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Abstract— We consider control synthesis problems for con-
strained discrete time nonlinear systems subject to uncertainty.
The uncertainty affects the system in a form of a bounded,
but known, persistent disturbance and leads, consequently,
to the max–min control synthesis problems. A computational
characterization of the max–min controllable sets is derived for
a general nonlinear case. The max–min time optimal control
of constrained piecewise affine discrete time systems is also
discussed. Corresponding computational details are outlined
and some illustrative examples are provided.

I. INTRODUCTION

Control of constrained discrete time systems in the pres-

ence of uncertainty appears mainly in two different contexts

in the control literature, depending on standing assumptions

on the uncertainty. The first one is the case when the

uncertainty (including disturbances, measurement noise and

uncertainties in system dynamics) is bounded and unknown

to the controller or the decision maker. The corresponding

class of control problems leads to the min–max optimal con-

trol problems, see, for instance, pioneering contributions [1]–

[3]. The second class of problems reflects the case when the

set–bounded uncertainty is revealed to the controller at the

current time instance (the moment of the decision making),

while its future realization remains unknown but bounded.

The corresponding control synthesis results in the max–min

optimal control problems that are also encountered in the

classical theory of dynamic games (cf. [4] and references

therein). The treatment of the constrained max–min problems

in the literature is somehow scant. Notable references include

discussions on max–min controllability of unconstrained

continuous time systems [5] and in the presence of con-

trol constraints [6]. Recent publication by the authors [7]

discusses the characterization of the solution to max–min

optimal control for several classes of linear discrete time

systems (time invariant, parameter and time varying) subject

to both state and input constraints. This note extends initial

results of [7] by discussing the max–min control problems

in a more general framework. We base our approach on set–

theoretic methods by placing the reachability analysis (cf.

[8], [9]) in the center of the discussion. As an application

of the developed theory we consider max–min time optimal

control of piecewise affine (PWA) systems.

PWA systems have received significant attention of control

researchers in last two decades as a modeling paradigm

for nonlinear systems [10] and equivalent representation

for several classes of discrete time hybrid systems [11].
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A number of authors considered various types of optimal

control problems for PWA systems [12]–[16]. In this paper,

we complement above listed contributions by addressing

max–min controllability and max–min time optimal control

of PWA systems. Our main motivation comes from the fact

that PWA systems are popularly used for approximation of

nonlinear systems, primarily in the hope of easier control

design. If strict constraints need to be satisfied, one may

wish to utilize robust control design by taking into account

induced approximation errors. If the dynamics of the original

nonlinear system is known (as often is the case), the ap-

proximation error can be modeled as a bounded but known

uncertainty, leading naturally to max–min (rather than the

min–max) robust control problems.

Outline of the paper: The problem statement and pre-

liminaries are given in Section II. The main result that

provides the characterization of max–min controllable sets

for a general case of discrete time systems is stated in Section

III. Particular aspects of constrained max–min control for

PWA system are discussed in Section IV. An illustrative

example and concluding remarks are provided, respectively,

in Sections V and VI.

Nomenclature and Basic Definitions: Let N :=
{1, 2, . . .}, N0 := N∪ {0}, N[q1,q2] := {q1, q1 + 1, . . . , q2 −
1, q2} for a given q1 ∈ N and q2 ∈ N such that q1 <
q2 and Nq denotes N[0,q] for q ∈ N. Given two sets

A ⊆ R
n and B ⊆ R

n, the complement of A is Ac :=
{x ∈ R

n : x /∈ A} and the set difference between A and B
is A\B := {x ∈ A : x /∈ B} = A ∩ Bc. A power set (set

of all subsets) of a set A is denoted as 2A. The orthogonal

projection of a set A ⊆ X × Y ⊆ R
n × R

m is defined

as ProjX (A) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ A}.

