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Abstract— It is known that a kinetic reaction network in
which one or more secondary substrates are acting as cofactors
may exhibit an oscillatory behavior. The aim of this work is to
provide a description of the functional form of such a cofactor
action guaranteeing the onset of oscillations in sufficiently
simple reaction networks.

I. INTRODUCTION

Apart from circadian rhythms, many biochemical networks

exhibiting oscillations have been intensively studied, such

as, for example, cell cycle [1], Ca+-induced oscillations

[8], glycolysis [15], [20], [14], yeast metabolic cycle [19],

genetic oscillators [4], [18]. Given a biochemical reaction

network with nonlinear rate laws, it is in general difficult to

predict exactly when oscillations will arise, as this depends

on the “graph” of the reaction network, on the form chosen

for the kinetic equations, and on the values assigned to the

parameters. In this context, systems in 2D are exceptional

in the sense that for them the onset of oscillations can be

described almost exhaustively, see [2], [5] for an overview.

There is a number of ways in which oscillations can arise

(see [17], [12] for surveys). In this work we are interested

in the case in which they are due to the catalytic effect of

a secondary substrate acting as a co-enzyme in a reaction.

A typical example (and the inspiration for this work) is

given by ATP in the glycolysis pathway [20]. ATP is a

cofactor in some of the reaction steps (e.g. in the step

catalyzed by Hexokinase: glucose −→ glucose-6-phosphate)
while a too high concentration of ATP leads to inhibition of

the reaction itself. Since the net production of ATP in the

glycolysis pathway is positive, this activator/inhibitor role

has a regulatory action and it induces the oscillations.

Clearly the appearance of oscillations on a model of the

pathway depends on the functional form chosen to describe

this activation/inhibition mechanism, call it φ. The aim of this

paper is to give explicit conditions on the form of φ sufficient

to induce oscillations on simple reaction networks. As we

are interested in analytically provable sufficient conditions

(the tools we shall use are essentially Hopf bifurcation

analysis and Poincaré-Bendixon theorem), our “networks”

are limited to very simple chains of reactions. Nevertheless

once the conditions are given, they can be applied (and

verified numerically) in arbitrarily large networks.
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II. OSCILLATIONS FOR 2D SYSTEMS - BACKGROUND

MATERIAL

The onset of sustained oscillations on nonlinear dynamical

systems is fully understood only on 2D systems, see e.g. [2],

[5] for general considerations or [17], [12] for recent reviews

dealing with simple reaction networks. In this section we

recall some results which are used in the rest of the paper.

Let (x, y) belong to R2
+ (the positive orthant in R2), and

consider the family of parameters p ∈ Rr
+. In this section,

we will consider the system

dx
dt

= f(x, y, p)
dy
dt

= g(x, y, p),
(1)

and, to simplify notations, we will sometimes forget to

explicit the dependency on p of f and g. If the jacobian

of this system at an equilibrium (x̄, ȳ) is

J =

[

fx(x̄, ȳ) fy(x̄, ȳ)
gx(x̄, ȳ) gy(x̄, ȳ)

]

=

[

a11 a12

a21 a22

]

,

the associated characteristic polynomial is s2 − tr(J)s +
det(J), where tr(J) = a11 + a22 and det(J) = a11a22 −
a21a12. Its eigenvalues determine the stability of the equi-

librium and we have

• If det(J) < 0, then there is one positive and one
negative real eigenvalue, so the steady-state is unstable

(saddle point).

• If det(J) > 0 and tr(J) < 0, then the steady-state is
stable.

• If det(J) > 0 and tr(J) > 0, then the steady-state is
unstable.

Another restriction for our system is given by Bendixon’s

criterion:

Theorem 1 (Bendixon’s criterion) Consider the system

(1). If the divergence
∂f
∂x

+ ∂g
∂y

is not zero on some simply

connected domain D, then no periodic orbit can lie entirely

in D.

