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Abstract— In this paper nonlinear non-affine systems, for
which the state vector is not completely available, are con-
sidered. It is assumed that the system’s mathematical model is
perfectly known and conditions hold, which assure the global
injectivity of any required state transformation. The method-
ology aims at reducing chattering while ruling out possible
ambiguous behaviors and considers an augmented state (the
state and its first time derivative) and a new control, which is
the time derivative of the original one. The proposed procedure
combines sliding mode controller/observer and Luenberger like
observer. The designed reduced-order observer relies on second
order sliding mode differentiators just to provide the necessary,
otherwise unavailable, artificial outputs exploited to steer to
zero a lower dimensional estimation error vector under a
simplified set of convergence conditions.

I. INTRODUCTION

In this paper we consider the sliding mode control of

non-affine, nonlinear systems with known dynamics and

non completely available state. The proposed methodology,

according to the twofold aim of reducing chattering and

ruling out possible ambiguous behaviors [1], consists in an

augmentation of the state space by considering both the states

and their first time derivatives.

In the new representation the control vector is the deriva-

tive of the original one.

It is designed an observer to make available the augmented

state of the new system.

A possible approach is a generalization to nonlinear sys-

tems of the well known Luenberger observer for linear ones.

The considered problem, which is non trivial even in the case

of affine systems, has been dealt within the sliding mode

context by the Authors [2] and [3].

In recent literature a common method for the class of

systems transformable into the Brunowsky canonical form,

is to estimate the unavailable states by means of differen-

tiators [4], [5] and high-gain observers [6], [7], [8], [9];

this strategy has proven to be effective even in presence of

large uncertainties in the mathematical model. In spite of

this great advantage, the differentiation procedure results not

to be reliable as the order of the involved output derivative

increases ([5], page 933), therefore the methodology appears

not suitable for large scale systems.

The two approaches feature different properties, which

could be regarded, in some situations, as complementary.

Work partially supported by MUR-FAR Project n. 630.

The first method is differentiator free, but requires perfect

modeling and additional constraints and conditions to be

satisfied in order to fulfill both the approximability property

and the convergence of the estimation error; the second one

suffers from the previously outlined accuracy problem when

the output derivatives to be estimated is high.

The proposed strategy is a compromise between the two

approaches aimed at building reduced-order observers using

differentiators just to provide the necessary, otherwise un-

available, artificial outputs exploited to steer to zero a lower

dimensional estimation error vector under an often simplified

set of convergence conditions.

II. THE VARIABLE STRUCTURE CONTROL SYSTEM

Let us consider the variable structure control system

η̇ = ϕ (t, η, u) , t ≥ 0, (1)

with the control vector u ∈ Rm, the state variable η ∈ Rn

and with control constraint

u ∈ U. (2)

The output vector y ∈ Rk is expressed by the following

equation

y = h (η) , (3)

where h ∈ C1.

We are given a fixed sliding manifold

σ (η) = 0, (4)

with σ (η) ∈ Rm, which fulfills prescribed control aims. We

want to control the state variables η (t), t ≥ 0, of the control

system (1) in order to guarantee the sliding property

σ [η (t)] = 0

for every t sufficiently large.

Let us assume that n ≥ m, Ω is an open set of Rn,

σ = σ (η) : Ω → Rm,

σ is C1 (Ω), and the m× n Jacobian matrix

∂σ

∂η
(η) has maximum rank m (5)

for η ∈ Ω. We denote by σ1, . . . , σm the components of σ

and define the Jacobian matrix ση ∈ Rm×n also through
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(5) (and similarly for ϕη, hη). A prime denotes a transpose.

Moreover the control region

U is a nonempty closed set in Rm.

The dynamics ϕ in (1)

ϕ : [0,+∞) × Ω × U → Rn

is a Carathéodory mapping.

