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Abstract— In this paper we study decentralized, networked
systems whose interaction dynamics are given by a nearest-
neighbor averaging rule. By letting one node in the network
take on the role of a leader in the sense that this node provides
the control input to the entire system, we can ask questions
concerning the controllability. In particular, we show that the
controllable subspaces associated with such systems have a
direct, graph theoretic interpretation in terms of so-called
quotient graphs, providing us with a smaller, approximate
bisimulation of the original network.

Index Terms— Networked control systems, Network analysis
and control, Communication networks

I. INTRODUCTION

The emergence of decentralized, mobile multi-agent net-

works, such as distributed robots, mobile sensor networks,

or mobile ad-hoc communications networks, has imposed

new challenges when designing control algorithms. These

challenges are due to the fact that the individual agents have

limited computational, communications, sensing, and mobil-

ity resources. In particular, the information flow between

nodes of the network must be taken into account explicitly

already at the design phase, and a number of approaches have

been proposed for addressing this problem, e.g. [1], [2], [3],

[4], [5], [6], [7], [8].

Regardless of whether the information flow is generated

over communication channels or through sensory inputs,

the underlying geometry is playing an important role. For

example, if an agent is equipped with omnidirectional range

sensors, it can only detect neighboring agents if they are

located in a disk around the agent. Similarly, if the sensor is

a camera, the area becomes a wedge rather than a disk. But,

to make the interaction geometry explicit when designing

control laws is not an easy task, and an alternative view

is to treat interactions as purely combinatorial. In other

words, all that matters is whether or not an interaction exists

between agents, and under certain assumptions on the global

interaction topology, one can derive remarkably strong and

elegant results. (For a representative sample, see [1], [6], [7].)

What then remains to be shown is that the actual geometry

in fact satisfies the combinatorial assumptions.

In this paper, we continue down this path, by investigating

controllability from a graph-theoretic point-of-view, which
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was first proposed in [9], and later investigated in [10].

In [10], necessary conditions for controllability were given

entirely in terms of the graph topology and, as such, it

provides a starting point for the undertakings in this paper. In

particular, we show that when the network is not completely

controllable, the controllable subspace can be given a graph-

theoretic interpretation. What this means is that it is possible

to construct a smaller, completely controllable network (the

so-called controllable quotient graph) that is equivalent to

the original network in terms of controllable subspaces. This

design allows the control designer to focus directly on a

smaller network when producing control laws.

Moreover, it is shown that the dynamics associated with

the uncontrollable part of the network is asymptotically

stable for all connected networks. As such, the controllable

quotient graph is an approximate bisimulation of the original

network, in the sense of [11].

The outline of this paper is as follows: In Section II,

we briefly review the basic premises behind leader-follower

networks and recall some definitions from algebraic graph

theory. In Section III, we review some results from [10],

[9], allowing us to study controllability of single-leader net-

works from a graph-theoretic vantage-point. Quotient graphs,

obtained through so-called equitable partitions of the graph,

are the topic of Section IV, while the uncontrollable part

of network is discussed in Section V. The main results of

this paper are given in Section VI, where the Theorem 1

formalizes that the quotient graph represents a controllable

model reduction of the original system. Finally, in Section

VII simulations are shown to emphasize the relevance of the

main Theorem.

II. LEADER FOLLOWER CONSENSUS NETWORKS

In this section we start with some basic notions in graph

theory. In multi-agents systems, it is common to let the nodes

of a graph represent the agents, and to let the arcs in the

graph represent the inter-agent communication links.

Let the undirected graph G be given by the pair (V, E),

where V = {1, . . . , n} is a set of n vertices, and E is a set

of edges. We can associate the adjacency matrix H ∈ Rn×n

with G, whose entries satisfy hkj = 1 if (j, k) ∈ E . Two

nodes j and k are neighbors if (j, k) ∈ E , and the set of the

neighbors of the node j is defined as Nj = {k | [H]jk = 1}.