For the system (1), the divergence corresponds to tr(J).
In general, tr(J) and det(J) depend continuously on p. In

order to have oscillations, Bendixon’s criterion requires that

we have a transition between stability and instability. If by

varying one of the parameters (call it p1), we can carry tr(J)
from negative to positive values, while keeping det(J) > 0,
then the steady state passes through a bifurcation. As tr(J)
is close to 0, we have two complex conjugated eigenvalues,
with real part approaching zero. At the bifurcation point

(p1 = pcrit), tr(J) = 0, and the eigenvalues are purely
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imaginary s = ±iω. Close to the bifurcation point, i.e.,

p1 ≈ pcrit, small amplitude limit cycle solutions surround

the steady state, and the period of oscillation is close to 2π
ω
:

we say that periodic solutions arise by a Hopf bifurcation at

p1 = pcrit (see [9] for more details on Hopf bifurcations).

If, in addition, the trajectories of (1) are confined in a

closed bounded set inside which the system has at most

a repelling equilibrium point, then the Poincaré-Bendixon

theorem can be applied.

Theorem 2 (Poincaré-Bendixon theorem) Consider the

system (1). If for t > 0 a trajectory of (1) is confined to a

closed, bounded set D and does not approach any critical

point in D, then it is either a closed periodic orbit or it

approaches one.

If (1) represents two chemical species, then in order to

have oscillations it is required that at least one of the two

reactants x and y is acting on itself with effect that varies as

we change p in a neighborhood of pcrit. For example if on

the diagonal we have just one or more degradation terms e.g.

x→ 0 and/or y → 0, then a11 + a22 < 0, and no oscillation
can appear. Likewise if both diagonal terms are autocatalytic,

x → αx, α > 1, and/or y → βy, β > 1 (a11 + a22 > 0 in
this case). Combination of the two cases can already induce

oscillations, provided that tr(J) changes sign when varying
some of the parameters.

The conclusion is that for 2D systems a necessary condi-

tion for the appearance of a Hopf bifurcation is that at least

one of the variables involved experiences an autocatalysis

for some values of the parameters but not for others. The

arising of sustained oscillations is guaranteed in the case

Theorem 2 is applicable. For a more thorough discussion

about oscillating 2D chemical reactions see e.g. [5].

III. AN ELEMENTARY MECHANISM INDUCING

OSCILLATIONS

The context in which we are interested to investigate the

appearance of oscillations is that of biochemical reaction

kinetics modeled to a large extent by means of mass-action

laws, with some nonlinear non mass-action terms providing

the necessary autocatalytic/inhibitory mechanisms. This is a

very common setting in literature, see [2], [15], [19], [20]

and many others. Our attention is in particular focused on the

case in which the non mass-action term involves a secondary

substrate of a reaction.

In order to apply the exact 2D-results, we shall consider

the simple mechanism depicted in {1}. In the graph {1}

A B

FE

FE {1}

A←→ B represents the principal branch of the reaction and

the cofactors E,F are required for the reaction to take place

(e.g. through allosteric regulation). The action of E on A is

non-linear and unknown. The other rate-laws are assumed to

be of mass-action form, leading to the following dynamics














dA
dt

= −k+
1 Aφ(E) + k−

1 BF
dB
dt

= k+
1 Aφ(E)− k−

1 BF
dE
dt

= −k+
1 Aφ(E) + k−

1 BF − k+
2 E + k−

2 F
dF
dt

= k+
1 Aφ(E)− k−

1 BF + k+
2 E − k−

2 F,

where φ is the unknown function (at least C1) modeling

the nonlinear action of E on A, φ(0) = 0, k±

1 , k
±

2 ∈ R+.

Although simple, this system is e.g. non-monotone for non-

monotonic choices of φ [7] and, by construction, not treatable

by means of mass-action formalism [6]. For such system, we

have two moiety conservations ( dA
dt

+ dB
dt

= 0 and dE
dt

+ dF
dt

=
0), so by writing A+B = M1 and E+F = M2, it simplifies

to the 2D-system:











dA
dt

= −k+
1 Aφ(E) + k−

1 (M1 −A)(M2 −E)
dE
dt

= −k+
1 Aφ(E) + k−

1 (M1 −A)(M2 −E)

−k+
2 E + k−

2 (M2 −E).

