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Abstract— In this paper an extension of an existing reduced
port-controlled hamiltonian (PCH) model for the shallow water
equations (PDEs) is first proposed. It aims at a new definition
for the passive boundary port-variables which allows the appli-
cation of a passivity-based approach to control the water flows
and levels profiles in irrigation channel reaches. Then a control
law based on the Interconnection and Damping Assignment
Passivity Based Control (IDA-PBC) methodology is developed.
It allows to assign desired structure and energy function to the
closed loop system. Simulation results made on a micro-channel
simulator are presented, showing the effectiveness of the control
law.

I. INTRODUCTION

The dynamic of fluid flow in an open channel is modelled

by a set of hyperbolic PDEs: the Saint-Venant equations

also called Shallow water equations. They are derived from

conservation laws of mass and kinetic momentum using

some assumptions on the flow [1]. A port hamiltonian

formulation of the shallow water equations has been pro-

posed in [2] considering elementary volume and momentum

density as state variables and the total kinetic and potential

energy as the hamiltonian of the system (see [3] and [4] for

port hamiltonian formalism). We proposed in [2] a reduced

PCH model for these equations which is obtained using a

geometric reduction scheme based on mixed finite elements

method [5], [6]. This reduction scheme preserves both the

interconnection structure and the energetic properties of the

actual equations. The obtained model also exhibits some

interesting dynamic spectral properties. In [2] the canal reach

was discretized using a mixed finite elements method in a

finite number of finite-dimensional ”cells”. With the chosen

cells output variables a direct transfer, which does not exist

in the shallow water equations, appears between input and

output of each of these cells. This direct transfer prevents

direct application of a passivity-based output feedback. This

situation is not satisfactory even from a physical modelling

point of transport phenomena where the transfer between up-

stream and downstream is characterized by a (variable) time

delay. We will thus propose in this paper a new expression

of internal reduced variables (efforts) which eliminates these

direct transfer terms and preserves the hamiltonian structure

of the reduced individual cells.

Many control algorithms for fluid flow through open-air
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channels have been developed. Most of them are based on

reduced models of the shallow water equations. Some works

are based on continuous time reduced model obtained by

the orthogonal collocation method as in [7] (input-output

linearization), in [8] (backstepping) or in [9] (robust opti-

mal control). Other are developed on discrete time models

obtained using the Preissmann implicite finite differences

scheme [10] as in [11] (predictive control) or in [12] (optimal

control). In this paper we intend to use the structured

PCH form of the reduced model to design a control law

which makes the closed loop system passive with respect

to desired storage function. To achieve this result we use

the interconnection and damping assignment passivity based

control (IDA-PBC) developed in [14] which also allows us

to assign prescribed interconnection and damping structures

to the closed loop. The regulation problem we address in this

paper is to achieve a desired water flow at the downstream

of a reach and a water level at the upstream. This is the case

when the reach is assumed to provide some defined demand

while ensuring a safe operating of the hydraulic works. The

paper is organized as follows. In section II, we recall the PCH

formulation for the shallow water equations and we present

the control objective sought in this work. In section III, a

new reduced PCH model for each cell, without upstream-

downstream direct transfers, is defined. Then the global

reduced PCH model of all interconnected cells is derived. In

section IV, it is shown how IDA-PBC control methodology

may be easily applied to the new interconnected model to

design an output-feedback control law for the open channel

regulation problem. In section V, simulation results are

presented. The paper ends with a summary of the results

and a discussion on their possible extensions.

II. PORT-HAMILTONIAN FORMULATION FOR THE

SHALLOW WATER EQUATIONS

We consider the rectangular open channel of fig. (1) with

a single reach of slope I , with length L and width B. It is

delimited by upstream and downstream gates and terminated

Fig. 1. Longitudinal(left) and lateral (right) sights of an open rectangular
hydraulic channel
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by an hydraulic outfall. The flow dynamic within the reach

is modelled by the well known shallow water equations.

