pre-AS for H. Since
it was previously shown in Example 3.3 that H is homoge-
neous with a negative degree, this implies further that H is
(globally) pre-AS and in fact USOT pre-AS. �

It may of course happen that a hybrid system has 0 pre-
AS but Hi does not. A simple example is provided by the
bouncing ball system of Example 3.2. For that system, the

flow map for H0 is
(

0
−g

)
while the other data does not

change. Solutions of the form x(t, 0) =
(

x1(0)
x2(0)− gt

)
show
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that 0 is not pre-AS for H0.
Other implications may fail too. In Example 5.5, H was

uniformly Zeno stable (i.e., USOT pre-AS and Zeno AS)
while the approximation H1 was USOT pre-AS but not Zeno
AS: solutions to H1 did not flow at all. Finally, it can happen
that an approximation has 0 uniformly Zeno stable but the
original system does not have any Zeno solutions. This is
shown in the example below and underlines that delicate
conditions on existence on solutions are needed to guarantee
Zeno behavior.

Example 5.6: Consider a hybrid system in R2 with data

F (x) =
(

0
1

)
, C = {x : 0 ≤ x2 ≤ x1} ,

G(x) =
(

0.5x1

0

)
, D =

{
x : x1 ≥ 0 , x2 = x1 + x2

1

}
.

The origin is USOT pre-AS. Pre-asymptotic stability can be
seen directly. (For this system, the only complete maximal
solution is the solution x(0, j) = 0, j ∈ N.) Furthermore,
TR2\{0}(x) ≤ x1(0). Since C ∩D = {0} and flowing while
remaining in {0} is impossible, there are no Zeno solutions.

Considering H0 leads to a system given by F , C, G, and
TD(0) = {x : x1 = x2 ≥ 0}. The key difference from H is
that now C ∩ TD(0) = TD(0). Every maximal solution x
to H0 with x1(0) > 0 is Zeno and satisfies TR2\{0}(x) ≤
2x1(0). In fact, H0 is uniformly Zeno stable. However, only
USOT pre-AS is guaranteed to carry over to H. �

VI. SYSTEMS WITH LOGIC VARIABLES

Let Q = {1, 2, . . . , qmax} and for each q ∈ Q, let
F q : Rn ⇒ Rn, Gq : Rn ⇒ Rn, gq : Rn ⇒ Q be
set-valued mappings and Cq, Dq ⊂ Rn be sets. Consider
a hybrid system

HQ :
{

ẋ ∈ F q(x) x ∈ Cq,

(q+, x+) ∈ Gq(x) x ∈ Dq,
(5)

with the state ξ = (q, x) ∈ Q×Rn ⊂ Rn+1. Note that during
flow, q remains constant. Such a system can be written in the
form of H as in (1), as explained for example in [10, Section
IV] Results of this paper, developed for (1), can be then
translated to systems like (5). This is done by considering
pre-AS not of 0 but of {0} ×Q, and systems (5) for which
the associated system (1) is homogeneous with respect to
M̃ = diag {1, λr1 , λr2 , . . . , λrn}.
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