
On the Stability of Distance-based Formation Control

Dimos V. Dimarogonas and Karl H. Johansson

Abstract— This paper examines stability properties of
distance-based formations. These are formations encoded by
inter-agent relative distances. A negative gradient control law
is proposed and is shown to be provably correct when the
formation graph is a tree. Moreover, it is shown that the tree
structure is a necessary and sufficient condition for distance-
based formation stabilization with negative gradient control
laws. For graphs that contain cycles, a characterization of the
resulting equilibria is given based on the properties of the cycle
space of the graph. The results are also applied to flocking
motion for double integrator agents.

I. INTRODUCTION

Decentralized control of networked multi-agent systems is

a field of increasing research interest, due to its applications

in multi-robot systems [14], air traffic management systems

[24] and distributed control of multiple vehicles [21]. A par-

ticular problem considered in literature is that of multi-agent

formation control, where agents usually represent multiple

robots or vehicles that aim to converge to a specified pattern

in the state space. The desired formation can be either static

[23],[3],[5] or moving with constant velocity [18],[22].

Among the vast literature on formation control, two

main approaches can be distinguished: position-based and

distance-based formation control. In the first case, agents

aim to converge to desired relative position vectors with

respect to a subset of the rest of the team. Control designs

that guarantee position-based formation stabilization have

appeared for single integrator agents [23],[5],[13] as well

as nonholonomic agents [3],[16]. Although position-based

formation stabilization is a well studied topic, there appears

to be a lack of relevant results for the case of distance-

based formations. Such formation are useful in some cases

where limited knowledge of global coordinates prevents the

agents from having defined desired relative orientations. The

purpose of this paper is to examine particular properties of

control schemes for such formations.

Distance-based formations have been studied in the con-

text of graph rigidity where a series of results have appeared

in recent literature, e.g., [1], [19],[7], [11]. Roughly speaking,

a formation is called rigid if the fact that all desired distances

are met is sufficient for the maintenance of the distances of

any pair of agents. Necessary and sufficient conditions for

graph rigidity have been provided in [6], [11]; refer to the
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recent PhD thesis [10] and the references therein for more

information on graph rigidity. A common factor in the graph

rigidity literature is the lack of stabilizing control laws that

drive the agents to the desired distance. Existing control laws

such as the one proposed in [1] only have local validity for

small perturbations around the desired formation.

Motivated by the lack of control laws and stability anal-

ysis, we pursue in this paper the problem of distance-based

formation control. In particular, we propose a control law

that is based on the negative gradient of a potential function

between each of the pairs of agents that form an edge in

the formation graph. In the first result, we design such

a function and show that it stabilizes the system to the

desired relative distances provided that the formation graph

is a tree. It is then shown that a tree is also a necessary

condition for stabilization to the desired formation. Thus,

another contribution of the paper is that it is proven that

control laws consisting of negative gradients of potential

fields can only stabilize the system when the graph is a tree,

whereas no global stabilization guarantees for graphs that

contain cycles can be provided. In essence, rigid formations

are not globally stabilizable with negative gradient control

laws. What is shown though is that for some graphs with

cycles, a characterization of the resulting equilibria can be

given, based on the properties of the cycle space of the graph.

The rest of the paper is organized as follows: in Section II

the problem treated is presented. Section III includes the

graph theoretic tools used in the paper. The control law

and stability analysis are presented in Section IV. Section V

extends the results to the case of flocking motion for double

integrator agents. Computer simulations are included in

Section VI and the results are summarized in Section VII.

II. SYSTEM AND PROBLEM STATEMENT

Consider a system of N kinematic agents operating in R
2.

Let qi ∈ R
2 denote the position of agent i. The configuration

space is spanned by q = [qT
1 , . . . , qT

N ]T . We assume first that

agents’ motion obeys the single integrator model:

q̇i = ui, i ∈ N = {1, . . . , N} (1)

where ui denotes the velocity (control input) for each agent.

The objective of the control design is distance-based

formation control. As mentioned in the introduction, the

innovation of the paper is that it provides stability guarantees

for this type of formations. While numerous results have

appeared in literature involving agents that aim to converge

to desired relative positions, there seem to be no results for

the case when the rotation objective is omitted, i.e., when

agents aim to converge to desired relative distances, instead
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of relative positions. We provide in the sequel a control

law and a sufficient condition on the network topology that

guarantee such formation stabilization.

