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Abstract—This paper proposes a novel discrete­time veloc­
ity observer which uses neural network and sliding mode for
unknown continuous time mechanical systems. The neural
observer in this paper has two stages: first a dead­zone
neural observer assures that the observer error is bounded,
then super­twisting second­order sliding­mode is used to
guarantee the convergence of the estimation errors to a
domain. This observer solves the infinite time convergence
problem of neural observers with sliding mode compensation,
and the chattering phenomenon of sliding mode observer.

I. INTRODUCTION

State observation problem is one of the most important
problems in control theory. Linear observers [14] do not
achieve adequate performance for the mechanical systems
with Coulomb friction. Model­based nonlinear observers
[12] are usually restricted to the cases when the model
is exactly known. In the case of the unknown plant
parameters, the nonlinear adaptive observer was proposed
in [15]. High­gain differentiators [4] are not exact with any
fixed finite gain and feature the peaking effect with high
gains. To avoid these problems, the sliding mode observers
are widely used [5][9]. In order to obtain the finite­time
convergence, robustness with respect to uncertainties and
the possibility of uncertainty estimation, the sliding mode
observers require partial knowledge of the system and the
relative degree of the system with respect to the unknown
inputs to be one [18].

A new generation of observers based on the second­
order sliding­mode algorithms has been recently developed
[2][16]. These observers require the proof of a separation
principle theorem due to the asymptotic convergence of
the estimated values to the real ones. A robust exact dif­
ferentiator featuring finite time convergence was designed
as an application of the super­twisting algorithm [13]. In
[8], a super­twisting second­order sliding­mode observer,
which reconstruct the velocity of mechanical systems, was
proposed. It requires the knowledge of a nominal part of
the system and an upper bound for acceleration.

When we have no complete modelling information, a
model­free nonlinear observer is required. If the nonlinear
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system is given in the normal linearized form, the high­
gain observers may estimate the derivative of the output
[4], but such filters loose their capability in presence of the
output immeasurable perturbations because of their high
sensibility to such effects. More recently in [19], the 1st
order sliding­mode observer, which does not requires of
the knowledge of the system, can obtain infinite time con­
vergence. The sliding mode gain should be bigger than the
upper bound of the unknown nonlinear function. Neural
networks can be considered as an alternative model­free
observer because it offers much potential benefit for non­
linear modeling [1]. The dynamic neural networks have
been also applied to design a Luemberger­like observer
[11]. Due to neural modeling error, neural observers are
not asymptotically stable. A robust neuro observer with
time delay term was designed in [17], it was proved
asymptotic stability on average.

Normal combinations of neural networks and sliding
mode methods are to apply them at same time, where
sliding mode is used to compensate neural modeling error
[6]. This type of neural observers with sliding mode
compensation cannot assure finite time convergence [21].
In this paper, neural observer and sliding mode compen­
sator are connected serially, it is called two­stage neural
observer. The neural network is used to approximate the
nonlinear function of the mechanical system. A dead­
zone training algorithm is applied. After the observer
error enters the dead­zone, the super­twisting second­
order sliding­mode is used to guarantee the finite time
convergence of the neural observer. This observer solves
the infinite time convergence problem of the sliding­mode
neural observers, and the chattering phenomenon of pure
sliding mode observers.

II. PROBLEM STATEMENT

Generally a second order mechanical system has the
form

M (q) q̈+C (q, q̇) q̇+P (q̇)+G (q)+ d (t, q, q̇) = τ (1)

where q ∈ <n is the state vector, M (q) is the inertia
matrix, C (q, q̇) is the Coriolis and centrifugal forces
matrix, P (q̇) is the Coulomb friction, G (q) is the term of
gravitational forces, d (t, q, q̇) is an uncertainty disturbance
and τ is the torque produced by the actuators. Introducing
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u = τ ∈ <n, x1 = q ∈ <n, x2 = q̇ ∈ <n, this system can
be rewritten in the state­space form

ẋ1 = x2
ẋ2 = f1 (t, x, u) + ξ1 (t, x, u)
y = Cx

(2)

where y ∈ <m, C ∈ <m×2n. In order to assure the system
is observable, we let m = n. x =

£
xT1 , x

T
2

¤T ∈ <2n, and

f1 (t, x, u) = −M (x1)
−1
(C (x)x2 + P (x2) +G (x1) + u)

(3)
while the uncertainties are concentrated in the term
ξ (t, x, u) ∈ <n. The solutions of the system (4) are
understood in Filippov’s sense [10]. For our purpose, the
following assumptions are required.