(2)

For an equilibrium point (Ā, Ē), we have the conditions










−k+
1 Āφ(Ē) + k−

1 (M1 − Ā)(M2 − Ē) = 0

−k+
1 Āφ(Ē) + k−

1 (M1 − Ā)(M2 − Ē)

−k+
2 Ē + k−

2 (M2 − Ē) = 0,

which imply






k+
1

k
−

1

Ā
M1−Ā

φ(Ē) = M2 − Ē

Ē =
k−

2

k+
2 +k−

2

M2

(3)

i.e.,

(

Ā, Ē
)

=







M1M2k
+
2

(k+
2 + k−

2 )
k+
1

k−

1

φ(Ē) + M2k
+
2

,
k−

2

k+
2 + k−

2

M2







(4)

At the equilibrium, the corresponding jacobian matrix J =
(Jij) has elements

J11 = −k+
1 φ(Ē)− k+

1

Ā

M1 − Ā
φ(Ē),

J12 = −k+
1 Āφ

′

(Ē)− k−

1 (M1 − Ā),

J21 = −k+
1 φ(Ē)− k+

1

Ā

M1 − Ā
φ(Ē),

J22 = −k+
1 Āφ

′

(Ē)− k−

1 (M1 − Ā)− k+
2 − k−

2 ,

and the associated characteristic polynomial is

χ(s) = s2 + ∆s + Ω,

where ∆ = k+
1 φ(Ē) + k+

1
Ā

M1−Ā
φ(Ē) + k+

1 Āφ
′

(Ē) +

k−

1 (M1− Ā)+k+
2 +k−

2 and Ω = k+
1 φ(Ē)(1+ Ā

M1−Ā
)(k+

2 +

k−

2 ). The determinant of the jacobian is Ω, and its trace is
−∆. As we have seen before, the interesting case for Hopf
bifuractions is Ω > 0. But Ω = k+

1 φ(Ē)(1 + Ā
M1−Ā

)(k+
2 +

k−

2 ), so if φ is positive for positive entries, then Ω > 0
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(as Ē 6= 0). Our aim is to make the real part of the
eigenvalues evolve from negative values to positive values

(or the contrary) by modifying only the parameters (k±

i ),

thereby inducing a Hopf bifurcation. From the expression

of ∆, the only term that can assume a negative sign is
k+
1 Āφ(Ē), meaning that φ must be decreasing at Ē.

The following proposition provides conditions sufficient

in order for φ to induce oscillations.

Proposition 1 If the function φ is C1, positive, non identi-

cally zero, and corresponds to one of the following situations:

• Activator/Inhibitor case:

φ is increasing on [0, α], decreasing on [α,∞[ for some

α in ]0,∞[, φ(0) = 0 and limx→∞ φ(x) = 0, and

fulfills the following conditions:

1) α < M2,

2) φ
′

(0) > 0,

3) ∃(k±

i ) ∈ R4
+, i = 1, 2, for which xm = Ē, and

∆0 = k+
1 φ(xm)

(

1 +
k−

1

k+
1

(M2 − xm)

φ(xm)

)

+
k+
1 k−

1 M1(M2 − xm)φ
′

min

k+
1 φ(xm) + k−

1 (M2 − xm)
+ k+

2 + k−

2

+ k−

1

(

M1 −
k−

1 M1(M2 − xm)

k+
1 φ(xm) + k−

1 (M2 − xm)

)

< 0

where xm = max{x ∈ R+|φ
′

(x) = φ
′

min}, with φ
′

min

the minimum of φ
′

.

