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On Complex Spectra and Metastability of Markov Models

Sean Meyn, Gregory Hagen, George Mathew, Andrzej Banasuk

Abstract— The purpose of this paper is to develop methods
for model reduction for diffusion processes that exhibit cyclic
behavior. For this purpose we extend techniques based on the
spectral theory of Markov processes to the case of complex
spectra. The main idea is to augment the state process for the
diffusion with a clock process. For each complex eigenvalue
for the original diffusion there exists a real eigenvalue for
the augmented process. Results concerning metastability (or
quasi-stationarity) are then applied to the augmented process.
The results are illustrated through a linear diffusion, and an
empirical model of combustion dynamics.

I. INTRODUCTION

Extensions of the classical Wentzell-Freidlin theory for
model reduction have appeared in numerous papers over
the past decade. Much of this work has concerned Markov
processes that are reversible [14], [5], [2], [9], [3], [4]. The
goal in these papers is to understand the statistics of exit
times from a given subset of the state space.

Some results for non-reversible Markov chains are avail-
able. Fill’s paper [8] extends the convergence-rate bound of
Diaconnis and Stroock [6] to non-reversible Markov chains.
For this purpose the transition matrix is replaced by its
symmetrization, and the rate of convergence is bounded by
the eigenvalues of the resulting self-adjoint matrix. These
ideas are the basis of [10] that establishes exit time statistics
from a set for a discrete-time non-reversible Markov chain.

Extensions of Wentzell-Freidlin theory to non-reversible
processes appeared for the first time in [10]. The foundation
of this paper is the theory of quasi-stationarity, building on
the work of [7]. The main idea of [10] can be summarized
as follows: Suppose that X = {X (¢) : t € T} is a diffusion
process evolving on X = R? with transition semigroup
denoted {P" : t € T}. We say that A is an eigenvalue with
(non-zero) eigenfunction h if for each ¢,

Pth = ¢eMh

Suppose that A is real and negative. In this case we can
assume that h is also real-valued, and we also assume
that it is continuous. We would like to consider Doob’s h-
transform, Pt:=e=M] . Lpt1,, where I o is the multiplication
operator: For each z € X and A C X we have [ (z, A) =
g(z)I{z € A}. The h-transform, like importance-sampling,
is intended to lead to a new Markov model whose properties
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provide insight into the problem of interest. Unfortunately
{P*} is not a valid Markov semigroup since 7 may take on
negative values. Instead we consider the following restricted
definition.

Let M denote a connected component of the set {z :
h(z) > 0}. We let T, = inf(t > 0 : X(¢) € M), and
for t € T denote t, = t A T,. The twisted semi-group is
defined for each t € T, z € X, and A € B (i.e. A Borel
measurable) via,

L

Pi(z,A) = e

E.[e M h(X (ta))[{X (t.) € A} (D)
Under general conditions, it is shown in [10] that the twisted
semi-group corresponds to a diffusion process on M that is
exponentially ergodic. Exponential ergodicity of the twisted
process then implies a form of quasi-stationarity, and from
this it follows that the exit time from M is approximately
exponentially distributed with parameter |A].

The inspiration for consideration of the twisted process
was the work of [7], and techniques from the large deviations
analysis contained in [1], [11].

The main result of this paper is the extension of the results
of [10] to the case in which A € C is complex. The main
idea is to augment the state process for the diffusion with a
clock process. For each complex eigenvalue for the original
diffusion there exists a real eigenvalue for the augmented
process. Results concerning metastability contained in [10]
are then applied to the augmented process.

This paper is organized as follows. In section II we present
the problem setup and augment the state space with the clock
process. Metastability of the twisted process is established in
section III. In section IV we present some examples.

II. SETUP

The setting described informally in the introduction is
adopted throughout the paper: It is assumed that X =
{X(t) : t € T} is a diffusion process evolving on X = R,
with transition semigroup denoted {P?! : t € T}. Letting u
denote the drift, and X the covariance matrix, the differential
generator (see e.g. [12]) is defined for C'' functions h: X —
C by Dh (z):=

0 1 0?
Zui(x)%h (z) + 5 Z Zij(x)mh () @
i )

or, in more compact notation,

1
D=u-V+ 5trace (ZA)
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For each 3 > 0 the resolvent kernel is given as the Laplace
transform,

Ry := / e PPt dt. 3)
0

We write R := Rg when 3 = 1.