The Minkowski set addition of two (nonempty) sets X and

Y , such that X ⊂ R
n and Y ⊂ R

n, is denoted by X ⊕Y :=
{x + y : x ∈ X, y ∈ Y }. The Minkowski (Pontryagin)

subtraction of sets X ⊂ R
n and Y ⊂ R

n is denoted by

X ⊖ Y := {z ∈ R
n : z ⊕ Y ⊆ X}. A polyhedron is an

intersection of a finite number of open and/or closed half-

spaces. A polytope is a closed and bounded polyhedron. A

union of (polytopes) polyhedra is referred to as a (compact)

polygon. A restriction of a function f : Rn → R to a set

X ⊆ R
n is denoted as f | X . A function f is continuous

relative to a set X if f | X is continuous. The interior of

a set X ⊂ R
n is denoted as int X . If f(·) is a set-valued

function from X into U , namely, its values are subsets of U ,

then its graph is the set {(x, y) : x ∈ X, y ∈ f(x)}.
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II. PROBLEM STATEMENT AND PRELIMINARIES

We start our discussion by considering a discrete time

system given by the state update equation:

x+ = f(x, u, w), (1)

where x ∈ R
n is the current state, u ∈ R

m is the current

control, w ∈ R
p is the current disturbance, x+ ∈ R

n is the

successor state and f(·, ·, ·) : R
n × R

m × R
p → R

n is

the state transition map. The system variable x, u and w are

subject to constraints:

(x, u) ∈ Ωxu ⊆ R
n × R

m and w ∈ W ⊆ R
p. (2)

For the time being, no special properties of the sets W and

Ωxu are assumed. For the orthogonal projection of the set

Ωxu to x– and u–subspaces, we use, respectively, Ωx and Ωu.

Similarly, we denote: Ωxw := Ωx ×W . Also, we denote:

Ω := Ωxu ×W.

The crucial interpretation of robust control problems consid-

ered in this note is the following:

Interpretation 1: At any time k ∈ N0 when the decision

concerning the control input uk is taken, both the state xk and

the disturbance wk ∈ W are known while future disturbances

wk+i, i ∈ N are not known and can take arbitrary values

wk+i ∈ W, i ∈ N.

In the light of Interpretation 1, the information available to

the controller for control synthesis, at any time instance k ∈
N0, is the pair (x,w). Using the notation and terminology

introduced in [7], we invoke the information set Z given by:

Z := {(x,w) : (x,w) ∈ Ωx ×W} . (3)

We use the term control policy for a sequence of control

laws πi : R
n × R

p → R
m over the finite horizon N ∈ N

and denote it as ΠN := {πi(·) : i ∈ NN−1}. The set of all

control policies over the horizon N is denoted as ΠN . A

sequence of admissible disturbances is denoted as wN :=
{w0, w1, . . . , wN−1} (here wi ∈ W for all i ∈ NN−1)

and the set of all admissible disturbance sequences over

the horizon N is denoted as WN . Accordingly, we use

φ(i;x0,ΠN ,wN ) to denote the solution to the state update

equation (1) at the time instance i, given the initial condition

x0, the control policy ΠN and the disturbance sequence wN .

We recall the concept of N-step max-min controllability.

Definition 2.1 (N–step max–min controllability): A state

x ∈ Ωx is N–step max–min controllable, N ∈ N, to a target

set Xf ⊆ Ωx if and only if for all admissible disturbance

sequences wN ∈ WN there exists a control policy ΠN ∈
ΠN such that

∀i ∈ NN−1, (xi, πi(zi)) ∈ Ωxu and xN ∈ Xf , (4)

where xi := φ(i;x,ΠN ,wN ) and zi := (xi, wi).
A central role in the max–min controllability is played by

the mapping B (·) : 2R
n

→ 2R
n

given by:

B (X) := {x : ∀w ∈ W ∃u such that

(x, u) ∈ Ωxu and f(x, u, w) ∈ X} .
(5)

An equally important role is played by the set–valued control

map U(·, ·):

U(x,w) := {u : (x, u, w) ∈ Ωxu ×W

and f(x, u, w) ∈ X} ,
(6)

defined for all (x,w) ∈ B (X) × W and for any given set

X ⊆ R
n. Clearly, given a set X , the set B (X) is the set of

all states x such that for all disturbances w ∈ W there exists

a control input u (where obviously u = u(x,w)) for which

the state and control satisfy constraint (x, u) ∈ Ωxu and the

successor state f(x, u, w) is in the set X . Similarly, given

any (x,w) ∈ B (X) ×W the set of all controls u ensuring

that state and control satisfy constraint (x, u) ∈ Ωxu and that

the successor state f(x, u, w) lies in the set X is precisely

given by the set–valued control map U(x,w). Thus, in terms

of the max–min controllability, given a target set, say Xf ,

the set B (Xf ) is the 1–step max–min controllable set to Xf .