• Inhibitor/Activator case:

φ is decreasing on [0, α], increasing on [α,∞[ for some

α in ]0,∞[, tends to a constant when x → ∞, and

fulfills the following conditions:

1) α < M2,

2) φ(0) 6
k−

2 M2

k+
1 M1

,

3) ∃(k±

i ) ∈ R4
+, i = 1, 2, for which xm (defined as

above) is such that xm = Ē ∈ [0, α] and

∆0 = k+
1 φ(xm)

(

1 +
k−

1

k+
1

(M2 − xm)

φ(xm)

)

+
k+
1 k−

1 M1(M2 − xm)φ
′

(xm)

k+
1 φ(xm) + k−

1 (M2 − xm)
+ k+

2 + k−

2

+ k−

1

(

M1 −
k−

1 M1(M2 − xm)

k+
1 φ(xm) + k−

1 (M2 − xm)

)

< 0,

then oscillations must occur in the elementary reaction

network {1} obeying to (2) for some values of the parameters

k±

i .

Proof:

• Activator/Inhibitor case:

Under the assumptions above, the rectangle D =
[0, M1]× [0, M2] is invariant to the flow of the system

as ∀E ∈ [0, M2]

dA

dt

∣

∣

∣

∣

A=0

= k−

1 M1(M2 −E) > 0, (5)

dA

dt

∣

∣

∣

∣

A=M1

= −k+
1 Aφ(E) 6 0, (6)

and ∀A ∈ [0, M1]

dE
dt

∣

∣

E=0
= −k+

1 Aφ(0) + k−

1 (M1 −A)M2 + k−

2 M2 > 0 (7)
dE
dt

∣

∣

E=M2
= −k+

1 Aφ(M2)− k+
2 M2 6 0. (8)

In correspondence of the point in the parameter space

for which:

xm = Ē =
k−

2

k+
2 +k−

2

M2

we have

∆ =k+
1 φ(Ē)(1 +

Ā

M1 − Ā
) + k+

1 Āφ
′

(Ē)

+ k−

1 (M1 − Ā) + k+
2 + k−

2 = ∆0 < 0

as Ā =
k−

1 M1(M2−xm)

k+
1 φ(xm)+k−

1 (M2−xm)
and Ā

M1−Ā
=

k−

1

k+
1

(M2−xm)
φ(xm) . This implies that the two eigenvalues cor-

responding to the equilibrium have positive real parts.

We use k+
2 as bifurcation parameter, and leave the other

parameters unchanged. As from (3)






limk+
2 →∞

Ē = limk+
2 →∞

k−

2

k+
2 +k−

2

M2 = 0

limk+
2 →∞

M2 − Ē = limk+
2 →∞

k+
2

k+
2 +k−

2

M2 = M2

and also

lim
k+
2 →∞

Ā = M1,

then as φ
′

(0) > 0, for k+
2 large enough, k

+
1 Āφ

′

(Ē) +
k−

1 (M1 − Ā) > 0, and consequently ∆ > 0, implying
that the eigenvalues corresponding to the equilibrium

have negative real parts.

• Inhibitor/Activator case:

The invariance of the flow on D follows from (5)-(8).
Notice in particular that from (7) the condition

φ(0) 6
k−

1 (M1 −A)M2 + k−

2 M2

k+
1 A

follows from the assumption φ(0) 6
k
−

2 M2

k+
1 M1

since 0 6

A 6 M1. Concerning the Hopf bifurcation, the scheme

above can be followed also in this case, but with k−

2

as bifurcation parameter. Let us begin from a point in

parameter space for which xm = Ē and

∆ =k+
1 φ(Ē)(1 +

Ā

M1 − Ā
) + k+

1 Āφ
′

(Ē)

+ k−

1 (M1 − Ā) + k+
2 + k−

2 = ∆0 < 0

as Ā =
k−

1 M1(M2−xm)

k+
1 φ(xm)+k−

1 (M2−xm)
and Ā

M1−Ā
=

k−

1

k+
1

(M2−xm)
φ(xm) . This implies that the two eigenvalues cor-
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responding to the equilibrium have positive real parts.

Since from (3)






limk−

2 →∞
Ē = limk−

2 →∞

k
−

2

k+
2 +k−

2

M2 = M2

limk
−

2 →∞
M2 − Ē = limk

−

2 →∞

k+
2

k
+
2 +k

−

2

M2 = 0

and also
limk−

2 →∞
Ā = 0,

so, as M2 > α there exists a η such that k−

2 > η ⇒
Ē > α, which means φ

′

(Ē) > 0⇒ ∆ > 0 and the two
eigenvalues have negative real parts.