Consider again the control system (1) with control con-

straint (2) and sliding manifold (4). In order to reduce

chattering due to the discontinuous nature of the control u,

we consider the augmented control system

η̇ = ϕ (t, η, u) , u̇ = v, t ≥ 0, (6)

with control variable v ∈ V ⊆ Rm and u available. If the

new control v is discontinuous, then the vector u turns out

to be (absolutely) continuous.

Assume that ϕ, σ are both of class C2 everywhere. Then

for almost every t

σ̇ = ση (η)ϕ (t, η, u) . (7)

We fix a constant m×m matrix

Λ = diag (λi) , λi > 0, i = 1, . . . ,m,

and consider

s = σ̇ + Λσ. (8)

We want to control, by the signal v, the state variables

(η′ (t) , u′ (t))
′

, t ≥ 0, of the augmented system in order to

guarantee the sliding property

s (t) = 0 (9)

for every t sufficiently large. If s = 0, the original sliding

output σ [η (t)] → 0 as t → +∞ exponentially fast. This

means that σ [η (t)] is arbitrarily close to 0 for t sufficiently

large.

If suitable first order approximability properties are ful-

filled by the given control system (see [10], [11], [12] and

[13]), then η (t) is arbitrarily close to the ideal sliding state on

the bounded time intervals, thus η fulfills approximately the

control aims guaranteed by the choice of the sliding manifold

σ (η) = 0, by using the continuous original control variable

u. In this way chattering is counteracted in the given control

system.

III. THE FULL ORDER OBSERVER

We have defined a new variable structure control system

η̇ = ϕ (t, η, u) , u ∈ U,

u̇ = v,

y = h (η) ,
s (t) = 0,

(10)

with η ∈ Rn, y ∈ Rk, u, v, s ∈ Rm and m ≤ n.

By setting η̇ = ζ we have
[

η̇

ζ̇

]

=

[

ζ

Φ (t, η, u)

]

+

[

0
Γ (t, η, u)

]

v, (11)

where Φ = ϕt + ϕηϕ and Γ = ϕu.

Let the augmented state vector x = (η′, ζ ′)
′

∈ R2n, since

u (t) is available, we can write

ẋ = A (t, x) +B (t, x) v = f (t, x, v) . (12)

If x were available, as well as u, the control v could

be chosen discontinuous on s (t), according to standard

techniques, such that s = 0 in finite time.

We consider the following observed variable structure

control system

ẋ = f (t, x, v) , t ≥ 0, state equation, (13)

u̇ = v, u ∈ U, control equation and constraint, (14)

y = h (x) , output equation, (15)

s (x) = 0, sliding manifold. (16)

The full-order observer has the form

ż = f (t, z, v) + P [y (t) − h (z)] . (17)

We have x, z ∈ R2n, y ∈ Rk, u, v, s ∈ Rm and m ≤ n.

The functions f, h, s are continuously differentiable in x,

with f measurable in t and continuous in (x, v).
Given the constant matrix P ∈ Rn×k we consider the

following conditions.

Condition 1: For every t ≥ 0, y, z there exists a unique

solution

v∗ (t, y, z)

of the equation

sx (z) {f (t, z, ·) + P [y − h (z)]} = 0, (18)

where P is as in (17).

Such a mapping v∗ is by definition the observer’s equiv-

alent control corresponding to the output y.

Condition 2: Whenever s (x) = 0,

rank sx (x) = m. (19)

Condition 2 is satisfied by system (13)–(17) since (5).

According to [2], since Condition 2 holds, we can find a

positive integer p such that for every x0 with s (x0) = 0 and

some δ > 0, the ball of center x0 and radius δ can be written

as a disjoint union of subsets of the surfaces sj (x) = 0,

j = 1, . . . ,m, and of p open connected regions C1, . . . , Cp.