Each agent can only communicate with a specific subset

Ni ⊂ N . By convention, i /∈ Ni. The desired formation can

be encoded in terms of an undirected graph, from now on

called the formation graph G = {N , E} [17], whose set of

vertices N = {1, ..., N} is indexed by the team members,

and whose set of edges E = {(i, j) ∈ N × N|j ∈ Ni}
contains pairs of vertices that represent inter-agent formation

specifications. Each edge (i, j) ∈ E is assigned a scalar

parameter dij = dji > 0, representing the distance at which

agents i, j should converge to. Define the set

Φ
∆
=

{

q ∈ R
2N | ||qi − qj || = dij , ∀ (i, j) ∈ E

}

(2)

of desired distance based formations. The desired formation

is called feasible if Φ is non-empty. The problem treated in

the first part of the paper is summarized as follows: derive

control laws, for which the information available for each

agent i is encoded in Ni, that drive the single integrator

agents to the desired formation, i.e., limt→0 q(t) = q∗ ∈ Φ.

In the last part, we apply the results to a distance based

flocking problem. We assume that agents obey now a double

integrator model of the form:

q̇i = ui

u̇i = vi
, i ∈ N (3)

The objective of the control design is now the movement

of all agents with a common velocity while achieving at the

same time the desired distance based formation.

III. ELEMENTS FROM GRAPH THEORY

We first review in this section some elements of algebraic

graph theory [8] used in the sequel and also present a lemma

that is important for the subsequent analysis.

For an undirected graph G with N vertices the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E and aij = 0, otherwise. If there is

an edge (i, j) ∈ E, then i, j are called adjacent. A path

of length r from a vertex i to a vertex j is a sequence of

r +1 distinct vertices starting with i and ending with j such

that consecutive vertices are adjacent. For i = j, this path

is called a cycle. If there is a path between any two vertices

of the graph G, then G is called connected (otherwise it is

called disconnected). A connected graph is called a tree if it

contains no cycles. The degree di of vertex i is defined as

the number of its neighboring vertices, i.e. di = |Ni|. Let

∆ be the n×n diagonal matrix of di’s. The (combinatorial)

Laplacian of G is the symmetric positive semidefinite matrix

L = ∆ − A. For a connected graph, the Laplacian has a

single zero eigenvalue and the corresponding eigenvector is

the vector of ones,
−→
1 .

An orientation on the graph G is the assignment of a

direction to each edge. The graph G is called oriented if it is

equipped with a particular orientation. The incidence matrix

B = B(G) = (Bij) of an oriented graph is the {0,±1}-

matrix with rows and columns indexed by the vertices and

edges of G, respectively, such that Bij = 1 if the vertex i
is the head of the edge j, Bij = −1 if the vertex i is the

tail of the edge j, and 0 otherwise. The Laplacian matrix is

given by L = BBT = ∆ − A [8].

The cycle space of a graph will be useful in the sequel.

If the graph G contains cycles, then its cycle space is the

subspace spanned by vectors representing cycles in G [9].

The edges of each cycle in G have a direction, where each

edge is directed towards its successor according to the cyclic

order. A cycle C is represented by a vector vC with number

of elements equal to the number of edges M of the graph.

For each edge, the corresponding element of vC is equal to

1 if the direction of the edge with respect to C coincides

with the orientation assigned to the graph for defining the

incidence matrix B, and −1, if the direction with respect to

C is opposite to the orientation. The elements corresponding

to edges not in C are zero.

In this paper we use a sign definiteness property of the

matrix BT B. While L is always positive semidefinite, the

matrix BT B can be either positive semidefinite or positive

definite. The next lemma states that in the case of a tree

graph, the matrix BT B is always positive definite:

Lemma 1: If G is tree, then BT B is positive definite.