Under the regularity assumptions, in both cases ∆ =
k+
1 φ(Ē)(1+ Ā

M1−Ā
)+k+

1 Āφ
′

(Ē)+k−

1 (M1− Ā)+k+
2 +k−

2

is at least C0 in k+
2 (resp. k−

2 ) (parametric version of the

Cauchy-Lipschitz theorem). Since ∆ takes both positive and
negative values with the evolution of k+

2 (resp. k
−

2 ), it must

be zero for some intermediate value of k+
2 (resp. k

−

2 ). In a

sufficiently small neighborhood of this value, the eigenvalues

will be complex as ∆ is small whereas Ω remains positive.
Then a Hopf bifurcation must occur. Since in both cases

the dynamics of (2) is confined to D and, from (4), the
unique equilibrium point in D is a repeller for the range
of parameters for which ∆ < 0, the Poincaré-Bendixon
Theorem is applicable, implying that ∃ k±

i for which the

system trajectories must approach a closed periodic orbit.

♦

The proof of the above Proposition emphasizes (through

the parameters k+
2 and k−

2 ) the important role of the sec-

ondary reaction involving only E and F . As a matter of

fact, the pathway {1} without this secondary reaction cannot
produce oscillations (the jacobian in that case has a row rank

equal to 1). In fact, without the E ←→ F reaction, the

nonlinear φ would quickly exhausts the concentration of E

in the activator phase or F in the inhibitory phase.

Remark 1 Relaxing monotonicity properties on φ. In the

Activator/Inhibitor case, the monotonicity properties re-

quired above for φ in the two intervals [0, α], [α,∞[ can
be in part relaxed. If we assume only that φ is decreasing in

[α,∞[ (the other assumptions remaining unchanged), then
with xm = max{x ∈ [α,∞[ s.t. φ

′

(x) = φ
′

min} and φ
′

min

minimum of φ
′

in [α,∞[, the previous result still holds.

Remark 2 Relaxing a moiety constraint. The hypothesis of

the above Proposition use the explicit value of A and A
B
at

the equilibrium, values linked by a moiety constraint. The

same Proposition can be formulated without the hypothesis

A + B = M1.

• Activator/Inhibitor case: By writing

∆0 =k+
1 φ(xm)

(

1 +
k−

1

k+
1

(M2 − xm)

φ(xm)

)

+ k+
1 Āφ

′

(xm) + k−

1 B̄ + k+
2 + k−

2

(with B̄ the steady state value of B), the same Propo-

sition holds, as at the equilibrium we still have






k+
1

k−

1

Ā
B̄

φ(Ē) = M2 − Ē

Ē =
k−

2

k+
2 +k−

2

M2

and B̄ goes to 0 when k+
2 goes to +∞ in the same way

as M1 − Ā did.

• Inhibitor/Activator case: The same kind of reasoning

leads to replacing the former expression of ∆0 by

∆0 =k+
1 φ(xm)(1 +

k−

1

k+
1

(M2 − xm)

φ(xm)
)

+ k+
1 Āφ

′

(xm) + k−

1 B̄ + k+
2 + k−

2 .

Then Proposition 1 still holds for this new system.

IV. EXAMPLES OF φ FUNCTIONS

A. Activator/Inhibitor case

• The first example of φ function, is the one suggested

by [20] for the glycolytic oscillations:

φ1(x) =
x

1 + ( x
Ks

)n

with n > 1 (if n = 1, φ is a monotonically increasing
Michaelis-Menten’s law)(cf Figure 1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

 

 

φ
1

φ
1
‘

Fig. 1. Qualitative behavior of the φ1 function, Ks = 1.891 and n = 12.