Given P ∈ Rn×k and Condition 2, we shall consider the

set Z of all output feedback v = v (t, y, z) such that the

following properties hold:

1) v is measurable in t, continuous in (y, z) if sj (z) 6= 0,

j = 1, . . . ,m;

2) given any z0 with s (z0) = 0, denote by vj the

restriction of v to the set of those points (t, y, z) such

that z ∈ Cj , j = 1, . . . , p (Cj as defined above): then

for every (t, y) there exists a finite

lim
z→z0

vj (t, y, z) = vj (t, y, z0) ;

3) if (x′, z′)
′

is any Filippov solution in [0,+∞) to (13),

(15), (17) corresponding to v (see [14], [15], or [16],
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pp. 101–102) such that s [z (0)] = 0, then s [z (t)] = 0,

t ≥ 0.

We consider solutions in [0,+∞) (either in the Filippov

or a.e. sense) to (13), (15), (17) corresponding to solutions

to the observer’s equivalent control, i.e. solutions to

ẋ = f {t, x, v∗ [t, h (x) , z]} , (20)

ż = f {t, z, v∗ [t, h (x) , z]} + P [h (x) − h (z)] . (21)

Existence of a.e. solutions in [0,+∞) to (13), (15),

corresponding to the observer’s equivalent control and to

the bounded continuous output y is obtained if the set V :

v ∈ V , is compact, f is independent of t and bounded, f ,

h, s, are continuous, h bounded on the manifold (16), if

f (x, V ) is always convex and if Condition 1 holds. This

follows from [16], Theorem 1, p. 191. Of course different

assumptions (linearity, growth conditions, etc.) suffice for

global existence.

Condition 3: Assume Condition 1 (for any given P ) and

Condition 2. Suppose V is closed and for every t, x, z with

s (z) = 0,

{

(f (t, x, v) , f (t, z, v))
′
: v ∈ V

}

is convex in R4n.

(22)

Remark 1: Assumption (22) is stronger than convexity of

f (t, x, V ) for all t, x. On the other hand, (22) is verified

(for any s) if

f (t, x, v) = A (t, x) +B (t, x) g (t, v) (23)

with g (t, V ) convex for all t. The f affine in v is a particular

case of (23), to which (22) applies if V is convex.

From previous remark system (13)–(17) satisfies Condi-

tion 3 since f is given by (12). Therefore the following

theorem applies.

Theorem 1: Assume Condition 3. Let (x′, z′)
′

be a Filip-

pov solution in [0,+∞) to (13), (15), (17) with s [z (0)] = 0
corresponding to any u ∈ Z. Then (x′, z′)

′

solves (20) and

(21) a.e. in [0,+∞).

Proof. See [2].

Theorem 1 shows that, under a convexity condition, ev-

ery Filippov solution to the state-observer coupled system

corresponding to any feedback law in Z, is an a.e. solution

to (20) and (21). This is a key property for employing the

equivalent control in order to achieve asymptotically (16).

Remark 2: The equivalent control is physically meaning-

ful if the approximability condition is verified, as intro-

duced in [17], [10] for nonlinear systems. See [10] for a

discussion about such a problem. Under some smoothness

conditions, (23) implies approximability ([10], Theorem 5).

Therefore using the observer’s equivalent control is justified

for significant classes of systems (13)-(17). Moreover one ob-

tains all the (Filippov) solutions corresponding to piecewise-

continuous output feedback.

Condition 4: There exist matrices P ∈ Rn×k, Q ∈ Rn×n

and positive numbers α, ε, ω such that the eigenvalues of

the symmetric matrix Q are between α and ω, and those of

the symmetric part of Q (fx − Phx) are ≤ −ε everywhere.

Theorem 2: Assume Condition 4, Condition 1 with P

given by Condition 4 and suppose |sx (x)| ≤M everywhere,

for some constant M . Then

|s [x (t)]| ≤M
(ω

α

)
1

2

|x (0) − z (0)| exp (ct) , t ≥ 0,

(24)

where ωc = −ε, for every a.e. solution (x′, z′)
′

in [0,+∞)
to (20) and (21), such that s [z (0)].