Let x1, x2, y be measured at discrete times with the
time interval δ, and let ti, ti+1be successive measurement
times. Consider a discrete modification of the mechanical
system (4) (the Euler scheme)

x1 (ti+1) = x2 (ti)
x2 (ti + 1) = f [x (ti) , u (ti)] + ξ (ti, x, u)
y = Cx

(4)

A1: The system states are bounded for all time, it is
BIBO stable.

A2: f and the uncertainty term ξ = ξ (ti, x, u)
are Lebesgue­ measurable and uniformly bounded in any
compact region of the state space x1, x2, with

kξk2Λξ = ξTΛξξ ≤ ξ̄ <∞ Λξ = Λ
T
ξ > 0 (5)

The normalizing matrix Λξ introduced ensures the pos­
sibility of working with components of different physical
nature, this matrix is given a priory , ξ̄ represent the power
of the corresponding perturbation.

When f [x (ti) , u (ti)] is known, the discrete­time slid­
ing mode observer proposed in [8] has the form

x̂1 (ti+1) = x̂2 (ti) + λ |x̃1|1/2 sign (x̃1)
x̂2 (ti+1) = f [x̂ (ti) , u (ti)] + αsign (x̃1)

(6)

where x̂1 and x̂2 are the state estimations and x̃1 =
x1 (ti) − x̂1 (ti). The sliding mode gain α should be big
enough, such that it can cancel the uncertainty ξ [8].

When f [x (ti) , u (ti)] is unknown, the uncertainty ξ
will include f [x (ti) , u (ti)] , the sliding mode observer
proposed in [19] is similar as (6) without f (t, x, u).
The model­based sliding­mode observer (6) require the
discretization form of f defined in (3), it is very difficult.
The sliding mode gain α should be much bigger than
before and the chattering is big [8]. Nevertheless it is not
always possible to have a good knowledge on the system,
so the chattering phenomenon is inevitable [18].

The model­free sliding­mode observer does not require
the model f. But it cannot arrive finite time convergence,
the sliding mode gain α should be bigger than the upper

bounds of the uncertainty term ξt. This causes big chat­
tering phenomenon. If we have incomplete information
about the nominal nonlinear function f [x (ti) , u (ti)], and
of course ξt, the chattering will be increase. It seems to be
natural to construct its estimate f̂ (t, x̂1, x̂2|Wt) depending
on a parameter Wt, which can be adjusted online by means
of an updating law

W (ti+1) = Φ(ti, x̂1, x̂2,W (ti) , y) (7)

In this paper, we will use neural networks to approximate
f [x (ti) , u (ti)] and construct a neural observer.

The object of this paper is to design a discrete­time
neural observer for continuous time mechanical systems,
which use a neural estimator and sliding mode observer
sequentially, to estimate the unmeasurable velocity only
based on the position measurement. The neural network
will approximate the nominal nonlinear function of the
mechanical system to reduce the chattering, sliding mode
observer is used to assure finite time convergence. The
main contribution of this paper is not to solve the chatter­
ing problems with neural networks, but to solve the infinite
time convergence problem of neural observers.

III. DISCRETE­TIME SLIDING MODE NEURAL

OBSERVER

The discrete­time neural observer proposed in this paper
has the following form

x̂ (ti+1) = Ax̂ (ti) +BŴ (ti)σ [x̂ (ti) , u (ti)]
+ [1− s (ti)]Z (ti)
ŷ (ti) = Cx̂ (ti)

(8)

where x̂ ∈ <2n is the state of the estimation vector, A ∈
<2n×2n is a stable fixed matrix which will be specified
later. The matrix ŴT (ti) ∈ <2n is the weights of the
neural networks, σ ∈ <2n is a vector of sigmoid functions,
C is defined in (4). The vector Z and matrices A and B
are defined as

A =

∙
0 In
a b

¸
, Z (ti) =

∙
z1 (ti)
z2 (ti)