The set of j–step max–min controllable states is hereafter

referred to as the j–step controllable set (we omit the max–

min attribute for typographical reasons) and is denoted as

Xj . By a direct inspection of definition 2.1 and (5), given a

target set Xf , j–step controllable sets, j ∈ NN , are given by

the direct iteration of the mapping B (·):

Xj = B (Xj−1) , j ∈ N[1,N ] and X0 = Xf . (7)

The set–valued control maps Uj(·, ·) given, for all (x,w) ∈
Xj ×W , by:

Uj(x,w) := {u : (x, u, w) ∈ Ωxu ×W and

f(x, u, w) ∈ Xj−1} ,
(8)

are, as is customary, associated with the j–step controllable

sets Xj and the disturbance set W .

The max–min control problems considered in this note are

described by the following generic formulation.

Problem 1 (N-horizon max-min optimal robust control):

Given an integer N ∈ N and a target set Xf ⊆ Ωx:

1) characterize the j-step controllable sets Xj , j ∈ N[1,N ],

and

2) for a given cost function VN (x,ΠN ,wN ), select a

control policy Π0
N from the set of control policies Π̃N

satisfying (4) which yields the optimal cost:

V 0
N (x) := sup

wN∈WN

inf
ΠN∈ΠN

VN (x,ΠN ,wN ). (9)

Apart from ensuring that state trajectories of the controlled

uncertain system reach the target set, a desirable feature of

the control algorithm is to ensure that the state trajectories

of the controlled uncertain system remain within the target

set if the initial state is in the target set, i.e. that the target

set Xf is a robust control invariant set [8], [17]–[19].

Definition 2.2 (Max–min robust control invariance): A

set S ⊆ Ωx is max–min robust control invariant if and only

if S ⊆ B (S).
In the sequel, we simply use the term “robust control invari-

ance” rather than the “max–min robust control invariance” -

no confusion should arise.
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III. MAX–MIN REACHABILITY ANALYSIS

Our first step is to provide an alternative form of the

mapping B (·) that permits the utilization of the standard

computational geometry tools for some classes of the under-

lying system and involved constraint sets. We provide our

first two main results in a more general setting and then

discuss their utilization for the class of PWA systems in

Section IV. We define for a given set X ⊆ R
n:

Φ(X) := {(x, u, w) ∈ Ωxu ×W : f(x, u, w) ∈ X} , (10)

Ψ(X) := ProjΩxw
(Φ(X)) , (11)

∆(X) := Ωxw\Ψ(X). (12)

We can now state our first main result.

Theorem 3.1 (The alternative form of the map B (·)):
The 1-step controllable set B (X) to a set X ⊆ R

n is given

by:

B (X) = Ωx\ProjΩx
(∆(X)) . (13)

Proof: See [20].

The result of Theorem 3.1 does not depend on the particular

nature neither of the sets X , Ωxu and W nor of the

state transition mapping f(·, ·, ·). Although the statement of

Theorem 3.1 is very compact, the computation of the set

B (X) according to (13) could be difficult. The set operations

defined in (10)–(12) are, however, potentially tractable, from

the computational point of view, for some classes of the state

transition mapping f(·, ·, ·) and involved sets X , Ωxu and W
as indicated in Section IV.

Our second main result is concerned with topological

properties of the mapping B (·).
Theorem 3.2 (The topological property of the map B (·)):

Assume that sets X ⊆ Ωx, W and Ωxu are compact and that

the function f(·, ·, ·) : Rn × R
m × R

p → R
n is continuous

relative to the set Ω, where Ω = Ωxu × W . Then, the set

B (X) is a compact (possibly empty) set.

Proof: See [20].

Remark 3.1: We now recall a few well known facts [2],

[9], [17], [19] relevant to the max–min controllability and

invariance. These standard observations are concerned with

the j–step controllable sets Xj obtained via (7). A j–step

robust controllable set Xj is robust control invariant if and

only if Xj ⊆ Xj+1 = B (Xj). The j–step controllable

sets Xj are robust control invariant for all j ∈ N0 if and

only if Xf is robust control invariant (i.e. Xf ⊆ B (Xf )).
The maximal robust control invariant set contained in Ωx,