It is assumed as in [10] that the diffusion is V -uniformly
ergodic: For a probability measure v on B, some constants
b < ooand I' > 0, a function s : X — [0,00), and a
V:X—=]1,00):

DV < -TV +bs

R > s®uvu.
The second inequality in (V4) means that the function s and
probability measure v are small. This terminology and the

outer product notation are taken from [13]. This ‘smallness
assumption’ is equivalently expressed,

R(z, A) > s(x)v(A), zeX, AeB.

Suppose that D has a complex eigenvalue A, which we
write as

(V4)

A=-T+w

with ' > 0, and ¥ # 0, with associated eigenvector h.
Consider the clock process defined by,

D(t) = (0)e™,  t>0, 4)

with initial condition restricted to the unit circle in C, which
is denoted U. The clock process is Markov, as is the bivariate

process, ¥
ﬂﬂ:(@g), >0,

In fact Y is a diffusion on Y = X x U whose covariance
matrix for y is given by,
Sy (y) := diag(£(x), 0). 5)
Throughout the paper we adopt the notation y = (x, ¢) for
yeVY,withzx eX, ¢el.
We define for each real 5 € R the real-valued function,
95(y) =Re ((e”/9)h(x)),  yeY. (6)
Proposition 2.1: For each 3 € R the function gg is an
eigenfunction for the process Y, with eigenvalue Ay = —T'.
Proof: The differential generator for X can be extended
in the obvious way to Y. Given the simple dynamics of ®
we have for any function f: U — C,

Df (¢) = ivof'(¢)
With f(¢) = 1/¢ the eigenfunction equation holds,
Df(¢) = —i9e/(9)* = —idf(¢),  deU.
Hence the generator applied to gg gives,
Dyg (y) = Re ((e"/9)Dh (z))
+Re (—i0(e" /p)h (z))
=Re ((ew/¢)Ah(x)
+ —id(e” /) (x))
= —Tgs(y), yevy.
|
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III. THE TWISTED PROCESS

To define the twisted process we fix 5 = 0 in the definition
(6), and let M denote a connected component of {y : go(y) >
0}. It is assumed that this set has nice topological properties:
M is equal to the closure of its interior. Following [10], we
define T, = inf(t > 0 : Y(t) € M®), and the associated
twisted process as follows:

The twisted process is the Markov process Y with state
space M whose semigroup is defined using (1) based on the
eigenfunction go. Equivalently, for each f € L., (M), and
any x € M, § i
P f(y):=Ey[f(Y(s))] =

1
90(y)

The twisted process has a generator defined for C? functions
f:Y = C by,

Eylgo(Y(s A Te)) f(Y (s ATe)) exp((s ATe)T)]

Df = g5 'D(gof) +Tf. (7)

Two key assumptions are imposed in [10]: First, that
the diffusion is hypoelliptic (which is used to conclude that
the resolvent possesses a density with respect to Lebesgue
measure). Second, it is assumed that the gradient of the
eigenfunction does not vanish on the boundary of M. The
gradient assumption is maintained here. To ensure that Y
is hypoelliptic we assume that X is elliptic, meaning that
its covariance is strictly positive. These assumptions are
collected together as follows:

¥(xz) >0,
Vag0(y) =Re (¢ 'Vh(z)) #0,Vy € OM.  (8)

It is not hard to see that the assumption (8) always fails
when X is a diffusion in one-dimension. We see in the next
section that it does hold in many examples, such as the linear
diffusion in two or more dimensions.

The following result is a consequence of Theorem 3.7
of [10]. The reader is referred to this paper for a precise
definition of metastability — Its main conceptual conclusion
is that the exit time 7, is approximately exponentially
distributed, and that the process ‘almost’ reaches a ‘local’
steady-state prior to exiting M.