Proof : For arbitrary y ∈ R
M we have yT BT By = |By|2

and hence yT BT By > 0 if and only if By 6= 0, i.e., the

matrix B has empty null space. For a connected graph, the

cycle space of the graph coincides with the null space of B
(Lemma 3.2 in [9]). This corresponds to that for G, which

has no cycles, zero is not an eigenvalue of B. This implies

that λmin(BT B) > 0, i.e., that BT B is positive definite. ♦
We note here that the matrix BT B is defined as the “Edge

Laplacian” in [25] and its properties are used for providing

another perspective to the agreement problem.

IV. CONTROL LAW AND STABILITY ANALYSIS

Denote by βij(q) = ‖qi − qj‖2
the Euclidean distance of

any pair of agents in the group. The class Γ of formation

potentials γ ∈ Γ between agents i and j with j ∈ Ni is

defined to have the following properties:

1) γ : R
+ → R

+ ∪ {0} is a function of the distance

between i and j, i.e., γ = γ(βij),
2) γ(βij) is continuously differentiable,

3) γ(d2
ij) = 0 and γ(βij) > 0 for all βij 6= d2

ij .

We also define

ρij
∆
=

∂γ(βij)

∂βij

Note that ρij = ρji, for all i, j ∈ N , i 6= j. The proposed

control law is

ui = −
∑

j∈Ni

∂γ(βij(q))

∂qi

= −
∑

j∈Ni

2ρij (qi − qj), i ∈ N

(4)

The set of controls (4) is written in stack vector form as

u = −2 (R ⊗ I2) q
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where u = [uT
1 , . . . , uT

N ]T and the symmetric matrix R is

given by

Rij =











−ρij , j ∈ Ni
∑

j∈Ni

ρij , i = j

0, j /∈ Ni

We examine the stability of the closed loop system by using

the candidate Lyapunov function

V (q) =
∑

i

∑

j∈Ni

γ(βij(q))

Its gradient can be computed as ∇V = 4 (R ⊗ I2) q, so that

its time-derivative is given by

V̇ = −4 ‖(R ⊗ I2) q‖2 ≤ 0 (5)

We next show that the system reaches a static configuration:

Theorem 2: Assume that the system (1) evolves under the

control law (4), and that the formation graph is connected.

Then ui(t) → 0 as t → ∞ for all i ∈ N .

Proof: The level sets of V are compact and invariant with

respect to the relative positions of adjacent agents. Specifi-

cally, the set Ωc = {q : V (q) ≤ c} for 0 < c < ∞ is closed

by continuity of V . From V ≤ c we have γ(βij) ≤ c for all

(i, j) ∈ E. This implies that there is a ξ, where 0 < ξ < ∞,

such that βij ≤ ξ, by definition of the class Γ, and thus,

‖qi − qj‖ ≤ √
ξ for all for all (i, j) ∈ E. Since the maximum

length of the path between any two vertices of a connected

graph is N−1, we have 0 ≤ ‖qi − qj‖ ≤ (N − 1)
√

ξ for all

i, j ∈ N . Equation (5) and LaSalle’s principle now guarantee

that the system converges to the largest invariant subset of

S = {q : (R(q) ⊗ I2) q = 0}. Since u = q̇ = −2 (R ⊗ I2) q,

we have u → 0 as t → ∞ and the result follows. ♦
We next provide a formation potential that guarantees

formation stabilization for a class of formation graphs. In

particular, we now consider the formation potential:

γ (βij (q)) =

(

βij − d2
ij

)2

βij

(6)

Note that this potential satisfies all properties of the set

Γ. Moreover, γ(βij) ≤ c ⇒ 0 ≤ (βij−d2

ij)
2

βij
≤ c ⇒

0 ≤
(

βij − d2
ij

)2 ≤ cβij ⇒ βij ∈ [0, ξ] where ξ =
1

2

(

2d2
ij + c +

√

4cd2
ij + c2

)

. For this case,

ρij =
∂γ(βij)

∂βij

=
β2

ij − d4
ij

β2
ij

(7)

The next result involves the fact that with this choice of

formation potential, communicating agents do not collide:

Lemma 3: Consider system (1) driven by the control (4)

with γ as in (6), and starting from a set of initial condi-

tions I (q) = {q| ‖qi − qj‖ > 0,∀(i, j) ∈ E}. Then I (q) is

invariant for the trajectories of the closed loop system.