Proof. See [2].

Remark 3: The proof of Theorem 2 shows that under

Condition 4,

|s [x (t)] − s [z (t)]| ≤M
(ω

α

)
1

2

|x (0) − z (0)| exp (ct) , t ≥ 0,

without assuming neither Condition 1 nor s [z (0)] = 0.

Discussion:

1) For linear time invariant systems

f (t, x, v) = Ax+Bv, h (x) = Cx,

Condition 4 holds if (C,A) is detectable.

2) Assume f , h continuously differentiable in [0,+∞)×
F , F open connected. If there exists P such that

Lfx − Phx

is a stability matrix for all w = (t, x, v), then known

results [18], Section 12.4, imply the following nec-

essary and sufficient condition for the existence of

Q fulfilling Condition 4: for some symmetric equi-

negative definite matrix S and all w,
∫ +∞

0

exp (aL′) [a (L′

wS + SLw) + Sw] exp (aL) da = 0.

(25)

Theorem 3: Under the assumptions of Theorem 2, suppose

moreover boundedness of fx, hx and of f (t, x, v) when

s (x) = 0. Then there exists a constant K such that for

a.e. t ≥ 0,
∣

∣

∣

∣

(

d

dt

)

s [x (t)]

∣

∣

∣

∣

≤ K |x (0) − z (0)| exp (ct) , (26)

c as in Theorem 2, for every a.e. solution (x′, z′)
′

to (20)

and (21) in [0,+∞) such that s [z (0)] = 0.

Proof. See [2].

Remark 4: The exponential decay of s (with a possibly

bigger c than in (26)) may be obtained by weakening the

boundedness assumption about f ,

Discussion: Condition 4 can be explicitly written as

Q (fx − Phx) + (fx − Phx)
′
Q = H, (27)

where H is such that λmin (H) ≤ −ε < 0 and

fx =

[

0 I

ϕt + ϕηηζ ϕη

]

,
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P =

[

P11

P21

]

,

hx =
[

hη 0
]

.

In equation (27) the positive 2n× 2n matrix Q is unknown,

while the entries of the 2n × k matrix P play the role of

design parameters. The solution depends on the jacobian

fx and hx, which are time varying and state dependent.

Therefore in general the treatment has only a local validity

provided some observability conditions are locally fulfilled.

It is necessary to identify tools to make the observer design

more flexible and of lower dimension.

The first possibility is that of introducing differentiators

to increase the dimension of the output vector. This fact

increases the number of columns of P , which is the main

degree of freedom in the full-order observer design. This

practice could be taken to the extreme by suitably choosing

(among possible alternatives) a combination of outputs and

their higher order derivatives until a vector related to the

original state vector by a diffeomorphism is attained, even

eliminating the need of an observer. This approach could re-

quire differentiators of order higher than the one realistically

implementable.

The alternative way of exploiting a possible increment of

the dimension of the output vector by differentiation to make

the solution of (27) easier, is that of introducing reduced

order observer according to the next section.

IV. THE REDUCED ORDER OBSERVER

We consider again the variable structure control system

(13)–(16)

ẋ = f (t, x, v) , u̇ = v, u ∈ U,

y = h (x) ,
s (x) = 0,

with x ∈ R2n, y ∈ Rk, u, v, s ∈ Rm and m ≤ n.

Let q ∈ R2n−k

q = g (x) , (28)

be such that the map

θ (x) =

[

g (x)
h (x)

]

is one-to-one and invertible. (29)

By definitions and assumption (29), we have

q = g
[

θ−1 (q, y)
]

y = h
[

θ−1 (q, y)
] (30)

We consider the state vector (q′, y′)
′

and the related state

equations

q̇ = gxf (t, x, v) = ψ (t, q, y, v) , (31)

ẏ = hxf (t, x, v) = γ (t, q, y, v) , (32)

while the sliding output can be expressed as

s (x) = s
[

θ−1 (q, y)
]

= ς (q, y) . (33)

If q were available, as well as y and u, the control v could

be chosen discontinuous on ς (q, y), according to standard

techniques, such that ς = 0 in finite time.