Such a function is increasing in [0,Kse
−

1
n

ln(n−1)],
and decreasing in [Kse

−
1
n

ln(n−1),∞[. We are in the
Activator/Inhibitor case, with α = Kse

−
1
n

ln(n−1) ≈
1.518. The derivative of φ is:

φ
′

1(x) =
1

1 + ( x
Ks

)n
−

n( x
Ks

)n

(1 + ( x
Ks

)n)2

We know that φ
′

is positive in [0,Kse
−

1
n

ln(n−1)] and
negative in [Kse

−
1
n

ln(n−1),∞[. Its minimum depends
only on n

φ
′

min =
−(n− 1)2

4n

and is reached at the point xm = Kse
1
n

ln n+1
n−1 ≈ 1.929.

If we consider the reaction network {1}, then, for the
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set of parameters

M1 = 3, M2 = 4,
k+
1 = 1, k+

1 = 1,
k−

2 = 5
12 , Ks ≈ 1.891,

n = 12, k+
2 ≈ 0.425,

(where k+
2 is chosen according to the equilibrium con-

ditions, so M2 > xm =
k−

2

k+
2 +k−

2

M2 ≈ 1.917), the

condition M2 > α ≈ 1.548 is fulfilled, and we have
∆0 ≈ −0.597 < 0. We also have φ

′

(0) > 0, and
consequently our Proposition can be applied. Numerical

simulations are shown on Figure 2:
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1.8
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2.2

2.4

2.6

2.8

3

Fig. 2. Solutions for A and E, in correspondence of φ1, for 3 values of

the bifurcation parameter k+

2
= 0.42( (left), k+

2
= 0.485 (middle) and

k+

2
= 0.525 (right).

• Another example of function is φ2(x) = Cxe−(x−η)2 .

The shape of the function an its derivative are shown

on Figure 3, and reveal that we are again in the

Activator/Inhibitor case.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

x

 

 

φ
2

φ
2
‘

Fig. 3. Qualitative behavior of φ2 and its derivative, C = 1, η = 1.

The derivative is φ
′

2(x) = C(−2x2 +2ηx+1)e−(x−η)2 .

The point xm in which φ
′

reaches its minimum (for

positive entries) is in the interval [ η
2 +

√
η2+2

2 ,∞[.

Hence we must have M2 > xm + η
2 +

√
η2+2

2 (which

implies M2 > η +
√

η2 + 2 as xm > η
2 +

√
η2+2

2 ).

For {1} with the parameters:
M2 = 4, M1 = 7,
k+
1 = 1, k−

1 = 1,
k+
2 = 0.516, k−

2 = 0.416,
η = 1,

we obtain xm ≈ 2 < M2, and α ≈ 1.367 < M2. For

k+
2 ≈ 0.416, the equilibrium value of E corresponds

to the minimum of φ
′

, and ∆0 ≈ −0.197 < 0. The
hypotheses of Proposition 1 are satisfied, and we obtain

the results shown on Figure 4.
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Fig. 4. Solutions for A and E, in correspondence of φ2, for 3 values of

the bifurcation parameter k+

2
= 0.356 (left), k+

2
= 0.436 (middle) and

k+

2
= 0.7 (right)

B. Inhibitor/Activator case

As an example of the Inhibitor/Activator case, consider

φ3(x) = n−1
n

Kse
−

ln(n−1)
n − x

1+( x

Ks
)n . The behavior of this

function is shown on Figure 5.
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Fig. 5. Qualitative behavior of the φ3 function, Ks ≈ 1.89, n = 10.

Considering again {1} with the parameters:
M1 = 2, M2 = 6,
k+
1 = 10, k+

1 = 1,
k−

2 ≈ 0.083, Ks ≈ 1.79,
n = 4, k+

2 = 5
12 ,

we have xm ≈ 1, ∆0 ≈ −2.70, and α ≈ 1.36 < M2. Hence

such a function fulfills the assumptions of Proposition 1. The

results of a simulation for these values of the parameters is

shown on Figure 6.
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Fig. 6. Solutions for A and E, in correspondence of φ3, for 3 values of

the bifurcation parameter k−

2
= 0.089 (left), k−

2
= 0.103 (middle) and

k−

2
= 0.108 (right)

V. A FEW EXTENSIONS TREATABLE ANALYTICALLY

A. Adding reactions to the elementary kinetic network

Typically, the extension of the scheme of Proposition 1 to

higher dimensional systems cannot be treated analytically.