¸
, B =

∙
0
In

¸
(9)

with the proper choose of the matrices a, b ∈ <n×n, such
that the matrix A is Hurwitz stable, where z1, z2 ∈ <n.
Here st is a switch variable, it will switch between the
neural estimator (8) and the second order sliding mode
observer (11), based on the output error e (ti) = y − ŷ ∈
<m,

s (ti) =

(
1 if ke (ti)k2Q1

≥ γ̄

0 if ke (ti)k2Q1
< γ̄

(10)

where Q1 = QT
1 > 0 is a known matrix which will

be specified later, γ̄ is known upper bound of the neural
modeling error, which will be defined in (20).
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The second order sliding mode is

z1 (ti) = k1 kx1 − x̂1k1/2 sign [(x1 (ti)− x̂1 (ti)] (11)

z2 (ti) = k2sign [x1 (ti)− x̂1 (ti)]

where k1 and k2 are the sliding mode gains, they will
be determined by the theorem in the next section. The
learning algorithm (7) becomes dead­zone one

Ŵ (ti+1) = s (ti)Φ(ti, x̂1, x̂2, Ŵ (ti) , y) (12)

If ke (ti)k2Q1
≥ γ̄, s (ti) = 1, the observer is pure neural

observer, (8) becomes

x (ti+1) = Ax̂ (ti)+BŴ (ti)σ [x̂ (ti) , u (ti)] , ŷ (ti) = Cx̂ (ti)
(13)

With neural learning law (7) BŴ (ti)σ(x̂, u) will ap­
proximate f (t, x, u) + ξ (t, x, u) , and ke (ti)k2Q1

will be
decrease.

If after time t0, ke (ti)k2Q1
< γ̄, s (ti) = 0. From

(12) we know Ŵ is a constant matrix, Ŵ = Ŵ (t0) The
observer (8) become pure sliding mode

x̂ (ti+1) = Ax̂ (ti)+BŴ (t0)σ(x̂, u)+Z (ti) , ŷ (ti) = Cx̂ (ti)
(14)

The pure neural observer (13) works only on the sam­
pling point, it does not depend on the sample time δ.
Without loss of generality, (8) can be also rewritten as

x̂1 (k + 1) = x̂2 (k) + [1− s (k)] z1 (k)

x̂2 (k + 1) = A1x̂ (k) + Ŵ (k)σ(x̂ (k) , u) + z2 (k)
ŷ (k) = Cx̂ (k)

(15)
with A1 = [a b]. We define observer error ∆ (k) = x (k)−
x̂ (k) ∈ <2n. So the output error is e (k) = C∆ (k) ,
which implies that

CT e (k) = CTC∆− �I∆+ �I∆
CT e (k) =

¡
CTC + �I

¢
∆− �I∆

∆ (k) = C+� e (k) + �N�∆ (k)
(16)

where C ∈ <m×2n, C+� ∈ <2n×m, N� ∈ <2n×2n, � is a
small positive scalar, C+� and N� are defined as:

C+� =
¡
CTC − �I

¢−1
CT , N� =

¡
CTC − �I

¢−1
(17)

Because sigmoid function σ(·) satisfies Lipschitz condi­
tion,

σ̃T σ̃ = kσ̃k2 ≤ λσ k∆k2 (18)

where σ̃ = σ(x (k)) − σ(x̂ (k)), λσ > 0 which can be
selected by users.

Adding and subtracting Ax to system (4) we have

x1 (k + 1) = x2 (k) (19)

x2 (k + 1) = A1x (k) + g(k, x, u)

where g(k, x, u) = f (k, x, u) − A1x + ξ. According to
the Stone­Weierstrass theorem [7], the smooth function
g(k, x, u) can be written as

g(k, x, u) =W 0σ(x, u) + γ

where W 0 is a fixed weight matrix of the neural network,
γ is modeling error. Then we can rewrite (19) as

x1 (k + 1) = x2 (k) (20)

x2 (k + 1) = A1x (k) +W 0σ(x, u) + γ

By the assumption A1, x is restricted to a compact set S
of x ∈ Rn. By the assumption A2, f and ξ are uniformly
bounded. Taking into account that the sigmoid function
σ(·) is uniformly bounded, there exist a known positive
constant γ̄ such that

kγk2Λ2 = γTΛ2γ ≤ γ̄, Λ2 = Λ
T
2 > 0 (21)

Now (20) can be expressed in matrix form

x (k + 1) = Ax (k) +BW 0σ(x, u) + Γγ (22)

where A and B are defined as in (9), and Γ = [0 1]T .