Theorem 3.1: Assume that (V4) is also satisfied for a
continuous function V: X — [1,00). Suppose that h is

an eigenfunction with complex eigenvalue A = —I' + 0

satisfying the following conditions:

() 0<T'<T.

() go(y) > 0 for all z € M, and go(z) = 0 for = €
OM ;=M\ M.

(c) Condition (8) holds. Consequently, for y € OM,
(Vgo(2))"Zy () (Vao(y)) > 0.

(d) K,,:={x € X:V(z) <ngo(x)} is a compact subset
of X for each n > 1.

Then,

(i) The escape-time from M for the twisted process is
infinite a.s. for Y(0) =y € M;
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(ii) The twisted process is Vi-uniformly ergodic with
Vi(y) =V(z)/g0(y). y €Y.

(iii) The set M is both metastable and V -metastable, with
exit rate I'(M) = I'y/(M) = T'. In particular,

[ T, l =00 ife>T
e ]
< oo otherwise.

O

The proof of Theorem 3.1 amounts to establishing a
version of (V4) for the twisted process. We can follow the
same steps as in [10] to construct the required Lyapunov
function.

For a given 0 < a < 1 write
Vi ::go_lv, VQ::gO_lgS‘, and V:=V; + V5.

We denote Gy = log(go), where gq is the eigenfunction for
Y. From (V4) and the eigenvector equation we have,

DVi = [I,'DI,,+T1lg;'V
= g, '[DV +TV]
< —(T-D)V; +bgy's
DVy = [I'DIy, +T1]gy '™

= g, '[Dg§ +Tgs]
= agy 0 - 11— @)VGEEy VGo).

Following arguments in [10], we obtain a version of (V4) for
the twisted process: For a finite constant by, and a compact
set S C M,

1

DV <~ (T =)V +bols.

IV. EXAMPLES

We discuss an analytic example as well as an example
motivated by an empirical model of limit-cycling combustion
dynamics.

A. Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process,
dX (t) = AX(t)dt + dW (1), 9

where W is a full-rank Gaussian process. Suppose that A
is a complex eigenvalue, and v a (non-zero) left-eigenvector
for A, satisfying

A'v = Awv.

The generator for X shares this eigenvalue, and the function
h(z) = vz is an eigenfunction:

Dh(z) = (Az)"'Vh(x) + %trace (XAR (x))
=az"A"v = Ah(z).
We now check to see if (8) is satisfied. We have,
Vego(y) =Re (¢ 'v),  y=(z,0) €Y.

This is zero if and only if Re (¢ 'vy) = 0 for each
k=1,...,n. If this holds for some ¢ € U, it then follows

ThA02.5

that v* = i¢~'v is a purely real eigenvector for A, which
is impossible since A is complex. We conclude that (8) is
satisfied.

Consider the two-dimensional model with

—a 1
=l
where a > 0. The matrix A possesses a pair of complex
eigenvalues in the left-hand complex plane, satisfying I' = a:

eig(A) = —a L.

A left eigenvector for A is given by v’
gives

[—1, 7], which

Re (e "0 X (t)) = cos(t) X (t) + sin(t) Xa(t).

If X(0) satisfies Re (v"X(0)) > 0, we can expect that
Re (e 70" X (t)) > 0 for a period of time approximately
exponentially distributed, with mean 1/a. Applying Theo-
rem 3.1 we conclude that the first exit time 7, = inf(¢t >
0: Re (e %" X (t)) = 0) shares the following property with
the exponential distribution:

=0 ife>a
E[esT.] = .
< oo otherwise.

O

B. Empirical Model of Limit-Cycling Combustion Dynamics

We apply the analysis to a Markov model describing the
nonlinear dynamics of limit-cycling combustion oscillations.
The data was obtained from an experimental combustion
rig described in [16]. The two-dimensional phase space was
obtained as in [17] as follows. A POD analysis was done
on the temporal flame images and the data was projected
on to the first two dominant POD modes. The dynamics of
the flame data projected on to this two-dimensional space is
shown in Figure 1. The phase portrait shows a noisy limit-
cycle where the direction of oscillation is in the clockwise
direction.