Its port-based model has been developed in [2] and is here

only briefly recalled. By choosing the elementary volume

and kinetic momentum density along the spatial domain

Z = [0, L] as energy (state) variables, we can write the port

hamiltonian formulation of the shallow water equations as

q(x, t) = Bh(x, t)dx, p(x, t) = ρv(x, t)dx (1)
[

−∂q
∂t

−∂p
∂t

]

=

[

0 d
d 0

] [

δqH
δpH

]

+

[

0 0
0 G(q, p)

] [

δqH
δpH

]

(2)

e0
∂(t) = −δqH|x=0 f0

∂ (t) = δpH|x=0 (3)

eL
∂ (t) = −δqH|x=L fL

∂ (t) = δpH|x=L

where d is the exterior derivative which maps k-differential

forms on (k + 1)-differential forms and where H denotes

the total energy of the fluid. From the kinetic and potential

energy balance computed on an ”elementary” length of reach,

it is easy to obtain

H(t) =
1

2

∫ L

0

(ρgBh2 − 2ρBIhgx + ρBhv2)dx (4)

The effort variables (thermodynamics forces) are derived

from the energy expression as the variational derivatives

eq(x, t) = δqH =
1

2
ρv2(x, t) + ρg(h(x, t) − Ix)

ep(x, t) = δpH = Bh(x, t)v(x, t) (5)

In (2), G(q, p) is the momentum dissipated by friction

forces. They are usually modelled by nonlinear and empirical

Manning strikler constitutive formula:

G =
ρg|v|

K2Bh( Bh
B+2h

)
4

3

dx (6)

The dynamical system (2) admits an infinity of uniform (con-

stant) water flow equilibrium profiles and spatially varying

equilibrium water levels profiles. For a constant equilibrium

water flow we can obtain uniform, accumulation or drying

equilibrium profiles. The uniform equilibrium profile is ob-

tained when the friction forces equal the gravity ones.

III. REDUCED PORT-CONTROLLED HAMILTONIAN MODEL

We will now derive a new reduced PCH model for the

shallow water equations. It differs from the one developed

in [2] in the definition of the internal reduced effort variables.

We start from the distributed power product:

Pd =

∫

Zab

[eq(x, t) ∧ fq(x, t) + ep(x, t) ∧ fp(x, t)] (7)

where fq(x, t) = −∂q(x,t)
∂t

and fp(x, t) = −∂p(x,t)
∂t

are the

distributed flow variables, and eq(x, t) = δqH and ep(x, t) =
δpH the distributed effort variables. We choose the following

mixed finite element approximations:

fq(x, t) = fab
q (t) wab

q (x), fp(x, t) = fab
p (t) wab

p (x)

eq(x, t) = ea
q (t) wq

a(x) + eb
p(t) wq

b (x) (8)

ep(x, t) = ea
p(t) wp

a(x) + eb
p(t) wp

b (x)

where the approximations spaces for the 1-forms q and

p are spanned by the bases {wq
ab(x)} and {wp

ab(x)} and

the approximations spaces for the 0-forms eq and ep are

spanned by the bases {wq
a(x), wq

b (x)} and {wp
a(x), wp

a(x)}.

Moreover we force the following normalizing conditions on

the approximation bases:

wi
a(a) = 1;wi

b(a) = 0;wi
a(b) = 0;wi

b(b) = 1;
∫

Zab

wab
i (x) = 1 with i ∈ {p, q} (9)

Injecting approximations (8) with conditions (9) in (2) and

forcing these last equations to be satisfied for all times t and

spatial coordinates x one gets the compatibility conditions

wab
i (x) = dwi

b(x) = −dwi
a(x) with i ∈ {p, q} (10)

for the chosen approximation bases and the reduced consti-

tutive relations

fab
q (t) = −ea

p(t) + eb
p(t), f

ab
p (t) = −ea

q (t) + eb
q(t) (11)

between the reduced variables. Using the compatibility con-

ditions (10), one easily gets the following integrals values

[2], [5]:
∫

Zab

wq
a(x)wab

q (x) +

∫

Zab

wp
a(x)wab

p (x) = 1

∫

Zab

wq
b (x)wab

q (x) +

∫

Zab

wp
b (x)wab

p (x) = 1 (12)

∫

Zab

wq
a(x)wab

q (x) −
∫

Zab

wp
b (x)wab

p (x) = 0

∫

Zab

wp
a(x)wab

p (x) −
∫

Zab

wq
b (x)wab

q (x) = 0

We obtain then from (7), using the approximation scheme

(8), the following expression for the (reduced) power product

Pd = −ea
q (t)ea

p(t) + eb
q(t)e

b
p(t) (13)

The reduced internal effort variables must be defined in such

a way that the power product within an element may be

written :

Pd = fab
q (t)eab

q (t) + fab
p (t)eab

p (t) (14)

This can be achieved in many ways. However, among all

linear convex combinations of boundary effort port-variables

eab
q (t) = λea

q (t) + (1 − λ)eb
q(t)

eab
p (t) = (1 − λ)ea

p(t) + λeb
p(t)