IV. STABILITY ANALYSIS

The stable learning law for the neural network is given
by the following matrix differential equations

ŴT (k + 1) = s (k)
h
Ŵ (k)− η (k)BσC+� e (k)

i
η (k) =

λσkBW 0k−k−λmax(A)
1+kσk2

(23)
where C+� ∈ <2n×m, W̃t, Ŵt ∈ <2n, σ ∈ <2n, Λ3 ∈
<2n×2n. Here we select the initial condition W 0 as

k + λmax (A) < λσ
°°BW 0

°° < 1 + k + λmax (A) (24)

where k ≥ k∆(k+1)k
k∆(k)k > 0, is corresponded to the error

dynamic, it is chosen big enough.
Theorem 1: Under the assumptions A1 and A2, the

switch policy (10) and neural training law (23), the
discrete­time sliding mode neural observer (8) is designed
as

k2 > f+, k1 >
¡
k2 + f+

¢r 2

k2 − f+
(1 + p)

(1− p)
(25)

where f+is the upper bound of the neural modeling error
when the weight of the neural networks is fixed as W (t0),
at time t = t0, ke (k)k2Q1

< γ̄, p is some chosen constant,
0 < p < 1. Then the observer is stable, and ensures the
convergence of the estimation errors to the domain

|∆1| < γ1δ
2, |∆2| < γ2δ (26)

where γ1 and γ2 are some small positive constants, δ is
sampling time.
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Proof: The sliding mode neural observer switches
between two models: (13) and (14). Now we discuss these
two cases:

I) if kekk2Q1
≥ γ̄, the observer (8) becomes (13). From

(20) and (13) the estimation error can be expressed as

∆1 (k + 1) = ∆2 (k) (27)

∆2 (k + 1) = A1∆ (k) + W̃ (k)σ(x̂, u) +W 0σ̃ + γ

where W̃ (k) =W 0 − Ŵ (k) . Or in matrix form,

∆ (k + 1) = A∆ (k) +BW̃ (k)σ(x̂, u) +BW 0σ̃ + Γγ
(28)

where Γ is defined in (22). We define the Lyapunov
function candidate as

V (k) =
°°°fW (k)

°°°2
where

°°°fW (k)
°°°2 =Pn

i=1 ew2 (k) = tr
nfWT (k)fW (k)

o
.

Since ∆ is not available, only e (k) can be used in the
updating law, from the updating law (23)fW (k + 1) = fW (k)− η (k)BσC+� e (k)

but We calculate the term 2∆T
t PBW̃tσx as

∆V (k) = V (k + 1)− V (k)

=
°°°fW (k)− η (k)σC+� e (k)

T
°°°2 − °°°fW (k)

°°°2
= η2 (k) kC+� e (k)k2 kσk2 − 2η (k)

°°°BfW (k)σC+� e
T (k)

°°°
Since ∆ (k) = C+� e (k) + �N�∆ (k)

2η (k)
°°°BfW (k)σC+� e

T (k)
°°°

= 2η (k) k∆ (k)k kI − �N�k
°°°BfW (k)σ

°°°
We define kI − �N�k = β, from (28) we know

2η (k)
°°°BfW (k)σC+� e

T (k)
°°° = 2η (k)β k∆ (k)k ∗°°∆ (k + 1)−A∆ (k)− Γγ −BW 0σ̃

°°
≥ η (k) (β2

°°°∆ (k)T BW 0σ̃
°°°− 2∆ (k)T (k)A∆ (k)

−2°°∆T (k)∆ (k + 1)
°°− 2°°°∆ (k)T Γγ°°°)

Because

−2
°°°∆ (k)T Γγ°°° ≥ − k∆ (k)k2 − kΓγk2

−2∆ (k)T (k)A∆ (k) ≥ − |λmax (A)| k∆ (k)k2
2
°°°∆ (k)T BW 0σ̃

°°° ≤ k∆ (k)k2 + °°BW 0
°° kσ̃k2

≤ ¡1 + λσ
°°BW 0

°°¢ k∆ (k)k2
When for any smooth system k∆(k+1)k

k∆(k)k ≤ k, k > 0, so

−2°°∆T (k)∆ (k + 1)
°° ≥ −k k∆ (k)k2

So

∆V (k) ≤ −η (k)β[(λσ
°°BW 0

°°− η (k) kσk2
−k − λmax (A)) k∆ (k)k2 − kΓγk2]

If we select η (k) =
λσkBW 0k−k−λmax(A)