In the considered case neither q is available, nor an

output depending on it. In order to artificially construct

such an output, we introduce a second order sliding mode

differentiator [19], [4], [20], [5], to obtain in finite time ẏ.

The proposed reduced-order observer has the form

ṙ = ψ (t, r, y, v) +N [p (t) − γ (t, r, y, v)] , (34)

where p = ẏ = γ (t, q, y, v) is from the second order sliding

mode differentiator.

Given the constant matrix N ∈ R(2n−k)×k we shall

consider the following conditions.

Condition 5: For every t ≥ 0, r, y, p there exists a unique

solution

v∗ (t, r, y, p) ∈ V

of the equation

ςq (r, y) {ψ (t, r, y, ·) +N [p− γ (t, r, y, ·)]}
+ ςy (r, y) γ (t, r, y, ·) = 0,

(35)

where N is as in (34).

Such a mapping v∗ is by definition the reduced-order

observer’s equivalent control corresponding to the output p.

Condition 6: Whenever ς (q, y) = 0,

rank [ςq (q, y) , ςy (q, y)] = m. (36)

We consider solutions in [0,+∞) (either in the Filippov

or a.e. sense) to (31), (34) corresponding to solutions to the

reduced-order observer’s equivalent control, i.e. solutions to

q̇ = ψ (t, q, y, v∗ (t, r, y, p)) , (37)

ṙ = ψ (t, r, y, v∗ (t, r, y, p))+N [p− γ (t, r, y, v∗ (t, r, y, p))] .
(38)

Condition 7: Assume Condition 5 (for any given N ) and

Condition 6. Suppose V is closed and for every t, q, y, r

with ς (r, y) = 0,
{

(ψ (t, q, y, v) , γ (t, q, y, v) , ψ (t, r, y, v))
′
: v ∈ V

}

(39)

is convex in R4n−k. Let (q′, r′)
′

be a Filippov solution in

[0,+∞) to (31), (34) with ς [r (0) , y (0)] = 0. Then (q′, r′)
′

solves (37) and (38) a.e. in [0,+∞).
Let ψq (t, q, y, v) and γq (t, q, y, v) be the jacobian matri-

ces with respect to q of the vector fields ψ (t, q, y, v) and

γ (t, q, y, v) respectively.

Condition 8: There exist matrices N ∈ R(2n−k)×k, W ∈
R(2n−k)×(2n−k) and positive numbers µ, κ, ν such that the

eigenvalues of the symmetric matrix W are between µ and

κ, and those of the symmetric part of W (ψq −Nγq) are

≤ −ν everywhere.

From Remark 1 system (31) and (34) satisfies Condition 7

since f in (31) and (33) is given by (12). Therefore the

following applies.

Theorem 4: Assume Condition 8, Condition 5 with N

given by Condition 8 and suppose |ςq (q, y)| ≤ D every-

where, for some constant D. Then

|ς [q (t) , y (t)]| ≤ D

(

ν

µ

)
1

2

|q (0) − r (0)| exp (bt) , t ≥ 0,

(40)
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where νb = −κ, for every a.e. solution (q′, r′)
′

in [0,+∞)
to (37) and (38), such that ς [r (0) , y (0)] = 0.

Proof. Set

V1 (t) = [q (t) − r (t)]
′
W [q (t) − r (t)] , t ≥ 0.

Then for a.e. t ≥ 0,

V̇1 (t) = 2 [q (t) − r (t)]
′
W

{ψ (t, q, y, v∗) − ψ (t, r, y, v∗) −N [p (t) − γ (t, r, y, v∗)]} ,

where

v∗ (t) = v∗ (t, r, y, p) .