(15)

which satisfy this power expression, there are two special

cases where no direct transfer appears in the reduced PCH

model of a single cell. We will choose these special cases

since they allow to write explicitly the entire model of

interconnected cells and they lead to define the natural

port variables as a passive outputs for the system. The

first of these two cases (λ = 1) is the choice eab
q (t) =

ea
q (t) (upstream hydrodynamic pressure) and eab

p (t) = eb
p(t)

(downstream water flow). The input port variables are then

the conjugated ones, i.e. u1(t) = eb
q(t) (down stream

hydrodynamic pressure) and u2(t) = ea
p(t) (upstream water
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flow). The second choice is λ = 0, leading to eab
q (t) = eb

q(t)
and eab

p (t) = ea
p(t). The input variables are then u1(t) =

ea
q (t) (upstream hydrodynamic pressure) and u2(t) = eb

p(t)
(downstream water flow). The other possible ways to rewrite

the reduced power product introduce the reduced efforts as

balanced expression of the boundary ones and thus a direct

transfert between the inputs and outputs.

Since our control problem is the regulation of the upstream

water level (related to the upstream hydrodynamic pressure)

and downstream water flow, it is convenient to choose the

upstream water flow and downstream hydrodynamic pressure

as inputs variables and their conjugate port variables (up-

stream hydrodynamic pressure and downstream water flow)

as outputs. Finally we obtain the following reduced port-

controlled hamiltonian model of an elementary cell defined

on the elementary spatial domain x ∈ [a, b]) (see [2] for

more details on the reduction procedure):

[

q̇
ṗ

]

=

[[

0 −1
1 0

]

−
[

0 0
0 G(q, p)

]]

[

∂H
∂q
∂H
∂p

]

+

[

0 1
−1 0

] [

u1

u2

]

(16)

[

y1

y2

]

=

[

0 −1
1 0

]

[

∂H
∂q
∂H
∂p

]

(17)

where u1 the downstream hydraulic pressure, u2 the up-

stream water flow, y1 the downstream water flow and y2

the upstream hydraulic pressure are the boundary conjugate

port variables through which the system exchanges energy

with the environment.The energy stored in the cell is approx-

imated as:

H(q, p) =
1

2

q(t)2

Cab

− ρgIKabq(t) +
1

2

q(t)p(t)2

Lab

(18)

with the following reduced elements:

Cab =
B

ρg
(b − a), Lab = ρ(b − a)2,Kab =

b + a

2
(19)

The momentum dissipated in the cell is approximated by

G(q, p) = g
p

K2q

(

B2(b − a) + 2q

Bq

)

4

3

(b − a) (20)

From the reduced energy function we derived the following

constitutive equations which give the reduced internal efforts

port variables:

∂H

∂q
=

q

Cab

− ρgIKab +
p2

2Lab

,
∂H

∂p
=

qp

Lab

(21)

The total channel reach is subdivided into n cells. Each

cell i is modelled by the above reduced model with its

own boundary port variables (ui
1, y

i
1) and (ui

2, y
i
2). Then the

interconnection between the i and the i + 1 cell can be

expressed as sequence of series junctions with equations

ui
1 = yi+1

2 yi
1 = −ui+1

2 (22)

We can then write the global reduced PCH model as
[

q̇
ṗ

]

=

[[

0 M

−MT 0

]

−

[

0 0
0 G(q, p)

]][

∂H
∂q
∂H
∂p

]

+ gu

[

u1

u2

]

(23)

[

y1

y2

]

= gu
T

[

∂H
∂q
∂H
∂p

]

(24)

where q = [q1 . . . qn]T is the vector of cell volumes and

p = [p1 . . . pn]T the vector of cell kinetic momentums. The

global interconnection structure sub-matrix M is given by
{

M(i, i) = −1, M(i + 1, i) = 1 i = 1, ..., n
and 0 else where

(25)

The input matrix gu is defined as

gu =





0 1
0(2n−2)×1 0(2n−2)×1

−1 0



 (26)

The dissipation matrix G(q, p) ∈ ℜn×n is given as

G(q, p) = Diag{Gi(q, p)} (27)

with

Gi(q, p) = g
pi

K2qi

(

B2(b − a) + 2qi

Bqi

)

4

3

(b−a) > 0,∀qi > 0

(28)

The total energy of the system is given as the sum of the

individual energies of the cells :