~140 120 100 80 60 40  -20 o 20 40 60 pOM1

Fig. 1: Phase space showing a noisy limit-cycle of combustion dynamics.
The oscillations move in a clockwise direction.

A discrete time Markov model was constructed for the
dynamics on this two-dimensional space. The eigenvalues are
shown in Figure 2. The complex eigenvalues suggest cyclic
behavior and a metastability analysis can be done using the
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corresponding eigenfunctions as described in the previous

sections.

Eigenvalues of Markov Matrix Closeup near = = 1
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Fig. 2: Eigenvalues of the Markov matrix associated with the combustion
dynamics data shown in Figure 1.

We describe the metastable sets associated with the eigen-
values shown on the right in Figure 2. In particular, the
eigenvalue at \ := |\|e?¥ = 0.98 + j0.995 is associated
with an eigenfunction that varies in the tangential direction
and has no radial variation. The associated eigenvector h(x)
is complex as shown in Figure 3. We take the clock process
to be the discrete time equivalent of (4),

or = eF gy,

where 1 is the angle of the eigenvalue \. Setting ¢y =
the eigenfunction of the associated twisted process is

90(y) =Re (e "*h(x)),

k=1,2,...,

y=(z,9) €Y.

oA
10 0.04 2
20 [ 0.03 !
0
N+
2 0.02

- ViGN
-150 -100 -50

-150 -100

-50

Fig. 3: The complex eigenvector h(x) (magnitude on right, phase angle on
left) associated with the complex eigenvalue A = 0.98 + 50.995 shown in
Figure 2.

The plot in Figure 4 shows the sign of go(y) for different
phase-shifts (i.e, after multiplication by e~** for different
values of k.). Note how the sets with positive support and
negative support rotate around the phase space and the exit
time marks the point when the system exits one of these
rotating sets (i.e., exhibits a phase-shift in its oscillations).

The eigenvalue A = 0.89 is purely real and hence has
a purely real eigenvector with no tangential variation, but
variation in the radial direction. The sign of the eigenvector
is shown in Figure 5. Since the eigenvalue is real, this
eigenvector is not associated to any cyclic behavior. This
eigenvector and the related exit time simply indicates when
the system moves from a state of low amplitude oscillation
to high amplitude oscillation, and vice-versa.

Finally, the complex eigenvalue A = 0.851 + 50.99 has
an eigenvector exhibiting both tangential and radial compo-
nents. Note again how the metastable set rotates around the
phase-space, as indicated by the phase-shifted sign of the
eigenvector shown in Figure 6.

ThA02.5

phase = 0 phase = /4

’
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phase = /2

phase = 3rv4

il Ve 1
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a2 i
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Fig. 4: The sign of the eigenfunction with a complex eigenvalue close to

the unit circle, rotating with incremental phase-shifts of % between 0 and
3
T

-150

-100 -50 0 50

Fig. 5: The sign of the radial eigenvector of the Markov matrix.

phase = 14

-150 -100 -50 0 50

phase = 2

ez i o -t
-150 -100 -50 -150 -100 -50 0 50

0 50

Fig. 6: The sign of the eigenvector with tangential and radial variation,
shown rotating with incremental phase-shifts of 7 between 0 and ?ﬂf.

By examination of the magnitudes of the eigenvalues, the
eigenvectors associated with these three metastable sets have
decreasing mean exit times. This is intuitively confirmed by
the fact that the sets become increasingly complicated. A
hierarchy of such sets along with the spectral properties of
the Markov matrix can be used to construct a reduced order

model of the measured process through techniques described
in [15].
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V. CONCLUSION

We have presented a framework for analysing Markov
models with semi-rotational dynamics by considering the
complex spectra, and illustrated the approach using an appli-
cation involving limit-cycling combustion oscillations. The
ultimate goal of this research is to construct low order models
that capture essential structure, such as the hidden Markov
models proposed in [10]. The most interesting open problems
are application specific. For example, can we justify the
consideration of a two-dimensional model obtained from
POD coefficients? If not, what are alternative approaches to
treat the full-order Markov model?
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