Consider for example the linear pathway in {2} with the
following dynamics:

FEA

FE

C B D {2}
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dC
dt

= −k+
3 C + k−

3 A
dA
dt

= −k+
1 Aφ(E) + k−

1 B(M2 −E) + k+
3 C − k−

3 A
dB
dt

= k+
1 Aφ(E)− k−

1 B(M2 −E)− k+
4 B + k−

4 D
dE
dt

= −k+
1 Aφ(E) + k−

1 B(M2 −E)− k+
2 E

+k−

2 (M2 −E)
dD
dt

= k+
4 B − k−

4 D.
(9)

Even taking into account the conservation of A+B+C+D,

the characteristic equation associated to the equilibrium of

the system is of order 4, and consequently too complicated
to be treated analytically in general. However, if instead of

{2} we consider the extra reactions as irreversible, we get the
same dynamics (9) but with k−

3 = 0 and k+
4 = 0. Then using

Remark 2, a sufficient condition for the oscillations to appear

can be provided. Looking again at the complete system {2},
if the reaction constants of the two ”outflows” C

k−

3←− A

and B
k+
4−→ D are small, the complete jacobian can be seen

as a perturbation of the jacobian arising in the irreversible

case, and consequently, for small enough coefficients k−

3

and k+
4 , we can again use the sufficient condition given in

Proposition 1. Under this “small coefficients” assumption,

the argument can be extended to arbitrarily long (linear)

chains. In the general case, however, one must resort to

numerical simulation.

B. A further coupling mechanism

A further elementary reaction scheme, of the same com-

plexity as {1}, is shown in {3}. In nuce, this scheme is

A B

FE

E {3}

inspired by the model of the sulfur assimilation pathway of

[19] in which the final product, cysteine, at high concentra-

tions has a negative feedback effect on the initial sulfate

uptake. Using the same tools as above, we can first see

that the reaction graph {3} is such that A + F = M1 and

B +E = M2. Hence the system has two free variables only,

A and E, and we have







dA
dt

= −k+
1 Aφ(E) + k−

1 (M2 −E)φ(M1 −A)
dE
dt

= −k+
1 Aφ(E) + k−

1 (M2 −E)φ(M1 −A)
−k+

2 E + k−

2 (M2 −E)
(10)

for which the equilibrium conditions are






Ē =
k−

2

k+
2 +k−

2

M2

M1 − Ā =
k+
1 (k+

2 +k−

2 )

k−

1 k+
2

Ā
M2

φ(Ē).
(11)

The characteristic equation is consequently:

s2 + ∆̂s + Ω̂ = 0

where ∆̂ = k+
1 φ(Ē)+k−

1 (M1−Ā)+k+
1 Āφ

′

(Ē)+k−

1 (M2−
Ē) + k+

2 + k−

2 and Ω̂ = (k+
1 φ(Ē) + k−

1 (M2 − Ē)(M1 −
Ā))(k+

2 +k−

2 ). The equations are very similar to those of sec-
tion III. Equation (11) also shows that one of the two equilib-

rium constraints is modified. In the Activator/Inhibitor case,

with ∆̂0 = k+
1 φ(Ē)(1 +

k
+
1 (k+

2 +k
−

2 )

k+
2

Ā
M2

) + k+
1 Āφ

′

(xm) +

k−

1 (M1 − Ā) + k+
2 + k−

2 as a new value for ∆0, the same

result will still hold.

VI. CONCLUSION

The aim of this paper is to provide a set of sufficient

conditions for an allosteric cofactor action to induce sus-

tained oscillations in a simple reaction network. Although

analytically provable mechanisms inducing oscillations can

be found only in low dimensional reaction networks, their

study is important also for the understanding of (more real-

istic) higher dimensional systems, as the oscillatory behavior

is typically observed also for these last.
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