H(q, p) =
n

∑

j=1

Hj(qj , pj) (29)

IV. PASSIVITY-BASED CONTROL DESIGN

The last advances in the structural modelling of phys-

ical systems as Port Controlled Hamiltonian (PCH) sys-

tems reveal geometric and energetic properties of these

systems which stimulate many works on control design

taking into account these intrinsic properties. Contrarily to

many methodologies where nonlinearities are cancelled using

high gain controllers, the PCH formulation leads to a design

approach which ”truly” accounts for these nonlinearities

as well as the structural and energetic properties of the

systems, providing less conservative control laws. Among

these PCH based control techniques, the Interconnection

and Damping Assignment Passivity Based Control (IDA-

PBC) is a methodology which gives ”three” design degrees

of freedom : the closed loop interconnection structure, the

closed loop dissipation structure (and values) and the closed

loop energy function.

A. IDA-PBC methodology

Hereafter we recall the basic principles of IDA-PBC

methodology as developed in [14]. Consider a port hamilto-

nian system in general form that we want to stabilize around

a desired equilibrium point xd ∈ ℜn:

ẋ = (J(x) − R(x))
∂H

∂x
+ gu(x)u (30)
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If we can find a control law β(x), matrices Ja, Ra and an

efforts vector K(x) such that:

[J +Ja−(R+Ra)]K(x) = −[Ja−Ra]
∂H

∂x
+guβ(x) (31)

with:

Jd = J + Ja = −JT
d (32)

Rd = R + Ra = RT
d ≥ 0 (33)

∂K(x)

∂x
= [

∂K(x)

∂x
]T (34)

K(xd) = −∂H

∂x
(xd) (35)

∂K

∂x
(xd) > −∂2H

∂x2 (xd) (36)

Then the closed loop system with feedback u = β(x) can

be written in the PCH form:

ẋ = (Jd(x) − Rd(x))
∂Hd

∂x
(37)

where Hd = H(x) + Ha(x) is the shaped energy

of the closed loop and ∂Ha

∂x
(x) = K(x). Moreover

the equilibrium xd is (locally) stable. It is asymptoti-

cally stable if, in addition, xd is an isolated minimum

of Hd and if the largest invariant manifold of φ =
{

x ∈ ℜn|[∂Hd

∂x
(x)]T Rd(x)∂Hd

∂x
(x) = 0

}

is {xd}.

B. Control design

Let us first note that the obtained reduced model (23) is

indeed given in the general PCH systems explicit form (30).

Using the IDA-PBC approach we will thus develop a control

law which conserves this PCH structure. This control law

will be derived in three steps :

1) the definition of the controller interconnection and

damping structures Ja and Ra

2) the controller internal ”efforts” K
3) the damping parameters design.

The control objective, formulated in the introduction, is to

achieve a desired downstream water flow ( ∂H
∂pn

)d and an

upstream water level which corresponds to a desired volume

q1d of the upstream cell.

a) Controller interconnection structure Ja: In order to

render the system in closed loop passive with a smooth

state feedback the system must have relative degree 1 and

to be weakly minimum phase [15]. For the reduced PCH

model obtained in (23), the internal dynamics of the system

(q2, . . . , qn, p1, . . . , pn−1) have relative degrees greater than

1. This implies that with a static smooth feedback we can

act only on the boundary state variables (q1, pn). We thus

have limited possible choices for the interconnection matrix

Ja and the dissipation matrix Ra. We can only fix {Ja(1, n+
1), Ja(n, 2n)} (and thus {Ja(n + 1, 1), Ja(2n, n)}) for the

skew-symmetric matrix Ja and only {Ra(1, 1), Ra(2n, 2n)}
for the nonnegative symmetric matrix Ra. As we would

like to cancel the conservative part of the ”boundary cells”

controlled dynamics (q1, pn), leaving only the dissipation

part for these dynamics, the skew symmetric matrix Ja

∈ ℜ2n×2n will be fixed as follows:






Ja(1, n + 1) = Ja(n, 2n) = 1
Ja(n + 1, 1) = Ja(2n, n) = −1
and 0 else where

(38)

Note that Ja may be viewed as a symplectic structure inter-

connection matrix. Hence we leave all numerical coefficients

for the constitutive equations. The symmetric non-negative

damping matrix Ra ∈ ℜ2n×2n will be fixed as follows:

{

Ra(1, 1) = λ2 > 0, Ra(2n, 2n) = λ1 > 0
and 0 else where

(39)

where the values of parameters λ1 and λ2 will be discussed

further.

b) Controller internal efforts K: In direct Lyapunov

control design, the Lyapunov function is a priori fixed and

usually supposed to be quadratic function. However with

our modelling PCH approach, a quadratic Lyapunov function

may seem a strange choice since it is not homogeneous with

the natural energy of the system. More precisely we know

the thermodynamical forces in our physical model as the

variational derivatives of the energy density and we would

like to choose controller effort functions K(q, p) which are

compatible (homogeneous) with these physical efforts. These

dimensional and thermodynamical considerations lead us to

the choice:

K1(q, p) = −(
q1d

Cab

− ρgIKab,1 +
p1

2

2Lab

)

+γ(q1 − q1d) (40)

Kn+1(q, p) = −(
∂H

∂p1
) = −q1p1

Lab

(41)

K2n(q, p) = −(
∂H

∂pn

)d = −Qd (constant) (42)

Ki(q, p) = 0 (43)

for i = 2, . . . , n, n + 2, . . . , 2n − 1 and where Kab,1 is the

coordinate of the the first cell middle point. These efforts

have been designed to satisfy, besides the homogeneity

condition, the desired equilibrium point condition (35) and

the integrability condition (34) which ensures the existence

of the energy function Ha. In order to satisfy also the Lya-

punov stability condition (36) γ must satisfy the following

condition:

γ > − 1

Cab

(44)

We can now write the control laws that stabilize the system

which are implicitly defined in (31) (the first and last rows

of this equation may be explicitly solved):

u1(t) = λ1(
∂H

∂pn

+ K2n(q, p)) +
∂H

∂qn

+ Gn(q, p)K2n(q, p) (45)

u2(t) = −λ2(
∂H

∂q1
+ K1(q, p)) +

∂H

∂p1
(46)
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We recognize in these control laws the proportional correc-

tions

λ1(
∂H

∂pn

+ K2n(q, p)) = λ1(
∂H

∂pn

− Qd) (47)

λ2(
∂H

∂q1
+ K1(q, p)) = λ2(γ +

1

Cab

)(q1 − q1d)(48)

and a compensation of the autonomous dynamics ṗn = ∂H
∂qn

and q̇1 = ∂H
∂p1

. This controller structure is characteristic of the

control laws derived from the IDA-PBC methodology. From

the expression of the efforts (40-43) we derive the energy

function Ha(q, p):

Ha(q, p) = −q1q1d

Cab

+ ρgIKab,1q1 −
q1p1

2

2Lab

− γq1(
q1

2
− q1d) − Qd pn (49)

which shows that only the energy of the boundary cells is

”shaped” with the proposed control law. The closed loop

system will be passive with respect to the shaped energy

function Hd(q, p) = H(q, p) + Ha(q, p).
c) Damping parameters design: We can tune the in-

jected damping parameter λ1 in order to have local expo-

nential stabilization of the downstream water flow around a

small variation of the downstream water level. The variation

of the downstream water flow is

d

dt
(
∂H

∂pn

) =
d

dt
(
qnpn

Lab
)

=
pn

Lab
q̇n +

qn

Lab
ṗn

=
pn

Lab
(

∂H

∂pn−1
− ∂H

∂pn

) +
qn

Lab
(
∂H

∂qn

− u1)

Assuming small spatial variations of water flows between

cells (n − 1) and n:

q̇n =
∂H

∂pn−1
− ∂H

∂pn

≃ 0 (50)

and the control law u1(t) defined in (45), we obtain:

d

dt
(
∂H

∂pn

) = −λ1

qn

Lab
(
∂H

∂pn

+ K2n) − Gn(q, p)(
∂H

∂pn

+ K2n)

= −(λ1

qn

Lab
+ Gn(q, p))(

∂H

∂pn

− Qd)

Hence by setting the dissipation parameter λ1 as

λ1 = λ3
Lab

qn

, qn > 0 (51)

with λ3 > 0, we guarantee a local exponential stabilization

of the downstream water flow with maximum time constant

1/λ3.

As we can see in (48) that the dynamic of q1 depends

on the reduced element Cab which itself depends on the

length of the elementary cell. This bring us to define the

specific tuning of the injected damping parameter λ2 in order

to obtain an independent dynamic from the chosen number

of cells:

λ2 =
λ4

(γ + 1
Cab

)
, λ4 > 0 (52)

.