1+kσk2 , from (24) we
know 0 < λσ

°°BW 0
°°− k − λmax (A) < 1. So

∆V (k) ≤ −η (k)β k∆ (k)k2 + η (k)βγ̄ (29)

Then we estimate the bound of e (k). Using again (16)
(I − δNδ)∆ = C+δ et, we can rewrite (29) as

∆V (k) ≤ −η (k)β ke (k)k2Q1
+ η (k)βγ̄ (30)

Since in this case ke (k)k2Q1
≥ γ̄, then ∆V (k) ≤ 0, V

is bounded. So k∆ (k)k and kW (k)k are bounded. If we
sum (30) from 0 up to T yields

VT − V1 ≤ −η (k)β
TX
k=1

eT (k)Q1e (k) + η (k)βγ̄T

Because VT ≥ 0, we have

1

T

TX
k=1

eT (k)Q1e (k) ≤ γ̄ (31)

So ke (k)k2Q1
will converge into the ball with radius γ̄.

II) if at time t = t0, ke (k)k2Q1
< γ̄, from (23) we know

the weights become constants. (20) can be also written as

x1 (k + 1) = x2 (k) (32)

x2 (k + 1) = A1x (k) +W (t0)σ(x, u) + Ft

where Ft is neural modeling error when the weight of the
neural networks is fixed as W (t0). The error dynamics is
obtained from (15) and (32)

∆̇1 = ∆2 − z1 (33)

∆̇2 = Ft − z2

We define the upper bound of Ft as f+, that is |F | ≤ f+.
By (11), (33) can be rewritten as

∆1 (k + 1) = ∆2 (k)− k1 |∆1 (k)|1/2 sign(∆1 (k))
(34)

∆2 (k + 1) = Ft − k2sign(∆1 (k))

Let the current time t ∈ [ti, ti+1) , where ti and ti+1are
successive measurement times, ti+1−ti = δ. The observer
(34) may be rewritten in the continuous time as follows

∆̇1 = ∆2 − k1 |∆1|1/2 sign(∆1) (35)

∆̇2 = Ft − k2sign(∆1)

We define the upper bound of Ft as f+, that is |F | ≤ f+.
D is some compact region around the origin O of the
space ∆1, ∆2. By (11), (33) can be rewritten as All
differential inclusions are understood in the Filippov sense
[10], which means that the right hand side is enlarged in
some points in order to satisfy the upper semi­continuity
property. So ∆̇2 ∈ [−f+, f+] − k2sign(∆1), and ∆̇2 ∈
[−k2 − f+, k2 + f+] with ∆1 = 0. Using the trivial
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identity d|x|
dt = ẋsign(x), and computing the derivative

of ∆̇1 with ∆1 6= 0 obtain

∆̈1 ∈
£−f+, f+¤−Ã1

2
k1

∆̇1

|∆1|1/2
+ k2sign(∆1)

!
(36)

At the moments ∆1 = 0, taking into account that ∆̇2 =
Ft − k2sign(∆1) and (25)

0 < k2 − f+ <
¯̄̄
∆̇2

¯̄̄
< k2 + f+ (37)

Similar with our previous results in [8] and the form
in [16], ∆̇1 (ti) ≥ (k2 − f+) ti, ti is the time intervals
between the successive intersection of the trajectory with
the axis ∆1 = 0. Hence ti ≤ ∆̇1(ti)

k2−f+ , the total convergence

time is estimated by T ≤P ∆̇1(ti)
k2−f+ . Therefore, T is finite

and the estimated states converge to the real states in finite
time. Then the convergence of (x̂1, x̂1) → (x1, x2) in
finite time is assured. During this time they do not leave
some larger homogeneous disk

BR0
=
n
(∆1,∆2) : |∆1|1/2 + |∆2| ≤ R0

o
(38)