The degree of a node is given by the number of its neighbors,

and a graph G is connected if there is a path between any

pair of distinct nodes, where a path i0i1 . . . iS is a finite

sequence of nodes such that ik−1 ∈ Nk with k = 2, 3 . . . S.
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In this paper we let the state of each node, xi, be scalar.

(This does not affect the generality of the derived results.)

The standard, consensus algorithm is the update law

ẋi(t) =
∑

j∈Ni

(xj(t) − xi(t)), (1)

or equivalently ẋ(t) = −Lx(t), where x(t) is the vector with

the states of all nodes at time t, and L is the graph Laplacian.

Let D ∈ R
n×n be the diagonal matrix of the degrees of the

nodes, it is easy to verify that L = D −H.

Under some connectivity conditions, the consensus algo-

rithm is guaranteed to converge, i.e. limt→+∞ xi(t) = g,

i ∈ {1, . . . , n}, where g is a constant depending on L, and

on the initial conditions x0 = x(0). (See for example [1],

[12], [13].)

As in [7], [10], [14], we imagine that a subset of the agents

have superior sensing, computation, or communication abil-

ities. We thus partition the node set V into a leader set L
of cardinality nl, and a follower set F of cardinality nf , so

that L ∩ F = ∅ and L ∪ F = V . Leaders differ in their state

update law in that they can arbitrarily update their positions,

while the followers execute the agreement procedure (1), and

are therefore controlled by the leaders.

Under the assumption that the first nf agents are followers,

and the last nl = n − nf are leaders, the introduction of

leaders in the network induces a partition in the the graph

Laplacian L that becomes

L =

[
Lf Lfl

LT
fl Ll

]
,

with Lf ∈ R
nf×nf , Ll =∈ R

nl×nl and Lfl ∈ R
nf×nl . Note

that the subscripts f and l denote respectively the affiliation

with the leaders and followers set.

The control system we now consider is the controlled

agreement dynamics (or leader-follower system), in which

followers evolve through the Laplacian-based dynamics

ẋf (t) = −Lfxf (t) − Lflxl(t)
xl(t) = u(t),

(2)

where xf and xl are respectively the state vectors of the

followers and the leaders, and u(t) denotes the exogenous

control signal dictated by the leaders.

III. CONTROLLABILITY OF SINGLE-LEADER NETWORKS

In this section we recall some previous results of relevance

to the developments in this paper. To conform to standard

notation, we denote with n = nf the number of followers,

we identify matrices A and B with −Lf ∈ R
n×n and

−Lfl ∈ R
n×1 respectively, and we will equate xf and xl

with x and u. Thus the system (2) becomes

ẋ(t) = Ax(t) + Bu(t), (3)

with controllability matrix

C =
[

B AB · · · An−1B
]
. (4)

As A is symmetric it can be written on the form UΛUT ,

where Λ is the diagonal matrix of eigenvalues of A and U is

the unitary matrix comprised of its pairwise orthogonal unit

eigenvectors. Since B = UUT B, by factoring the matrix U

from the left in (4), C assumes the form

C = U
[

UT B ΛUT B · · · Λn−1UT B
]
.

If one of the columns of U is perpendicular to all the

columns of B, then C will have a row equal to zero and

hence be rank deficient. On the other hand, in the case of

one leader, if any two eigenvalues of A are equal, then

C will have two linearly dependent rows, and again, the

controllability matrix becomes rank deficient, as shown in

[9]. Moreover, if the system is leader symmetric then there

is a non-identity permutation J (matrix defined over the

follower nodes F ) such that JA = AJ and in that case the

system (3) is uncontrollable because one of the eigenvectors

of A is also orthogonal to all columns of B, as shown in

[15].

In this paper, we will focus on networks that are leader

symmetric, restricted to the case when nl = 1, i.e. when there

only is one leader present. This is related to the necessity to

use the most simple framework to control a set of followers.

By moving only one super-node, the leader, we are able to

control all the agents belonging to the network.