C. Adding Integral Action

The Manning Strickler friction parameter and the hy-
draulic gate parameter are poorly known numerical values
since they are issued from empirical models of bed friction
within the reach and around the gates. A static error may thus
appear between the desired and the real equilibrium points.
In order to avoid this problem, an integral action is added
on each control law [13]. For that purpose, two new states
v1 and v2 are introduced whose dynamics are defined by

[

v̇1

v̇2

]

= −Kg
T
u (x)

∂Hd

∂x
= −

[

0 −k1

I

k2

I 0

][

∂Hd

∂q1
∂Hd

∂pn

]

(53)

The augmented system still has a PCH form
[

ẋ
v̇

]

=

[

Jd(x) − Rd(x) gu(x)K
−KgT

u (x) 0

] [

∂W
∂x
∂W
∂v

]

(54)

with a total desired stored energy W (x, v) = Hd(x) +
1
2vT K−1v where K is the diagonal 2x2 matrix (K = KT )
with k1

I > 0 and k2
I > 0 on the diagonal. The new control

laws of the system are then :

u1(t) = λ3

Lab

qn

(
∂H

∂pn

+ K2n) +
∂H

∂qn

+ G(qn, pn)K2n + v1

u2(t) = −λ2(
∂H

∂q1

+ K1) +
∂H

∂p1

+ v2 (55)

Stability is proved using a Lasalle argument [13].

D. Introduction of the Hydraulic gates

The hydraulic gate is generally modelled as static constitu-

tive relations between the discharge (Q(t)) and the difference

of fluid levels around the gate. This relation may be written

as an invertible constitutive equation between the physical

port variables as follows [2]:

Q(t) =

√
2αBθ(t)√

ρ

√

Pup − Pdown (56)

where Pup is the gate upstream pressure, Pdown the gate

downstream pressure, α the gate characteristic and θ the gate

opening.

V. SIMULATION RESULTS

Simulations presented in this section are obtained with

a micro-channel simulator made with the above mentioned

reduced port controlled Hamiltonian model. The total length

of the channel is subdivided into ten cells. We have used for

the parameters values those identified on an experimental

micro-channel available at the Laboratory. They are listed in

the table I hereafter.

TABLE I

MICRO-CHANNEL PARAMETERS USED FOR THE SIMULATIONS

length L 7 meters

width B 0.1 meter

slope I 1.6× 10
−3

Manning-Strickler coefficient K 97

upstream gate parameter α1 0.66

downstream gate parameter α2 0.73

downstream outfall height (Hdev) 0.05 meter
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Fig. (2) shows the downstream water flow response signal

for an arbitrary water flow reference signal. Good regulation

of the downstream flow is obtained as it is shown by the

regulation error in the same figure. Fig. (3) shows the water
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Fig. 2. Regulation of the downstream water flow

level response signal for an arbitrary upstream water level

reference signal. Again, the upstream water level is well

regulated with an admissible gate opening.
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Fig. 3. Regulation of the upstream water level

With both simulation tests one observes oscillations on

the opening gate signal. This is due to the wave propagation

phenomenon in the channel. Indeed, the walls of the used

micro-channel are made out of plexiglass which introduces

very low friction forces (the Manning-Strickler parameter K

is closed to 100). As a consequence waves may go and come

along the channel with a low attenuation. These waves do

not affect the downstream water flow and/or upstream water

level with the proposed control thanks to the oscillations of

the gates.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we first developed a reduced PCH model for

the hyperbolic shallow water partial differential equations.

This model is derived from the mixed finite elements de-

composition of a channel reach in small ”cells” PCH models

without any direct transmission term between the pairs of

power-conjugated input and output variables of the cells.

The IDA-PBC control methodology allowed us to design

a nonlinear static state feedback based on the choice of

the controller interconnection structure, the desired closed

shaped energy (with a prescribed minimum state) and the

design of damping parameters. The whole approach has been

tested in simulation and appears to be very effective.

Among the expected developments of this work are its

experimental testing on the Laboratory micro-channel, fol-

lowed by its real-scale testing. We also intend to develop an

external control action on the boundaries which will allow

to eliminate the gates oscillations due to the reflecting and

superposing wave effects. Finally we must point out that

the passivity approach developed here could also be ap-

plied directly on the port-based distributed parameter model

developed in section II. The development of a passivity

based nonlinear boundary control which apply to the whole

class of shallow water equations (or to general nonlinear

transmission line equations) evidently appears as an expected

and significant further development of this work.
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