Proof: For every initial condition q(0) ∈ I(q), the time

derivative of V remains non-positive for all t ≥ 0, by virtue

of (5). Hence V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0.

When ‖qi − qj‖ → 0 for at least one pair of agents i, j,

with j ∈ Ni, we have V (q) → ∞, which is impossible.

We conclude that q(t) ∈ I (q), for all t ≥ 0. ♦
Remark 1: Although collision avoidance is achieved be-

tween communicating agents, the issue of collision avoidance

between non-communicating agents is not pursued here. This

is an important requirement in realistic applications and thus

should be considered in the model in future work.

The above result guarantees that βij(t) > 0, i.e., qi(t) 6=
qj(t), for all t ≥ 0 and all (i, j) ∈ E. This will be used in

the stability analysis of the closed-loop system.

We denote by q̄ the M -dimensional stack vector of relative

position differences of pairs of agents that form an edge

in the formation graph, where M is the number of edges,

i.e, M = |E| and q̄ =
[

q̄T
1 , . . . , q̄T

M

]T
, where for an edge

e = (i, j) ∈ E we have q̄e = qi − qj .

With simple calculations, we can derive that q̇ =
−2 (R ⊗ I2) q is equivalent to

˙̄q = −
(

BT BW ⊗ I2

)

q̄ (8)

where the diagonal matrix W is given by

W = 2 · diag {ρe, e ∈ E} ∈ R
M×M

The convergence properties of the closed-loop system are

now established in the following theorem:

Theorem 4: Assume that the system (1) evolves under the

control law (4) with γ as in (6), and that the formation

graph is a tree. Further assume the desired formation is

feasible, i.e., Φ 6= ∅. Then the agents are driven to the desired

formation, i.e., limt→∞ q(t) = q∗ ∈ Φ.

Proof: Since at steady state, q̇ = u = −2 (R ⊗ I2) q = 0,

we also have ˙̄qe = 0 for all e ∈ E and thus ˙̄q = 0. Equation

(8) yields
(

BT BW ⊗ I2

)

q̄ = 0.

By virtue of Lemma 1, BT B is positive definite. Since
(

BT BW ⊗ I2

)

q̄ = 0, we then have
(

(

BT B
)−1 ⊗ I2

)

(

BT BW ⊗ I2

)

q̄ = 0,

and thus (W ⊗ I2) q̄ = 0. Since W is diagonal, the last

equation yields ρeq̄e = 0 for all e ∈ E. Since ρe is scalar

this implies ρe = 0 or q̄e = 0. However, for all e ∈ E we

have q̄e(t) 6= 0 for all t ≥ 0, due to Lemma 3. We conclude

that ρe = 0 for all e ∈ E at steady state and hence βij = d2
ij ,

i.e, ||qi − qj || = dij for all (i, j) ∈ E, by virtue of (7). ♦
Remark 2: Note that the potential γ(βij) = (βij −

d2
ij)

2, as in [1], leads to the control law ui =
− ∑

j∈Ni

4(βij − d2
ij) (qi − qj), which results in equilibria

other than the desired ones (as also mentioned in [1]), even

in the case of formation graphs that are trees. For example,

some agents might get stuck to a common point. The result

of Theorem 4 shows that the choice of γ in the form (6)

provides the desired convergence guarantees for tree graphs.

A. Main result

The proof of the previous theorem provides us the means

to characterize the formation graphs for which a control law

of the form (4) leads to the desired formation for any choice

of potential function γ ∈ Γ. In particular, for any choice of
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γ ∈ Γ, the closed-system dynamics are given by q̇ = u =
−2 (R ⊗ I2) q,, or equivalently by

˙̄q = −
(

BT BW ⊗ I2

)

q̄

in the edge space. The analysis leading to Theorem 4

guarantees that
(

BT BW ⊗ I2

)

q̄ = 0 at steady state. By

virtue of Lemma 1, the matrix BT B is non-singular only

when the formation graph contains no cycles. From the above

discussion we derive the following result:

Theorem 5: Assume that the system (1) evolves under the

control law (4) and that Φ is non-empty. Consider conditions

(i) u(q) = 0 only for q ∈ Φ, and (ii) limt→∞ q(t) = q∗ ∈ Φ.