Definition 1 (LS2L Network): A network is said to be

LS2L (Leader-Symmetric, Single Leader) if it leader-

symmetric with a single leader.

In the following we give a graph-theoretic interpretation of

the controllable part of a LS2L network starting from the

analysis of the controllable subspace.

IV. EQUITABLE PARTITIONS AND QUOTIENT GRAPHS

To obtain the controllable quotient graphs, the notion of

an equitable partition is needed. (We refer the readers to [16]

for more details about this subject.)

Definition 2 (Equitable Partition): A partition π of V ,

with cells C1, C2, . . . , Cr is said to be equitable if each

node in Ci has the same number of neighbors in Cj

∀i, j ∈ {1, . . . , r}, i 6= j, with r = |π|, which denotes the

cardinality of the partition.

The directed graph with the r cells of π as its vertices and bij

edges from the ith to the jth cells of π is called the quotient

graph, and it is denoted by G/π. Moreover, a partition π
with at least one cell with more than one node is said to

be a Nontrivial Equitable Partition (NEP) and the adjacency

matrix of this quotient is given by H(G/π)ij = bij .
Definition 3 (Characteristic Vector): A characteristic

vector pi ∈ R
n×1 of a nontrivial cell Ci is defined as:

[pi]j =

{
1 if j ∈ Ci

0 otherwise.

Definition 4 (Characteristic Matrix): A characteristic

matrix P ∈ Rn×r of a partition π of V (G) is a matrix with

the characteristic vectors of the cell as its columns.

Definition 5 (Leader-Invariant Equitable Partition (LEP)):

By the leader-invariant equitable partition (LEP), we

understand the maximal equitable partition πM = πF

⋃
πL,

where πF = {CM
1 , CM

2 , . . . , CM
s } is the maximal equitable
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partition of followers such that the cardinality of πF

is minimal (i.e. has the fewest cells), and the leader L
belongs to the singleton cell CM

s+1 = {L} of the partition

πL = {CM
s+1}.

Remark 1: As shown in [15], if the network is LS2L ,

then the LEP is nontrivial, i.e. not all cells are singletons.

V. CONTROLLABILITY DECOMPOSITION

We first recall the concepts of the Kalman decomposition

for controllability. Considering the system (3) of a LS2L

network, we construct the controllability matrix (4) and,

as previously discussed, we know that it is rank deficient.

The controllability subspace, is equal to the range space

of C, (R(C)), and rank(C) defines the dimension of this

subspace.

Consider now any basis for this subspace. Let

d = rank(C) and let (p1, p2, . . . , pd) be the orthogonal,

unit length vectors of this basis. We can now use these

vectors to obtain the first d columns of the transformation

matrix T =
[

p1 p2 . . . pd . . .
]
.

As T must be an n × n square matrix, we use then n − d
orthogonal, unit length vectors of the basis belonging to

subspace R⊥(C) to produce T . Let (pd+1, pd+2, . . . , pn) be

these vectors. T is non singular and produces the following

system:

˙̄x = Āx̄ + B̄u, x̄ = T −1x =

[
x̄c

x̄uc

]
, (5)

where

Ā = T −1AT =

[
Āc 0
0 Āuc

]
B̄ = T −1B =

[
B̄c

0

]
. (6)

Here the subscripts c and uc refer to the controllable and

uncontrollable parts respectively.

The reason why Ā in the decomposition (6) takes on

this form, i.e. that Ā is block diagonal, follows directly

from the fact that A = AT and T is orthonormal, i.e.

ĀT = (T −1 A T )T = T −1AT T = T −1AT = Ā.

As a result, we can decouple the system into two different

subsystems, namely

˙̄xc = Ācx̄c + B̄cu (7)

for the controllable part of the network, and

˙̄xuc = Āucx̄uc (8)

for the uncontrollable part.

Proposition 1: Let G be a single leader network with

dynamics described by (3). Its uncontrollable subsystem (8)

is always asymptotically stable, i.e

lim
t→∞

x̄uc(t) = 0.

