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Abstract— The paper presents a new Atomic Force Mi-
croscopy setup where the cantilever gets excited by a positive
feedback loop containing a saturation function. The proposed
scheme can be easily modeled and analyzed in the frequency
domain using harmonic balance techniques. In imaging appli-
cations, we show that an additional controller for the saturation
threshold can further reduce the topography error. Preliminary
results in experiments confirm the effectiveness of this operating
mode, providing good topography resolution and removing
some of the known drawbacks of standard dynamic setups.

I. INTRODUCTION

Since its invention in 1986 [1], atomic force microscopy

(AFM) has been widely used as a tool for investigating

material characteristics at a nanoscale level. In particular,

it has been used for topographic measurements, in order

to obtain surface images of the sample. A typical AFM

setup is depicted in Fig. 1: a sharp tip on top of a flexible

cantilever interacts with the sample and the topography

can be recovered by measuring the cantilever deflection via

a four-quadrants opto-detector. A piezoelectric actuator is

eventually in charge of moving vertically the sample in order

to maintain a constant force between the tip and the sample.

In tapping mode, another piezoelectric actuator, called

“dither piezo”, is mounted at the cantilever base and induces

harmonic oscillations of the cantilever via acoustic excitation

[2]. Since the amplitude of the above oscillations decreases

as the tip gets closer to the sample, a feedback controller

regulates the sample distance in order to maintain a set-

point oscillation amplitude during the scanning. Tapping

mode AFM presents several advantages with respect to either

contact and non-contact operating modes [3], one of the

most important being the ability to obtain measures with

a significantly decreased mean interaction force and lateral

shear [4]. One of the major drawbacks of tapping mode AFM

is the need to identify in advance the cantilever resonance

frequency. In fact the cantilever has to be externally excited

at a frequency that must be close to the resonance one.

The identification of the cantilever resonance frequency is

a time-consuming task and can be quite difficult in liquid

environments due to the presence of “multiple peaks” in the

cantilever frequency response [5]. Moreover, the scanning
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Fig. 1. Simplified AFM setup.

rate is primarily limited by the performance of the piezoelec-

tric actuator and by the high Q factor of typical cantilever

when operating in air [6].

In this work we present a new working mode – hereafter

denoted as auto-tapping – that preserves the benefits of

tapping mode and greatly reduces the above mentioned

drawbacks. More specifically, the dither piezo is now driven

by a positive feedback of the cantilever deflection signal

which induces self-sustained oscillations. The amplitude of

such oscillations can be regulated by a specific saturation

function. Although the idea of using a positive feedback of

the cantilever deflection is not new [5], [7], it has not been

exploited yet to design a practical and simple setup to be

employed in imaging applications, similarly to those used in

standard tapping mode AFMs. Moreover, a specific model of

auto-tapping is proposed which can be effectively analyzed in

the frequency domain by using harmonic balance techniques.

The paper is organized as follows. In Section II a suitable

model of the AFM in the new operating mode is presented

and analyzed via harmonic balance techniques, in Section

III we propose an additional control scheme exploiting the

saturation threshold that increases the dynamical response

of auto-tapping. Finally, in Section IV we illustrate some

preliminary experimental results which confirm the validity

of the proposed technique.

II. MODEL

A typical description of the AFM cantilever dynamics

is based on the approximation provided by a second-order
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harmonic oscillator [8] whose frequency response is given

by the expression

L(jω) =
Y (jω)

F (jω)
=

1

ω2
n − ω2 + 2jζωnω

, (1)

where Y (jω) and F (jω) are, respectively, the Fourier trans-

forms of the cantilever deflection y(t) and of the force f(t)
(per unit mass) applied to the tip, ωn indicates the natural

frequency, and ζ is the cantilever damping factor. The natural

frequency ωn is related to the cantilever spring constant Kc

and to the cantilever mass m by the relation

ω2
n =

Kc

m
, (2)

whereas the value of the damping ζ depends essentially by

the environment where the instrument operates. In fact, ζ can

be negligible in vacuum or air, while it is very significant

when the AFM works in liquids.