Then there exists a formation potential γ ∈ Γ such that (i),(ii)

hold if and only if the formation graph is a tree.

Proof: The “if” part is shown in Theorem 4, with the choice

of formation potential field (6).

For the “only if part”, assume that the closed-loop system

has reached a steady state at which u = 0, which implies

that
(

BT BW ⊗ I2

)

q̄ = 0. We will show that condition (i)

cannot hold if G is not a tree.

If the formation graph is not a tree, then the matrix BT B
in singular and then the null space of B, and thus BT B, is

nonempty. In fact, in this case, using properties of Kronecker

products [12], [2], we have
(

BT BW ⊗ I2

)

q̄ = 0 ⇒
(

BT B ⊗ I2

)

(W ⊗ I2) q̄ = 0 ⇒
(q̄ (W ⊗ I2))

T (

BT B ⊗ I2

)

(W ⊗ I2) q̄ = 0 ⇒
q̄T (BW ⊗ I2)

T
(BW ⊗ I2) q̄ = 0 ⇒

so that (BW ⊗ I2) q̄ = 0. Denoting by x̄,ȳ the stack vectors

of the elements of q̄ in the x and y coordinates, the last

equation yields BWx̄ = BWȳ = 0, i.e., Wx̄,Wȳ belong

to the null space of B. Since the graph contains cycles, the

null space of B is non-empty. Thus we cannot reach the

conclusion of the proof of Theorem 4 that (W ⊗I2)q̄ = 0. In

fact, equations BWx̄ = BWȳ = 0 have an infinite number

of solutions, since the matrix BT B is now singular.

Thus condition (i) cannot hold if G is not a tree. We

conclude that (i) and (ii) hold only if G is a tree. ♦
The last result states that if the formation graph contains

cycles, then we can not design a control law of the form (4)

that stabilizes the agents to the desired relative distances. On

the other hand, the previous analysis provides the means to

characterize the equilibria of the system for any graph, based

on the null space of the matrix B.

Note that the null space of B coincides with the cycle

space of G. The latter is spanned by the vectors representing

the cycles in the graph. Although the set of solutions of

equation (BW ⊗ I2) q̄ = 0 is infinite when the graph

contains cycles, we can get a geometrical characterization of

the resulting equilibria based on the form of the formation

potential (6). Without loss of generality, we assume dij = d
for all (i, j) ∈ E from this point until the end of this section.

The vectors Wx̄,Wȳ belong to the cycle space of G.

Consider the case when G has p cycles, denoted by Ci, i =
1, . . . , p that do not have a common edge, i.e., the graph has

p disjoint cycles. Then we can rearrange the edges so that

the edges corresponding to each cycle are successive and

the edges that do not belong to a cycle are at the end of the

edge sequence. It is easy to verify then that the cycle space

is spanned by the p vectors of dimension M = |E|, one for

each cycle, who have 0 entries at elements not corresponding

to the cycle, and ±1 entries at elements corresponding to

the cycle, depending on the agreement between edge and

cycle orientation. Since the cycles are disjoint, the edges

ei
k ∈ Ci, k = 1, . . . ,mi corresponding to the same cycle

Ci, i = 1, . . . , p reach a configuration where each of them

satisfies
(

ρei
k
⊗ I2

)

q̄ei
k

= ±ci for all k = 1, . . . ,mi, where

ci = [cT
xi, c

T
yi]

T is a constant vector. Denoting as x̄ei
k
,ȳei

k

the coefficients of q̄ei
k
, we have

(

ρei
k
⊗ I2

)

q̄ei
k

= ±ci ⇒
∣

∣

∣
ρei

k
x̄ei

k

∣

∣

∣
= |cxi| ,

∣

∣

∣
ρei

k
ȳei

k

∣

∣

∣
= |cyi|, for all k = 1, . . . ,mi.