Therefore

V̇1 (t) ≤

2 [q (t) − r (t)]
′
W

[

∫ 1

0
(ψq −Nγq) da

]

[q (t) − r (t)] ,

where ψq and γq are evaluated at (t, β (a, t) , y, v∗) and

β (a, t) = aq (t) + (1 − a) r (t).
We have

V̇1 ≤

2
∫ 1

0
[q − r]

′
[

W (ψq −Nγq) + (ψq −Nγq)
′
W ′

]

[q − r] da,

then

V̇1 ≤ −2

∫ 1

0

ν (q − r)
′
(q − r) da ≤ −2

ν

κ
V1 (t) ≤ −2bV1 (t) .

If we set

w (t) = V1 (t) exp (−2bt) ,

we have that ẇ (t) ≤ 0, thus giving

V1 (t) = V1 (0) exp (−2bt) ;

Then

µ |q − r|
2

≤ V1 (t)

≤ ν |q (0) − r (0)|
2
exp (−2bt) .

We can conclude

|q − r| ≤
ν

µ
|q (0) − r (0)| exp (−bt) ,

|σ (q, y) − σ (r, y)| ≤ D |q − r|

and therefore (40). �

Remark 5: Theorem 4 holds even in the case in which

N is chosen to be not constant; matrix N can be allowed

to depend on t and any available signal depending on time,

including the measurable input and output vectors.

Note that both Condition 5 and Condition 8 are, in

general, difficult to be fulfilled globally; more realistic semi-

global or local solutions are to be found. In this sense

Condition 8 implies the solution of a Lyapunov-Krasovsky

equation of reduced order and therefore easier to be verified

with respect to the one implied by Condition 4. We have

further to consider the fact that the choice of q = g (x) is

rather arbitrary and in practical situations an extra degree of

freedom is offered to the designer by ψq, as it is shown by

the following example.

V. EXAMPLE

We consider the following variable structure control sys-

tem (1), the state equation is

η̇ = ϕ (t, η, u) =

[ (

1 + η2
1

)

(η2 − η1) − c1η1
(

1 + η2
1

)

(η1 − η2) + ϕ3 (η1)ϕ4 (u)

]

,

(41)

where η ∈ R2; the control constraint is u ∈ U ⊂ R, the

output is η1 and the sliding manifold (4) is s (η) = η2−η1 =
0.

We set η̇ = ζ, derive (41) with respect to time and obtain

the system in the form (11)
[

η̇

ζ̇

]

=

[

ζ

Φ (t, η, ζ, u)

]

+

[

0
Γ (t, η, ζ, u)

]

v, where

(42)
Φ1 =

[

2η1 (η2 − η1) −
(

1 + η2
1

)

− c1
]

ζ1 +
(

1 + η2
1

)

ζ2,

Φ2 =
[

2η1 (η1 − η2) +
(

1 + η2
1

)

+ ϕ3 η1
(η1)ϕ4 (u)

]

ζ1
−

(

1 + η2
1

)

ζ2,

Γ1 = 0, Γ2 = ϕ3 (η1)ϕ4 u (u) ,

ζ ∈ R2 and the signal v = u̇ ∈ V ⊂ R is regarded as the

new control.

Then, by setting the augmented state vector x = (η′, ζ ′)
′

∈
R4, since u (t) is available, we can express the system in the

form (12)

ẋ = A (t, x) +B (t, x) v = f (t, x, v) . (43)

We assume that the measurable state component is η1 =
x1 and, with the aim of exploiting all the available signals,

we construct a second order sliding mode differentiator and

in finite time we have p = ζ1 = x3.

We can now define the output equation on the basis of the

available signals

y = h (x) =

[

η1
ζ1

]

=

[

x1

x3

]

(44)

We consider the following variable structure control sys-

tem (13)–(16), where the state equation is given by (43), the

control equation is u̇ = v, u ∈ U ⊆ R, v ∈ V ⊆ R, the

output equation is (44), and the sliding manifold is chosen

as

σ (x) = (x4 − x3) + Λ (x2 − x1) = 0, (45)

with σ ∈ R.