Proof: Since we apply a similarity transformation T to

A, this doesn’t change its eigenvalues. So we need to prove

that A is negative definite, which follows from the fact that

Lf is positive definite, as shown in [14].

Proposition 2 (Range space of C): Let G be a LS2L net-

work with dynamics described by (3), and let πM be its LEP.

The range space of C corresponds to the spanning set of the

characteristic vectors of πF , i.e.

R(C) = span










E1

0
0
...

0









0
E2

0
...

0




· · ·





0
0
...

0
Es










where Ei is a column vector of ones, with ri = |CM
i |

components.

Proof: We denote by ri the cardinality of each set CM
i

of the partition πF of G, and we now consider the graph

G′ in which the first r1 vertices belong to CM
1 , the second

r2 vertices belong to CM
2 , and so on. Let L′ be the graph

Laplacian of G′ and P (G/πF ) ∈ R
n×r be the characteristic

matrix of G/πF . Recalling Definition 4, in this case we have

P (G/πF ) =





E1

0
0
...

0

0
E2

0
...

0

· · ·

0
0
...

0
Es




(9)

where Ei ∈ R
ri×1 is a vector with ones in each position.

Now, since A′ = −L′
f is symmetric it can be rewritten as a

block matrix:

A′ =





A′
11 A′

12 · · · A′
1,s

A′
21 A′

22 · · · A′
2,s

...
. . .

...

A′
s,1 . . . . . . A′

s,s




, (10)

where each diagonal submatrix A′
ii ∈ R

ri×ri represents the

set CM
i , and each other submatrix Aij ∈ R

ri×rj represents

the connections between nodes belonging to set CM
i and

CM
j . From Definition 2, for each submatrix A′

ij , we have

rj∑

k=1

ai⋆k =

rj∑

k=1

aj⋆k ∀ i⋆, j⋆ ∈ CM
i . (11)

Moreover, B′ = −L′
fl has always the form

B′ =





0
...

0
E




(12)

with E column vectors of ones with l elements, where l
denotes the number of the neighbors of the leader. The

controllability matrix can thus be recursively calculated as

C =
[

B′ A′ · B′ A′ · A′B′ · · · A′ · A′(n−2)B′
]
,

and, since A′ is as in (10) with condition (11) and B′ is as

in (12), it becomes

C =




0 · · · Ĉ1n

0
. . .

...

E · · · Ĉsn



 Ĉij = fijEi

fij ∈ R
(13)
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So the range space of C (13) is such that

R(C) = span










E1

0
0
...

0









0
E2

0
...

0




· · ·





0
0
...

0
Es










which corresponds to the spanning set of the characteristic

vectors of πF , which proves the proposition.

Corollary 1: The dimension of the controllable subspace

of the network G is equal to the cardinality of πF of its LEP.

Proof: The range space of C is equal to the span-

ning set of the characteristic vectors of πF . It follows that

dim(R(C)), is equal to the number of the columns of its

characteristic matrix, i.e. the number of sets of πF .

Corollary 2: Agents of the network belonging to each set

CM
i of πF starting from the same point will move together,

i.e. ∀ t > 0,

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)





⇒






x1(t) = · · · = xr1(t)
...

xn−rs
(t) = · · · = xn(t)

Proof: A possibile choice for R(C)⊥ is to take vectors

with column sums to zero and with blocks Pi ∈ R
ri×(ri−1)

in the position associate to each block Ei of R(C), such that

Pi =

[
Iri−1

−1T

]

ri×(ri−1)

.

In other words we have that R(C)⊥ =
⋃s

i=1 Ri where

R1 = span










E⊥
11

0
...

0




,





E⊥
12

0
...

0




, · · ·





E⊥
1r1−1

0
...

0










R2 = span










0
E⊥

21
...

0




,





0
E⊥

22
...

0




, · · ·





0
E⊥

1r2−1
...

0










and so on, where

E⊥
i1 =





P
0
...