As already mentioned in the introduction, it has been

experimentally observed that self-sustained oscillations of the

cantilever can be induced by feeding the dither piezo with

a signal proportional to the cantilever deflection. Particular

care must be taken in order to model the loop that is

responsible of the birth of such oscillations in auto-tapping

mode AFM. Classical linear feedback theory excludes that

a positive feedback of the system dynamics in (1) is able to

generate stable oscillations, since the cantilever equilibrium

remains stable even for large gains. Various experiments

considering the frequency response of the cantilever excited

through the dither piezo show the presence of a phase shift

between system input and output. This phenomenon can

be physically explained by the transmission delay of the

acoustic excitation of the tip. In this scenario, an increase

of the feedback gain can lead to an unstable equilibrium for

the cantilever dynamics when a pair of complex poles crosses

the imaginary axis. The corresponding equilibrium will then

result in an unstable focus such that all trajectories spiral

out of the origin. The presence of the dither piezo saturation

naturally limits the system trajectories which then converge

to a stable oscillation (a limit cycle) whose amplitude directly

depends on the saturation level. Therefore, the above satura-

tion nonlinearity is well suited to explain the occurrence of

a self-sustained oscillation and can be interpreted by taking

into account that the dither piezo provides a limit in the force

that can exert on the cantilever base.

According to these hypotheses, the excitation force on the

tip can be expressed as

f(t) = Ψsat [Ωy(t − τ)] . (3)

In (3) we indicate with the symbol Ω the measurement con-

verting factor (i.e. the conversion gain between the deflection

in nm and the voltage fed to the dither piezo), with Ψ the

actuator factor (i.e. the gain value related to the mechanical

coupling between the dither piezo and the cantilever base),

with τ the delay time and with sat(·) the saturation function.

If the sample is also taken into account, we define as

“separation” the distance l between the sample surface and

ΩΨdelay(τ )

Fh

+

+

+

+

y(t)

l

Cantilever

Fig. 2. Block diagram of auto-tapping mode.

the center of the cantilever oscillation. Moreover, we assume

that the cantilever-sample interaction can be expressed by

means of a force Fh that depends essentially upon the tip-

sample distance, that is, the cantilever deflection plus the

separation. Accordingly, the behavior of the system is thus

governed by the following differential equation

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = Ψsat [Ωy(t − τ)] + Fh(y + l)

(4)

which is also reported as a schematic in Fig. 2. Note that this

is a typical example of a Lur’e system [9], i.e. a feedback

interconnection of a linear dynamical system and a nonlinear

block represented, respectively, by the cantilever and by the

loops containing the saturation and the tip-sample interaction

force.

A. Model analysis via harmonic balance

When the atomic force microscope operates in (auto)

tapping mode, one can experimentally observe that the

cantilever oscillation is quasi-sinusoidal since the strongly

peaked second order dynamics of the cantilever filters out

most of the higher harmonics. Therefore, we can approximate

the deflection by

y(t) = B cos(ωt) (5)

and use a first order harmonic balance technique to study

the system oscillations [9]. More specifically, we can refer

to the schematic of Fig. 3 and associate to every nonlinear

block n(·) the so-called “describing function” defined as

N(B, ω) =
B1 + jA1

B
(6)

where B1 and A1 are the first order terms of the Fourier

series of the output of the nonlinear block n(·) fed with

B cos(ωt), i.e.

B1 =
2

T

∫ T

0

n [B cos(ωt)] cos(ωt)dt

A1 =
2

T

∫ T

0

n [B cos(ωt)] sin(ωt)dt .

(7)

The describing function associated to the saturation block

n(y) =







−s y ≤ −s
y |y| < s
s y ≥ s

(8)
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+

Fig. 3. Harmonic balance analysis for auto-tapping mode.

y + l

Fh

d

Fig. 4. Piecewise linear approximation of the tip-sample interaction.

where s represents the saturation threshold, has the expres-

sion (see, for example [9])

Nsat(B) =







1 B ≤ s

2

π

(

sin−1
(

s
B

)

+ s
B

√

1 − s2

B2

)

B > s .

(9)

There exist several different representations which model

the interaction between the tip and the sample, typical

examples are Lennard-Jones potentials [10] and Hertz con-

tact models [11]. Although the following analysis could be

conducted with these models, for the sake of simplicity we

choose the following piecewise linear approximation of these

forces as depicted in Fig. 4

Fh =







0 y + l > 0
s2

a(y + l) −d < y + l ≤ 0
s2

a(y + l) − s2
r(y + l + d) y + l ≤ −d

.