say X̃∞, is unique (possibly empty). If Xf = Ωx the

maximal robust control invariant set X̃∞ contained in Ωx

satisfies X̃∞ ⊆
⋂∞

j=0 Xj and, in addition, X̃∞ = Xj for

some j ∈ N0 if and only if Xj = Xj+1 = B (Xj).
If, however, sets Xf , W and Ωxu are compact and the

function f(·, ·, ·) : Rn × R
m × R

p → R
n is continuous

relative to the set Ω, where Ω = Ωxu × W , then the j–

step controllable set Xj are compact sets. Furthermore the

maximal robust control invariant set X̃∞ contained in Ωx

is compact (possibly empty) set and X̃∞ =
⋂∞

j=0 Xj if, in

addition, Xf = Ωx. The relevance of Theorems 3.1 and 3.2

is paramount from the computational point of view, since

it makes the explicit characterization (computation) of the

controllable sets Xj considerably easier for certain classes

of problems, as elaborated next in Section IV.

IV. MAX–MIN CONTROL OF PWA SYSTEMS

We consider in this section max–min control of discrete

time PWA systems given by the state update equation:

x+ = f(x, u, w), (14)

where, as before, the current and successor states are, respec-

tively, x and x+, the current control is u, the current distur-

bance is w and the state transition mapping f(·, ·, ·) : Rn ×
R

m × R
p → R

n. Standing assumptions in this section are:

A1 (x, u) ∈ Ωxu ⊂ R
n × R

m where Ωxu is a compact

polygon defining constraints on the states and the con-

trol inputs,

A2 w ∈ W , where W is a polytope in R
p,

A3 A subdivision of the set Ω := Ωxu ×W is defined:

Ω =

d
⋃

i=1

Pi, (15)

where Pi ⊂ R
n × R

m × R
p, i ∈ N[1,d] are full

dimensional polytopes in R
n × R

m × R
p such that

intPi ∩ intPj = ∅ for i 6= j, i, j ∈ N[1,d],

A4 fi := f | Pi, i ∈ N[1,d] is an affine function in

(x, u, w), i.e.

fi(x, u, w) := Aix + Biu + Giw + ci

where Ai, Bi, ci and Gi are system matrices of appro-

priate dimensions,

A5 the function f(·, ·, ·) is a continuous function relative to

the set Ω.

Additional structure of the state transition map f(·, ·, ·) and

involved constraint sets Ωxu and W allows us to establish

that the polygonal structure of j–step controllable sets Xj is

invariant under the mapping B (·), i.e. that the set B (X) is a

(compact) polygon if the set X is a (compact) polygon. We

utilize Theorems 3.1 and 3.2 to verify this property. Hence,

suppose that the j–step controllable set Xj is a compact

polygon for some j ∈ N0 so that it admits the following

representation:

Xj =

q
⋃

k=1

X(j,k), (16)

where X(j,k), k ∈ N[1,q] (here q is a finite integer), are

polytopes in R
n. The set Φ(Xj) defined by (10) is, in this

case, given by:

Φ(Xj) = {(x, u, w) ∈ Ω: f(x, u, w) ∈ Xj}

=
d

⋃

i=1

q
⋃

k=1

Φ(j,i,k) where

Φ(j,i,k) = {(x, u, w) ∈ Pi : fi(x, u, w) ∈ X(j,k)}. (17)

Since functions fi(·, ·, ·) are affine and sets X(j,k) and Pi

are polytopes it follows that sets Φ(j,i,k) are polytopes (if
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nonempty) and, consequently, the set Φ(Xj) is, clearly,

a compact polygon (if nonempty). Hence, the set Ψ(Xj)
defined by (11), is, in this case, given by:

Ψ(Xj) = ProjΩxw
(Φ(Xj)) = ProjΩxw

(

d
⋃

i=1

q
⋃

k=1

Φ(j,i,k)

)

=

d
⋃

i=1

q
⋃

k=1

Ψ(j,i,k), where (18)

Ψ(j,i,k) = ProjΩxw

(

Φ(j,i,k)

)

. (19)

Sets Ψ(j,i,k) are polytopes (if nonempty) because they are

orthogonal projections of polytopes Φ(j,i,k). Hence, it fol-

lows that the set Ψ(Xj) is a compact polygon (if nonempty).