0




, E⊥

i2 =





0
P
...

0




, · · ·

with P ∈ R
2×1 s.t. P =

[
1
−1

]
.

It follows that for every block Ei, i.e. for every set CM
i , we

have, ∀t > 0

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)





⇒






x1(t) = · · · = xr1(t)
...

xn−rs
(t) = · · · = xn(t)

which proves the corollary.

VI. APPROXIMATE BISIMULATION THROUGH

EQUITABLE PARTITION GRAPH

A common theme in the theory of distributed processes

and in systems and control theory is to characterize systems

which are “externally equivalent”. The intuitive idea is that

we only want to distinguish between two systems if the

distinction can be detected by an external system interacting

with these systems. This is a fundamental notion in design,

allowing us to switch between externally equivalent repre-

sentations of the same system and to reduce subsystems to

externally equivalent but simpler subsystems.

A crucial notion in this sense is the concept of bisimu-

lation. The notion of bisimulation, introduced in [17], and

which has been further developed for example in [18], [19],

[20], is one such formal notion of abstraction that has been

used for reducing the complexity of finite state systems

and expresses when a subprocess can be considered to be

externally equivalent to another (hopefully simpler) process.

Bisimulation is a concept of equivalence that has become

a useful tool in the analysis of concurrent processes. It

also reflects classical notions in systems and control theory

such that state - space equivalence of dynamical systems,

and especially the reduction of a dynamical system to an

equivalent system with minimal state - space dimension.

In the following we apply concepts of approximate

bisimulations to multi agent systems. We aim to find a

subgraph of the original graph that we can use to move all

the agents belonging to the network, and we aim to give

a graphic and immediate interpretation to this one using

equitable partitions. Indeed, since the uncontrollable part of

the system is always asymptotically stable, we can simplify

the original network with one which corresponds exactly to

the controllable part of the network. In order to move all the

agents of the network, it is possible to control this smaller

entity and ignoring the uncontrollable part. Moreover, we

will prove that this controllable subgraph can be found by

investigating the network through equitable partitions.

Consider the controllability decomposition (5,6) with

T =
[
Tc Tuc

]
=

[
T 1

c T 2
c · · · T s

c Tuc

]
, (14)

T −1 =

[
T invc

T invuc

]
=





T 1invc

...

T sinvc

T invuc




, (15)

where Tc denote the first s = dim(R(C)) columns of T ,

and T invc the first s rows of T −1.

Therefore

Āc = T invc A Tc, B̄c = T invc B, (16)

which allows us to state the following lemma.

Lemma 1: Let G be a LS2L network, with dynamics

described by (3), and let πM be its LEP. T invc (15) is such

that

T iinvc =
(T i

c )T

|CM
i |

. (17)
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Proof: T −1 = T inv = (T T T )−1 T T with

T =
[
Tc Tuc

]
and, as we proved in Proposition 2,

Tc correspond to the characteristic matrix of πF . Since Tc

and Tuc are orthonormal, the matrix T ⋆ = (T T T ) is such

that:

T ⋆ =

[
T T

c Tc 0

0 T T
uc Tuc

]
=

[
T ⋆

11 0
0 T ⋆

22

]
,

where T ⋆
11 ∈ R

s×s is a diagonal matrix s.t. [T ⋆
11]ii = |CM

i |
as shown in [16], and T ⋆

22 ∈ R
(n−s)×(n−s).

T ⋆ is a diagonal block matrix and, its inverse can be easily

evaluated:

(T ⋆)−1 =

[
(T T

c Tc)
−1 0

0 (T T
uc Tuc)

−1

]
,

i.e.

(T ⋆)−1 =





1
|CM

1 |
0 0 0 0 0

0
. . . 0 0 0 0

0 0 1
|CM

s |
0 0 0

0 0 0 (T T
uc Tuc)

−1




.

It follows that

T −1 = (T ⋆)−1

[
T T

c

T T
uc

]
=





(T 1
c )T

|CM
1 |

...
(T s

c )T

|CM
s |

T invuc




. (18)

Hence

T iinvc =
(T i

c )T

|CM
i |

, (19)

which proves the lemma.