(10)

This approximation is able to capture the most important

characteristic of the tip-sample interaction: far away from

the sample the interaction force is negligible, when the tip

approaches the sample there is a small region where there

exists an attractive force (linear with slope s2
a in the model),

if the separation further decreases a repulsive force due to

atomic repulsion is exchanged between the tip and the sample

(slope s2
a − s2

r in the model). The describing function of the

TABLE I

NUMERICAL SIMULATION PARAMETER VALUES

Name Value Unit

ωn 414690 rad/s

ζ 0.0017367

τ 101 µs

B0 65 nm

s0 1 V

Ω0 0.0196 V/nm

Ψ 0.0346 nm/µs2

d 3 nm

sa 0.15 µs−1

sr 3.6 µs−1

Br 55 nm

K−

sat
0.0073 V/nm

K+
sat

0.11 V/nm

nonlinearity in 10 can be expressed as [9]

Nh(B) =
1

π



s2
aRe







cos−1

(

l

B

)

−
l

B

√

1 −

(

l

B

)2







+

−s2
rRe







cos−1

(

l + d

B

)

−
l + d

B

√

1 −

(

l + d

B

)2











(11)

. Finally, we can compute the overall describing function

Ntot(B, ω) as a combination of the blocks of Fig. 3 which

yields

Ntot(B, ω) = Nh(B) + ΨNsat(ΩB)Ωe−jωτ . (12)

Conditions for the existence of autonomous oscillations

B cos(ωt) are obtained by imposing that the feedback gain

along the loop is unitary, which yields the so-called harmonic

balance equation

L(jω)Ntot(B, ω) = 1 (13)

to be solved in the unknowns B and ω, as a function of the

system parameters. The analytical solution of this equation

can be a very difficult task, therefore we choose to solve

it numerically. The parameter values used for the harmonic

balance analysis and the subsequent simulations are reported

in Table I. First of all, we note that, far away from the

sample where Fh = 0, we can easily decompose the real

and imaginary parts of (13). By solving the imaginary part

equation we can exploit a direct relationship between the free

oscillation frequency and the delay time τ , that is

ω =
1

τ
6 L(jω). (14)

Moreover, by solving the real part equation, we conclude that

the cantilever oscillation amplitude far away from the sample

depends essentially on the saturation threshold s and it is not

much influenced by the gain value Ω, as one could expect at a

first glance. In Fig. 5 and Fig. 6 we report the dependence of

the oscillation amplitude on the values of Ω (normalized with
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Fig. 5. Free oscillation amplitude vs. gain value Ω.
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Fig. 6. Free oscillation amplitude vs. Saturation threshold.

respect to the critical gain Ω0 which provides the onset of the

self-sustained oscillations) and the threshold s, respectively.

Note that the relationship between the saturation threshold

and the free oscillation amplitude is quasi-exactly linear, so

that s can be used to easily tune this amplitude. The gain

value Ω can be used to switch on or off the oscillation and

can be tuned by modulating the laser intensity or external

amplifier gain during experiments.

When the tip approaches the sample surface the value

of Fh is no longer zero, inducing amplitude and frequency

changes on the cantilever oscillation. In particular, the at-

tracting region in Fig. 4 generates a small increase in the

oscillation amplitude, whereas the repulsion region generates

an amplitude decrease (see Fig. 7). It is important to note

that, in this latter region, there exists a linear dependence

of the amplitude with respect to the separation, similarly

to what happens in classical tapping mode [12]. This linear

relationship is very useful since it allows to employ the same

piezo control system designed for tapping mode.

In Fig. 8 we report some results obtained by numerical

integration of Eq. (4) subject to the force (10). The simu-

lations are performed at different scan rates on a reference

sample (a calibration grid) with a step height of 100nm and

pitch 3µm. It is evident that classical tapping mode and auto-

tapping mode have quite similar performance in topography

reconstruction, whereas there is a strong degradation at
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p
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e
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Fig. 7. Cantilever oscillation amplitude vs. separation.

higher scan velocities. In particular, the falling edge of the

sample is not correctly measured since the tip does not

interact with the surface for a long time interval, as we will

better explain in the next section.

III. SATURATION THRESHOLD CONTROL

The ability to modulate the free oscillation amplitude by

means of the saturation threshold can be exploited to increase

the performance of the traditional feedback loop that controls

the actuator piezo. By doing so, it is possible to achieve

better performance in topography and better control of the

forces that the cantilever tip applies to the sample. The basic

idea is to control the saturation threshold in order to adapt

it to the amplitude imposed by the presence of the sample,

such that the cantilever oscillation is decreased accordingly

to the tip-sample interaction force. Of course, this is the same

objective of the piezo scanner controller, although the latter

is achieved with a response limited by the piezo bandwidth.