The vector q ∈ R2 is defined as

q = g (x) =

[

x2

x4

]

, (46)

and the map θ (x)

θ (x) =

[

g (x)
h (x)

]

=









x2

x4

x1

x3









(47)

is one-to-one and invertible.

We consider the state vector [q′, y′]
′

and the related state

equations
q̇ = ψ (t, q, y, v) ,
ẏ = γ (t, q, y, v) ,

(48)
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where

ψ1 = q2 =
(

1 + y2
1

)

(y1 − q1) + ϕ3 (y1)ϕ4 (u) ,
ψ2 =

[

2y1 (y1 − q1) +
(

1 + y2
1

)

+ ϕ3 y1
(y1)ϕ4 (u)

]

y2
−

(

1 + y2
1

)

q2 + ϕ3 (y1)ϕ4 u (u) v,
γ1 = y2 =

(

1 + y2
1

)

(q1 − y1) − c1y1,

γ2 =
[

2y1 (q1 − y1) −
(

1 + y2
1

)

− c1
]

y2 +
(

1 + y2
1

)

q2,

while the sliding output ς (q, y) is

ς (q, y) = (q2 − y2) + Λ (q1 − y1) . (49)

The reduced-order observer (34) for system (43)–(45)

takes the form

ṙ = ψ (t, r, y, v) +N [p (t) − γ1 (t, r, y, v)] =

=

[

r2
ψ2 (t, r, y, v)

]

+N
[

y2 −
(

1 + y2
1

)

(r1 − y1) − c1y1
]

,

(50)

where N ∈ R2.

We have the two jacobian matrices

ψq (t, q, y, v) =

[

0 1
−2y1y2 −

(

1 + y2
1

)

]

(51)

and

γ1 q (t, q, y, u) =
[ (

1 + y2
1

)

0
]

. (52)

Let Θ = W (ψq −Nγ1 q) with W =

[

1 0
0 1

]

and N =
[

N1

N2

]

, we obtain Θ + Θ′ =

[

2N1

(

1 + y2
1

)

1 − 2y1y2 +N2

(

1 + y2
1

)

1 − 2y1y2 +N2

(

1 + y2
1

)

−2
(

1 + y2
1

)

]

.

(53)

According to Theorem 4, the eigenvalues of Θ+Θ′, with

Θ = W (ψq −Nγ1 q), W > 0, must be negative to guarantee

the asymptotic convergence of r to q.

Remembering Remark 5, we make matrix (53) globally

negative definite, independently of v and on the chosen

sliding manifold, by choosing N1 < − 1
4 and N2 = 2y1y2

(1+y2

1)
.

VI. CONCLUSIONS

In this paper nonlinear non-affine systems, for which the

state vector is not completely available, have been consid-

ered.

We assume that the system’s mathematical model is per-

fectly known and conditions hold, which assure the global

injectivity of any required state transformation.

The methodology attains chattering reduction, while ruling

out possible ambiguous behaviors and considers an aug-

mented state (the state and its first time derivative) and a

new control, which is the time derivative of the original one.

The proposed procedure combines sliding mode con-

troller/observer and Luenberger like observer. This combi-

nation could be significant for large scale high dimensional

systems.

In the paper we have considered the role of the output

derivative as an auxiliary output for the reduced-order ob-

server.

The output derivative is made available by a second order

sliding mode differentiator. As a result new degrees of

freedom are offered to the designer.

In future research possible generalization of the proposed

approach, ranging from the use of higher order differentiators

to the introduction of uncertainties can be envisaged.

The proposed approach can be reasonably applied to other

applications involving sliding mode observers, see e.g. [21],

[22], [23].
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