Thus, all elements of Wx̄,Wȳ corresponding to edges of Ci

tend to the same absolute value at steady state. However, the

specific expression of this common absolute value cannot be

determined a priori. Unfortunately, this is the best that can be

guaranteed for the steady state of a formation corresponding

to a graph with cycles. Edges e ∈ E that do not belong to

a cycle satisfy the equation (ρe ⊗ I2) q̄e = 0, and thus, the

agent pairs that correspond to these edges attain the desired

relative distance d at steady state, according to the analysis at

the end of the proof of Theorem 4. The previous discussion

is summarized in the following corollary:

Corollary 6: Assume that the system (1) evolves under

the control law (4) with formation potential given by (6). Fur-

ther assume that the cycles contained in the formation graph

are disjoint. Then all elements of Wx̄,Wȳ corresponding to

edges of Ci tend to the same absolute value at steady state.

Agent pairs that correspond to edges that do not belong to a

cycle attain the desired relative distance d at steady state.

Remark 3: The limitations of the last corollary should

not be underestimated. The cycles of the graph need to be

disjoint in order for the corollary to hold. Moreover, even in

this case, the values of the edges’ distances of each cycle

cannot be predetermined and it certainly might be different

than d, even if γ ∈ Γ is given by (6).

Remark 4: As mentioned in the introduction, a formation

is called rigid when its shape is preserved if the distances

imposed by the formation graph are maintained. Therefore

tree graphs are not rigid. By virtue of Theorem 5, rigid

formations cannot be globally stabilized by control laws of

the form (4). It is then evident that other control design logics

are needed for stabilization of rigid based formations. This

is the topic of ongoing research endeavors.

V. APPLICATION TO FLOCKING MOTION

In this section we consider double integrator agents (3).

The objective is flocking in a pre-specified distance based

formation. Thus, agents aim to converge to the desired

formation described in the previous section and attain a

common velocity. For this objective, we combine the results

of [22],[18] with the results of the previous section. In

particular, agents are equipped with a Laplacian control law

in the velocity space, while they use the same distance based

formation potential in the position space.
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The proposed control law for system (3) is given by

vi = −
∑

j∈Ni

∂γ(βij(q))

∂qi

−
∑

j∈Ni

(ui − uj)

The formation potentials γ were defined in (6). The control

law can be written in stack vector form as

v = −2 (R ⊗ I2) q − (L ⊗ I2)u

where the matrix R was defined in the previous section and

L is the Laplacian of the formation graph. Using now

V0 =
1

2

∑

i

∑

j∈Ni

γ(βij) +
1

2

∑

i

‖ui‖2

as a candidate Lyapunov function, we can compute

V̇0 =





1

2
∇

∑

i

∑

j∈Ni

γ(βij(q))



 q̇ + uT u̇ =

= uT (2R ⊗ I2) q − uT ((2R ⊗ I2) q + (L ⊗ I2)u)

= −uT (L ⊗ I2)u ≤ 0

The main result of this section is stated in the following

theorem, whose proof uses similar arguments to the corre-

sponding one in [22], but is included here for completeness.

Theorem 7: Assume that the system (3) evolves under the

control law (4) with γ ∈ Γ as in (6), and that the formation

graph is a tree. Then the agents reach a configuration where

they have a common velocity and limt→0 q(t) = q∗ ∈ Φ.

Proof: The level sets of V0 are compact with respect to the

agents relative positions and velocities. In particular, the set

Ω0
c = {(q, u) : V0(q, u) ≤ c} for c > 0 is closed by the

continuity of V0. By virtue of Theorem 2, we have 0 ≤
‖qi − qj‖ ≤ (N − 1)

√
ξ for all i, j ∈ N . Moreover V0 ≤ c

implies that ||ui|| ≤
√

2c, for all i ∈ N .

Equation V̇0 = −uT (L ⊗ I2)u and LaSalle’s Invariance

Principle now imply that the agents converge to a configura-

tion where (L ⊗ I2) u = 0. Using the notation ux,uy for the

stack vectors of the elements of u in the x and y coordinates,

we have Lux = Luy = 0, Since the formation graph is

connected, this implies that both ux, uy belong to span{−→1 },

implying that u1 = . . . = uN = u∗ at steady state. Moreover,

u̇x, u̇y belong to span{−→1 }. In {u|u1 = . . . = uN = u∗},

we have u̇ = v = −2 (R ⊗ I2) q = − (BW ⊗ I2) q̄ =
− (B ⊗ I2) (W ⊗ I2) q̄ which implies that both u̇x and u̇y

belong to the range of the incidence matrix B, which is

equal to span{−→1 }⊥ for a connected graph [22]. Hence

u̇x, u̇y ∈ span{−→1 } ∩ span{−→1 }⊥ ≡ 0, and thus, u̇ = v = 0
at steady state. This in turn implies that (R⊗I2)q = 0 which

implies that limt→0 q(t) = q∗ ∈ Φ, i.e., the agents reach the

desired formation, by virtue of Theorem 4. ♦
Note that the result of Theorem 5 can be applied to the

case of the double integrator agents of this section as well.