Conversely, the saturation threshold regulates the cantilever

oscillation amplitude quasi-instantaneously and allows for a

better tracking of the sample when fast scan rates are used. A

standard piezo controller (usually a PI) is then required only

for compensating low-frequency/high-amplitude topographic

changes, such as sample tilts. The resulting control scheme

is illustrated in Fig. 9. The saturation controller can be

implemented as the simple negative-feedback proportional

controller

s(t) = s0 −
s0

Br

[Br − B(t)], (15)

where s0 represents the nominal threshold value and Br

is the reference amplitude, i.e the set-point of the actuator

piezo controller. We can choose s0 such that the oscillation

amplitude far away from the sample (the free cantilever

oscillation) is set to a value B0 not much larger than Br,

in order to reduce tip-sample interaction forces. Moreover,

we note that the system behavior is non symmetric between

the sample approach and retract phases, since during the

former the PI controller operates mainly in open-loop until

the tip impacts again the sample surface. This lack of sym-

metry is particularly evident when the saturation threshold

controller is disabled because the oscillation amplitude can
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Fig. 9. Saturation threshold control scheme.
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Fig. 8. Comparison of tapping and auto-tapping scan line profiles with a
scan velocity of (a) 3µm/s and (b) 15µm/s.

not be increased beyond B0. The same situation is present

in classical tapping mode where the maximum amplitude

value is determined by the dither piezo excitation strength,

see for example [13]. This effect can be only reduced by

setting Br far smaller than B0 which, in turn, leads to

higher mean tip-sample interaction forces. The saturation

threshold controller overcomes this problem since it forces

the cantilever to oscillate at higher amplitudes thanks to the

ability to increase the free oscillation amplitude above B0.
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Fig. 10. Comparison of auto-tapping single line profiles with and without
saturation threshold control (scan velocity of 15µm/s).

Therefore, the time interval when the PI controller operates

in open-loop is greatly reduced and depends essentially upon

the dynamics of the saturation controller and the settling

time of the cantilever oscillation which are much faster than

the actuator piezo dynamics. In order to further reduce the

interval with the piezo controller operating in open-loop, it

can be useful to introduce two different gains, one for the

sample approach phase and the other for the sample retract

phase, i.e.

s(t) =

{

s0 − K−
sat(Br − B(t)) Br − B(t) > 0

s0 − K+
sat(Br − B(t)) Br − B(t) < 0

(16)

with K−
sat ≤ s0/Br ≤ K+

sat, such that the oscillation

amplitude is strongly increased during the approach phase.

In Fig. 10 we report a comparison between the simulation re-

sults for the auto-tapping model with and without saturation

threshold control (the model parameters are taken from Table

I, threshold controller from (16)), showing a faster response

during the approach phase.

IV. EXPERIMENTAL RESULTS

The proposed control setup has been tested in a AFM

prototype system where the cantilever support has been

equipped with a small piezo (5mm × 5mm × 0.65mm)
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(a)

(b)

Fig. 11. Comparison of experimental images: (a) auto-tapping, (b) auto-
tapping with threshold control.

providing acoustic excitation. We used a ”non-contact” type

AFM probe (model NCLR by NANOSENSORS Neuchatel,

Switzerland) with ωn = 1.011 · 106rad/s and Kc = 31 ÷
71N/m. In order to make a direct comparison between

classical tapping mode and the proposed auto-tapping mode,

we employed the commercial controller SPMagic R2 (by

Elbatech srl) as scanning piezo controller. The control law

indicated in (16) was implemented via a real-time Linux

PC system based on the RTAI-XML platform [14]. The

reference sample was a standard calibration grating TGZ02

(by MikroMash, Tallin, Estonia) with known pitch 3µm, and

step height 100nm. The images were obtained by the WSxM

software [15].

In Fig. 11 we report a comparison between images ob-

tained in auto-tapping mode with and without the saturation

controller enabled. The free oscillation amplitude B0 was set

at about 60nm, while the actuator piezo controller reference

was set at about 40nm, the scanning velocity was 10µm/s,

with a scanning area of 5 × 10µm and grid resolution of

128 × 256 pixel. Note that the presence of the saturation

threshold controller allows for much better performance in

topography reconstruction.

V. CONCLUSIONS

In this paper we have presented an analysis of a new

modality for topographic measurements via atomic force mi-

croscopy, called “auto-tapping”. Starting from experimental

evidence, we have proposed a model that correctly describes

the system behavior and allows for a detailed analysis via

harmonic balance techniques. Exploiting some peculiar fea-

tures of the analyzed model, we have proposed an enhanced

control scheme that guarantees better performance in topog-

raphy reconstruction. Preliminary results of experiments have

shown that the proposed setup can be effectively employed

in imaging applications with a number of advantages with

respect to classical techniques.
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