The set ∆(Xj) defined by (12), is, in this case, given by

the set difference of a compact polygon Ωxw and a compact

polygon Ψ(Xj) and hence it is a polygon (if nonempty) since

the set difference between two polygons is a polygon (not

necessarily compact). Consequently, the set ProjΩx
(∆(Xj))

is a polygon (not necessarily compact) since it is a pro-

jection onto the set Ωx of the polygon ∆(Xj). It follows

that, since the set Ωx is a compact polygon and the set

ProjΩx
(∆(Xj)) is a polygon , the set Ωx\ProjΩx

(∆(Xj))
is also a polygon. Consequently, since by Theorem 3.1

B (Xj) = Ωx\ProjΩx
(∆(Xj)), the set B (Xj) is a polygon

(if nonempty). Since, under Assumptions A1–A5, the set

B (Xj) is also compact by Theorem 3.2, it follows that the

j + 1–step controllable set Xj+1 is a compact polygon (if

nonempty) if the j–step controllable set Xj is a compact

polygon.

A similar set algebra leads to a relevant conclusion related

to the polygonal structure of the set–valued control maps

Uj(·, ·). Necessary, but only brief, details are as follows.

When the j–step controllable set is a polygon, we have

by (8), for any (x,w) ∈ Xj+1 ×W:

Uj+1(x,w) =
d

⋃

i=1

q
⋃

k=1

U(j+1,i,k)(x,w) where

U(j+1,i,k)(x,w) = {u : (x, u, w) ∈ Pi and

fi(x, u, w) ∈ X(j,k)},

(20)

and where some of sets U(j+1,i,k)(x,w) might be empty.

However, when the j + 1–step controllable set Xj+1 is

nonempty it is clear that there exist integers i and k (de-

pending on x and w) such that the set U(j+1,i,k)(x,w) is

nonempty. Since functions fi(·, ·, ·) are affine in polytopes

Pi and sets W and X(j,k) are polytopes, it follows directly

from the expression (20) that the set–valued control map

Uj+1(·, ·) is a compact– and polygonal–valued whenever the

set Xj is nonempty and a compact polygon; In fact, it is

easy to see that the graph of the set–valued control map

Uj+1(·, ·) is, in this case, a compact polygon. Therefore, as

a computationally relevant refinement of results established

in Section III we have:

Proposition 4.1: Suppose that Assumptions A1–A5 hold

and that the target set Xf = X0 is a compact polygon. Then

for all j ∈ N: (i) the j–step controllable sets Xj , are compact

polygons (if nonempty), (ii) the graphs of the corresponding

set–valued control maps Uj(·, ·) are compact polygons (if

nonempty), (iii) the j–step controllable sets Xj and the

graphs of the corresponding set–valued control maps Uj(·, ·)
are nonempty compact polygons if, in addition, Xf is a robust

control invariant set and, furthermore, the j–step controllable

sets Xj are nested in this case (i.e. ∀j ∈ N0,Xj ⊆ Xj+1).

We wish to point out that there is no reason to expect that

continuous selections of the set–valued control maps Uj(·, ·)
exist, as even in the case of constrained linear systems, the

nonconvexity of the target invariant set may result in the

nonexistence of a continuous control law inducing the robust

control invariance [21].

We now discuss the max–min time optimal control syn-

thesis problem for the considered class of PWA systems. The

max–min time optimal control problem is stated concisely as

follows:

N0(x) := min
N∈N0

sup
wN∈WN

inf
ΠN∈ΠN

{N :

∀wN ∈ WN , ∀i ∈ NN−1, (xi, πi(xi, wi)) ∈ Ωxu

and xN ∈ Xf}, (21)

where as before, for all i ∈ NN , xi := φ(i;x,wN ,ΠN )
and φ(i;x,wN ,ΠN ) denotes the solution to (14) at time

instance i when the initial state is x, the disturbance sequence

is wN and the control policy is ΠN . A direct utilization of

the max–min controllable sets Xj and corresponding set–

valued control laws Uj(·, ·) yields the following fact ( [2],

[17], [19], [22]):

Proposition 4.2: Fix an N ∈ N. Then there exist x ∈ R
n

and ΠN ∈ ΠN such that:

∀wN ∈ WN , ∀i ∈ NN−1,

(φ(i;x,wN ,ΠN ), πi(φ(i;x,wN ,ΠN ), wi)) ∈ Ωxu

and φ(N ;x,wN ,ΠN ) ∈ Xf

if and only if the N–step controllable set XN 6= ∅.