Theorem 1 (Controllable Subspace): Let G be a LS2L

network with dynamics (3), and let πM be its LEP. The

controllable subspace of G corresponds to the quotient graph

G/πM .

Proof: It is well known that L ∈ R(n+1)×(n+1)

is such that L = D −H, where D is the diagonal de-

gree matrix and H is the adjacency matrix. Hence

A = −Lf = −(Df −Hf ), where Df and Hf are respec-

tively obtained by taking the first n rows and columns of D
and H. We have

Ā = −(D̄f − H̄f ) where






D̄f = T −1Df T

H̄f = T −1Hf T

and the matrix Āc in (16) can be calculated as

Āc = −(D̄fc − H̄fc), (20)

where

D̄fc = T invcDf Tc (21)

H̄fc = T invcHf Tc. (22)

Since Tc is equal to the characteristic matrix of πF , and

T invc = (T T
c Tc)

−1T T
c , (22) corresponds to the adjacency

matrix of the quotient graph Hf (G/πF ) (Lemma 9.3.1 in

[16]). Moreover, since the degree of nodes belonging to the

same set CM
i is equal, and T invc satisfies (17), D̄fc is a

diagonal matrix whose diagonal entries represent the degree

of nodes belonging to each set CM
i . It follows that Āc in

(20) corresponds to −Lf (G/πM ).
Furthermore, with B as in (12), the decomposition (16) is

such that each entry b̄i of the matrix B̄c satisfies:

b̄i =
P

ri+r(i+1)
k=ri

bi

|CM
i

|
i.e. b̄i =






1 if CM
i is connected

to the leader

0 otherwise.

If we define X as the number of sets |CM
i | connected with

the leader, we can conclude that the matrix
[

−Āc −B̄c

−B̄T
c X

]
(23)

corresponds exactly to L(G/πM ), which proves the theorem.

VII. A SIMULATION STUDY

1

2

3

4

5

6

7

8

9

L

(a)

1’ 2’ 3’ L

(b)

Fig. 1. The graph of the network and the quotient graph corresponding to
controllable part (b).

As an application of the proposed method, consider a net-

work consisting of 9 followers and one leader. As usual, lead-

ers and followers differ in that leaders move autonomously

and “herd” the followers, which move using the consensus

protocol. Assume moreover that the followers are layed out

in a grid, as in Fig. 1(a). Since such structure is a LS2L

network, it is not completely controllable, and for this reason

we cannot move it from any initial point to any arbitrarily

point.

Consider now a translation of the network: due to the fact

that the system is not completely controllable, this movement

is not feasible. In Fig. 2(a), 2(b), 2(c), we report some

steps of a translation process of the entire network, and in

Fig. 2(d), 2(e), 2(f), we report the same steps of the same

translation, but applied to the quotient graph shown in Fig.

1(b).

We suppose that an external unit tells the leader the trajec-

tory to follow, or that the leader has planning capabilities in

order to solve the planning problem. Starting from the initial

situation of Fig. 2(a), leader moves along x axis dragging

followers, whose disposition (Fig. 2(b), 2(c)) asymptotically

converge to the controllable quotient graph (Fig. 2(e), 2(f)).

This result emphasize the importance of a graph theoretic

characterization of the controllable part of the network,

which enables the designer to fucus directly on the smaller,

approximate bisimulation of the original graph, when design-

ing control laws.
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Fig. 2. Translation process of the entire network (a, b, c), and of its quotient graph (d, e, f).

VIII. CONCLUSIONS

The problem of controllability of a group of autonomous

agents has been considered. A leader-follower linear consen-

sus network has been used to model the interactions among

the nodes. It has been shown that when the network is not

completely controllable, we can give a graphic theoretic

interpretation to the controllability subspace, and that it

is possible to construct a smaller completely controllable

network that is controllable-equivalent to the original one.
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