VI. SIMULATIONS

In this section we provide some simulation examples to

support the derived results.
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Fig. 1. Four single integrator agents are driven by the control (4) with
γ as in (6). The formation graph is a tree. Agents’ relative distances are
stabilized to the expected desired value d = 0.15.

The first simulation involves four agents whose formation

graph is a line graph, and hence a tree. In particular, we

have N1 = {2}, N2 = {1, 3}, N3 = {2, 4} and N4 = {3}.

We have chosen the desired distance as d = 0.15 for all

edges in this example. Agents are driven by the control (4)

with γ as in (6). Figure 1 shows the plots of the distances

‖q1−q2‖,‖q2−q3‖ and ‖q3−q4‖, respectively. As witnessed

in the figure, all distances between the communicating agents

converge to the expected value d = 0.15.

The second simulation is an example where the control

law of the form (4) fails to stabilize a system of three agents

to a triangular formation. The graph considered is a cycle

graph and is complete, i.e., N1 = {2, 3}, N2 = {1, 3},

N3 = {2, 3}. We also have d2
12 = d2

13 = d2
23 = d2 =

√
2

in this example and apply the potential (6) in the control

(4). The agents start from initial positions q1(0) = [0, 0]T ,

q2(0) = [−1, 0]T and q3(0) = [1, 0]T . The evolution of the

system is depicted in Figure 2, where the crosses represent

the initial positions of the agents and their final locations are

noted by a black circle. The system converges to an undesired

configuration given by q1 = [0, 0]T , q2 = [−0.6866, 0]T and

q3 = [0.6866, 0]T . Simple calculations yield u1 = u2 =
u3 = 0 at this configuration, so the system is at steady state.

This is due to that the edge distances belong to the cycle

space of the graph, i.e., we have B(W ⊗ I2)q̄ = 0 and

(W ⊗ I2)q̄ 6= 0 at steady state in this example.

By slightly altering the initial conditions of the previous

example, the agents are driven to the desired triangular

formation, as depicted in the simulation of Figure 3. The

only difference is that we now have q2(0) = [−1, 0.04]T .

The system converges to the desired formation, even if the

formation graph is a cycle. Thus, not all initial conditions are

attracted to undesirable equilibria that belong to the cycle

space of G and not in Φ, as encoded in Theorem 5. The

characterization of the undesirable sets of initial conditions

that are attractors to the cycle space of the graph G is a topic

of ongoing research. The use of Navigation Function theory

[15] and Dual Lyapunov theory [4], [20] may provide the

means for this research direction.
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Fig. 2. Three agents with control law (4),(6) and a complete formation
graph fail to reach the desired triangular formation. The resulting configu-
ration belongs to the cycle space of the graph and does not coincide with
a point in Φ.
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Fig. 3. By slightly altering the initial conditions of the previous example
however, the agents are driven to the desired triangular formation.

VII. CONCLUSION

We examined stability properties of distance-based for-

mations. These are formations encoded by relative distances

between pairs of agents that form an edge in the formation

graph. A negative gradient control law was proposed and

was shown to be provably correct when the formation graph

is a tree. Moreover, it was shown that the tree structure

is a necessary and sufficient condition for distance-based

formation stabilization with negative gradient control laws.

For graphs that contain cycles, a characterization of the

resulting equilibria was given based on the properties of the

cycle space of the graph. The results were also extended

to the case of flocking motion for double integrator agents.

Simulation examples supported the derived results.

Future research will involve extending the results to the

case of directed graphs. We also aim to characterize the

undesirable sets of initial conditions that are attractors to

the cycle space of the formation graph.
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