Furthermore, the corresponding control policy ΠN =
{π0(·, ·), π1(·, ·), . . . , πN−1(·, ·)} is such that:

∀(y, w) ∈ XN−i×W, ∀i ∈ NN−1, πi(y, w) ∈ UN−i(y, w).
Proposition 4.2 states that the max–min time optimal control

problem is solvable if and only if the state x belongs to one

of the j–step controllable sets Xj and this set is nonempty.

Hence, the max–min time optimal control synthesis is direct

providing that the j–step controllable sets Xj and corre-

sponding set–valued control maps Uj(·, ·) are precomputed

and are available to the controller. Namely, for all nonempty

j–step controllable sets Xj the max–min time optimal control

problem is solvable and the following fact is, clearly, true for

all j ∈ N0 such that Xj 6= ∅:

N0(x) = min
j∈N0

{j : x ∈ Xj}.

We would like to point out that the max–min time optimal

control guarantees the upper bound of the actual cost incurred

for a particular disturbance sequence as illustrated by the

following simple example.
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Example 4.1: In case the system is linear, i.e. given by

x+ = Ax + Bu + w and the system variables are subject to

constraints (x, u, w) ∈ X × U ×W the mapping B (·), i.e.

the 1–step controllable set is given explicitly by:

B (X) = {x ∈ X : Ax ∈ [X ⊕ (−BU)] ⊖W} . (22)

Consider the scalar linear system with the state-update equa-

tion: x+ = 2x + u + w and constraint sets U = [−5, 5],
W = [−1, 1] and X = R. Let the target set Xf = X0 =
[−1, 1]. Note that the set X0 is robust control invariant. It is

easy to verify that the maximal robust control invariant set is

X̃∞ = [−4, 4]. The j–step controllable sets Xj , j ∈ N0 are

given by Xj =
[

−4 + 3/2j , 4 − 3/2j
]

. Thus, the set X̃∞ is

never attained through the recursion (7) for a finite j. The

sets Ψ(Xj−1), j ∈ N[1,5], are shown on Figure 1. Consider

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

Ψ(X0)

Ψ(X1) Ψ(X4)
w

x
X1

Fig. 1. The sets Ψ(X0), . . . , Ψ(X4) for the Example 4.1.

the initial state x0 = 4−ε, where ε > 0 is such that x0 ∈ X5.

For a constant disturbance w = 1, the target set Xf = X0

can be reached in 5 time steps. On the other hand, for a

constant disturbance w = −1, the pair (x,w) ∈ Ψ(X1) and,

consequently, the target set X0 can be reached in at most

2 time steps. It is not difficult to see that by choosing the

ε > 0 arbitrarily close to 0 the number of steps needed to

reach the target set X0 (for the constant disturbance sequence

{1, 1, . . . , 1 . . .}) can be made arbitrarily large. Note also that

states −4 and 4 can not be max–min controlled to the target

set X0 since they are limit points and can only be kept in

the maximal robust control invariant set X̃∞.

Remark 4.1: Utilizing Propositions 4.1 and 4.2 it is clear

that in the case when the target set Xf is, in addition,

robust control invariant set, the j–step controllable sets

are nonempty and robust control invariant for all j ∈ N

and, in addition, ∀j ∈ N, Xj−1 ⊆ Xj . However, in a

practical application of the time–optimal controllers, it is a

standard practice to fix an integer Nmax ∈ N (which can be

arbitrary large) and pre–compute the j–step controllable sets

Xj , j ∈ N[1,Nmax] and corresponding set–valued control maps

Uj(·, ·) [8], [23], [24]. In this case, the actual implementation

of the max–min time–optimal control reduces to, for a given

(measured) state x ∈ Xj , j ∈ N[1,Nmax], and disturbance

realization w ∈ W , finding the index

N∗(x,w) = min
j∈N[1,Nmax]

{j : (x,w) ∈ Ψ(Xj−1)}

where Ψ(Xj−1) is given by (18) and applying any control

lying in the corresponding control set UN∗(x,w)(x,w):

u(x,w) ∈ UN∗(x,w)(x,w).

We observe that, for x ∈ Xj , j ∈ N[1,Nmax], and w ∈ W ,

the following holds:

N∗(x,w) ≤ N0(x) and N0(x) = sup
w∈W

N∗(x,w).