Due to the homogeneity property M(R) = mR holds,
where the constant m > 0 can be easily calculated. Thus,
obviously

|∆1| ≤ mR0δ, |∆2| ≤
¡
f+ + k2

¢
δ

Due to the continuous dependence of the Filippov so­
lutions on the graph of the differential inclusion, with
sufficiently small δ the trajectories of (38) starting in D
terminate in the time T in some small compact vicinity
of the origin without leaving BR0 on the way. Let Ω be
the compact set of all points belonging to the trajectory
segments, Obviously, it is an invariant set attracting the
trajectories of (38). Check now that it is a globally
attracting set. It is easy to see that (35) is invariant . Let
Ω satisfy the inequalities

|∆1| < a1, |∆2| < a2

with some discretization interval δ0. Applying the trans­
formation δ

δ0
obtain that with arbitrary δ > 0 the invariant

set satisfies the inequalities

|∆1| < γ1δ
2, |∆2| < γ2δ, γ1 =

a1
δ20
, γ2 =

a2
δ0

It is (26).
Remark 1: The discrete­time sliding mode neural ob­

server (8) requires two design parameters: switch constant
γ̄ and the upper bound of neural modeling error f+

when start the sliding mode compensation. γ̄ decide when
we stop neural networks learning and start sliding mode
observer. How to choose these user­defined parameter is
a trade­off. The bigger γ̄ is, the shorter training time the
neural observer has. In this case, the neural modeling error

̄

Δ̇1

Δ 1

k 2,small

k 2,big

Neural Observer

Sliding Mode

Fig. 1. Majorant curve for the finite­time convergent observer

is bigger, so f+ should be bigger. If γ̄ is too small, the un­
modeled dynamic prevent the condition ke (k)k2Q1

< γ̄ is
established, so the two­stage neural observer cannot enter
sliding mode compensation, the finite time convergence
cannot arrive.

Remark 2: Usually f+ > γ̄, because γ̄ corresponds to
the modeling error with optimal weight, while f+ corre­
sponds to the modeling error when ke (k)k2Q1

< γ̄. Since
f+ is unknown, how to choose k1 and k2 is also a trade­
off problem. If we chose the sliding mode gains k1 and
k2 very large to satisfy (25), the chattering becomes big.
If we chose the sliding mode gains k1 and k2 smaller, (25)
is not satisfied, then (36) and (37) cannot be established.
Sliding mode observer will not converge, the observer
error becomes bigger such that ke (k)k2Q1

> γ̄. Now neural
training is re­started again, until ke (k)k2Q1

< γ̄ and enter
sliding mode compensation again, see Fig.1. But, if k1 and
k2 are too small, (25) will never be right, the two­stage
neural observer cannot converge in the finite time. Another
possible method is to used off­line training, such that k1
and k2 can be chosen small values.

V. SIMULATIONS

Consider a pendulum system with Coulomb friction and
external, which was studied by [8][13][19]

ẋ1 = x2, y = x1, x1(0) = x2(0) = 0
ẋ2 =

1
J τ − g

L sinx1 − Vs
J x̂2 − Ps

J sign(x2) + v

where M = 1.1, J = ML2 = 0.891, g = 9.815, L =
0.9, Vs = 0.18, Ps = 0.45, v is an uncertain external
perturbation, v = 0.5 sin 2t+0.5 cos 5t. Let it be driven by
the twisting controller τ = −30sign(θ− θd)− 15sign(θ̇−
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Fig. 2. Real and estimated velocity

θ̇d), the reference signal is θd = sin t. The proposed two­
stage neural observer (8) has the form

x̂ (k + 1) = Ax̂ (k) +BŴtσ(x̂, u) + (1− st)Z

ŷ = [1 0]x̂, x̂1 (0) = x̂2 (0) = 0

Here we select A =

∙
0 1
−1 −0.1

¸
, B =

∙
0
I2

¸
,

σ(x, u) = 0.02
1+e−0.05 − 0.2. The weights are updated

according to the learning law (23) with KP = I2, γ̄ = 2,
W 0 = [1 0]. The sliding mode observer is (11) with
k1 = 11 and k2 = 12. Now we compare our two­stage
neural observer with neural observer [17] and sliding mode
observer [19]. Fig.2 shows the observer results of the
velocity x2. We can see that the two­stage neural observer
switch from neural observer to sliding mode observer at
t = 1.7, and it converges very fast with small chattering.
The sliding mode observer has big chattering at all time.
The neural observer does not have chattering, but has big
observer error.

VI. CONCLUSIONS

Although there exist neural observer, sliding mode
observer and neural sliding mode observer, discrete­time
sliding mode neural observer for continuous time systems
is not applied in the literature. This observer solves the
infinite time convergence problem of neural observers with
sliding mode compensation, and the chattering phenom­
enon of sliding mode observer .The stability and finite
time convergence are proven. Further works will be done
on multilayer neural estimator and discrete time observer.
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