Under Assumptions A1–A5 and when the target set Xf

is a compact polygon and robust control invariant set, the

j–step controllable sets Xj and the graphs of set–valued

control maps Uj(·, ·) are, nonempty, compact polygons and

hence are, in principle, pre–computable by utilizing the

standard computational geometry software [25], [26]. Fur-

thermore, in this case, a suitable selections of the set–

valued control maps Uj(·, ·) can be obtained by utilizing (20)

and employing parametric programming [27]. Using (20),

each (nonempty) set–valued control map U(j,i,k)(·, ·) admits

a selection π(j,i,k)(·, ·) given by the following parametric

programming problem:

π(j,i,k)(x,w) ∈ arg inf
u

{

Vsel(x, u, w) : u ∈ U(j,i,k)(x,w)
}

,

(23)

where Vsel(·, ·) : Ω → R is a selection criteria and (i, k) ∈
N[1,q] ×N[1,d] and U(j,i,k)(·, ·) is given by (20).

When the selection criteria Vsel(·, ·) : Ω → R is a linear

or a convex quadratic function, the optimization problem

(23) can be written as a parametric (linear or quadratic)

program and solved using various implementations of convex

linear/quadratic parametric programming algorithms [27].

In this case, there exists a continuous, piecewise affine,

selection π(j,i,k)(·, ·) ∈ U(j,i,k)(·, ·) defined for all (x,w) ∈
Ψ(j,i,k) where Ψ(j,i,k) is given by (19). Control laws

π(j,i,k)(·, ·), then yield a control law πNmax−j(·, ·) ∈ Uj(·, ·)
by utilizing (19) in a transparent way. However, since the

set–valued control map Uj(·, ·) given by (20) is the union

of set–valued maps of U(j,i,k)(·, ·), the resulting control law

πNmax−j(·, ·) ∈ Uj(·, ·) defined for all (x,w) ∈ Ψ(Xj−1),
where Ψ(Xj−1) is given by (18), may not be continu-

ous (though a set–valued control law π̃Nmax−j(x,w) ∈
Uj(x,w), (x,w) ∈ Ψ(Xj−1) with a closed (compact)

graph and which is set–valued only on, possibly, subsets (of

Ψ(Xj−1)) of zero measure is easily obtained with a modest

increase of the computational effort).

V. NUMERICAL EXAMPLE

Consider a continuous PWA system given by:

x+ =

{

[

1 1
0 1

]

x +
[

1
0.5

]

u +
[

0
1

]

w if x2 + u ≤ 0
[

1 −1
0 1

]

x +
[

−1
0.5

]

u +
[

0
1

]

w if x2 + u > 0
(24)

The constraints set Ω is given as Ω = Ωx ×Ωu ×W , where

Ωx = {x : |x|
∞

≤ 5}, Ωu = [−1, 1] and W = [−1,−0.5]. It

is easy to verify that the PWA mapping (24) is continuous. A

target set is X0 = {x : |x|
∞

≤ 1}. Polytopic computations

are performed using the Multi–Parametric Toolbox [25] for

Matlab, though the computations can be performed by any
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software tool implementing basic polytopic operations (e.g.

[26]). The controllable sets X1, X2 and X3 are shown in

−4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

x1

x2

X0

X1 X2

X3

Fig. 2. Controllable sets for the continuous PWA system.

Figure 2. Figure 3 depicts the set Ψ(X1) and the controllable

set X2. One can see a geometric interpretation of the max-

min controllability: the product X2×W is a subset of Ψ(X1)
- for each state in the set X2 and all w ∈ W there exists

an admissible control that drives the state into the set X1.

Computational tractability is not significantly impaired by

x1

x2

w

X 2

Ψ(2,2,1)

Ψ(2,1,2) Ψ(2,2,2)

Ψ(2,1,1)

Fig. 3. The set Ψ(X1) for the example of continuous PWA system.

the fact that the controllable sets in the example are non-

convex since the required polytopic manipulations are easily

extendable to polygons. Nevertheless, the required projection

operation limits potential applications of the method to lower

dimensional problems.

VI. CONCLUSION

We have presented a general framework for the design

of max-min controllers of constrained discrete time systems.

We have given computational details for a class of continuous

PWA systems. Computational requirements are the key factor

that may potentially limit the applicability of the method. The

exact computations are, however, tractable for particular, but

frequently encountered, classes of systems.
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