
Semi-Global Asymptotic Stability of a Class of Sampled-data

Nonlinear Systems in Output Feedback Form

Buzhou Wu and Zhengtao Ding

Abstract— The paper considers sampled-data output feed-
back control of a class of nonlinear systems in output feedback
form. The underlying continuous-time controller is designed
based on backstepping technique, employing a linear dynamic
filter, and globally asymptotically stabilises the system. Rig-
orous analysis shows that when implemented with a sam-
pling and zero-order hold device, the sampled-data version
of the continuous-time controller semi-globally asymptotically
stabilises the original system to be controlled, in the sense that
the sampling period can be arbitrarily small.

I. INTRODUCTION

Over decades, sampled-data control has played an ever-

increasing important role in control engineering practice, due

to wide applications of digital computers. Compared with

that of linear systems, of which the latest results, see [1]

and the references therein, sampled-data control of nonlinear

systems remains a more challenging problem. This partly

results from the fact that an exact, discrete-time model of a

nonlinear system is generally not available for design [4].

The approaches to nonlinear sampled-data control mainly

fall into two categories: approximate discrete-time model

based approach, and emulation approach. For detailed results

based on approximate discrete-time models, refer to [2], [3],

[4]. A typical result of approximate discrete-time model-

based design, is that the resultant sampled-data controller

ensures practical stability of a nonlinear continuous-time

plant. Emulation design exploits the advantages of existing

continuous-time control design, and most of the results in

this regard take the spirit of fast sampling. That means, if the

sampling period is small enough, the sampled-data version

of a corresponding continuous-time controller, implemented

using a sampling and hold device, can still stabilise the

system to some extent, as expected. Although not necessarily

providing constructive methods for sampled-data controller

design, emulation design is still of considerable practical

importance due to simplicity of its implementation.

Previous efforts of emulation in the literature mainly

attempted to establish certain stability preservation under

sampling. For general nonlinear systems, the effect of fast

sampling on static controllers was investigated in [10];

An ISS stability result was shown in [12] both for static

controllers and for dynamic ones; asymptotic controllability

and observability of the underlying continuous-time system

was proved to imply semi-global practical asymptotic sta-

bilization by a sampled-data output feedback controller [8];
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a similar result via a different approach, gap metric theory,

was presented in [9]. A sampled-data scheme for adaptive

control of a class of nonlinear systems was presented in [14].

When it comes to some particular nonlinear systems, results

in [6] and [7] have shown that the sampled-data version of an

output feedback controller using high-gain observers ensures

local practical stability of the overall nonlinear sampled-

data system, if the underlying continuous-time system is

locally asymptotic stable, and specifically, local exponential

stability if it is local exponential stable and the continuous-

time controller uses state feedback.

For a class of nonlinear systems in output feedback form,

it is known that a continuous-time output feedback controller

based on a filtered transformation [13] can be designed

to guarantee global asymptotic stability. However, stability

analysis still remains an issue for such a system when

a sampled-data version of the continuous-time control is

applied, which is considered here in this paper. The analysis

of the present paper shows that if the sampling period can be

chosen arbitrarily small, then the sampled-data version of the

existing continuous-time controller will still semi-globally

asymptotically stabilise the original continuous-time system

to be controlled. Note that this stability result is obtained

under local Lipschitz conditions. In addition, backstepping

technique is applied to obtain the continuous-time controller,

and therefore, our result can also be interpreted as a step

toward understanding the effect of sampling on backstepping

controllers. This is important because backstepping, as one of

few systematic control design schemes for nonlinear systems,

has been intensively used in literature.

II. PROBLEM STATEMENT

We consider sampled-data control of one class of single-

input-single-output nonlinear systems which can be trans-

formed into the following output feedback form

ẋ = Acx + φ(y) + bu

y = Cx (1)

with

Ac =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0










, b =













0
...

0
bρ

...

bn













,

C =
[
1 0 · · · 0

]
,
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where x ∈ Rn is the state vector, u, y ∈ R are the input and

the output respectively, b ∈ Rn is an known vector, while

φ(y) is a smooth vector field with each element being a

nonlinear function of y and satisfying φ(0) = 0.

Assumption 1: The system is of minimum phase, i.e., the

polynomial B(s) =
∑n

i=ρ bis
n−i is Hurwitz.

For the above system, the sampled-data controller is given

as follows

ud(t) = uc

(
y(mT ), ξ(mT )

)
, ∀t ∈ [mT, mT + T ) (2)

ξ(mT ) = eΛT ξ((m − 1)T ) + bf �

ud

(
y((m − 1)T ), ξ((m − 1)T )

)
∫ T

0

eΛτdτ(3)

where uc is the continuous-time controller designed in next

section, y(mT ) is obtained by sampling y(t) at each sam-

pling instant, ξ(mT ) is the discrete-time implementation of

the filter introduced in next section, T is the fixed sampling

period, m = 0, 1, 2, · · · .
The problem considered here is to prove that the sampled-

data controller (2)-(3) will ensure semi-global asymptotic

stability of system (1), if T can be very small.

III. PRELIMINARY RESULTS

In this section we briefly describe the continuous-time

control design and the associated stability result for this

particular system, which is the foundation of our analysis

for sampled-data case.

A. State Transformation

For system (1) with relative degree ρ ≥ 2, we can

introduce the following (ρ − 1)th order filter








ξ̇1

ξ̇2

...

ξ̇ρ−1








=








−λ1 1 0. . . 0
0 −λ21. . . 0
...

...
...

...
...

0 0 0. . .−λρ−1















ξ1

ξ2

...

ξρ−1








+








0
0
...

1








u

△
= Λξ + bfu (4)

where λi > 0, i = 1, · · · , ρ− 1, are the design parameters.

With the vectors d̄i ∈ Rn, defined recursively by d̄ρ−1 = b
and d̄i = Acd̄i+1 + λi+1d̄i+1 for i = ρ − 2, · · · , 1, the

following filtered transformation

η = x −

ρ−1
∑

i=1

d̄iξi (5)

can transform system (1) into

η̇ = Acη + φ(y) + dξ1

y = Cη (6)

where d = [Acd̄1 +λ1d̄1]. It can be shown that d1 = bρ and

n∑

i=1

dis
n−i = B(s)

ρ−1
∏

i=1

(s + λi) (7)

Since all λi are positive, d is a Hurwitz vector with d1 =
bρ = 1 (here we assume bρ = 1 without loss of generaility).

Therefore with ξ1 being the input, system (6) is of mini-

mum phase and relative degree one. To extract the internal

dynamics of (6), introduced is the following state transform

z1 = η2 − d2η1

...

zn−1 = ηn − dnη1

y = η1 (8)

where z ∈ Rn−1. In the new coordinates, system (6) can be

written as

ż = Dz + φz(y)

ẏ = z1 + φy(y) + ξ1 (9)

where D is the companion matrix of d[1] and given by

D =






−d2 1 · · · 0
...

...
. . .

...

−dn 0 · · · 0






and

φz(y) = y










d3 − d2
2

d4 − d3d2

...

dn − dn−1d2

−dnd2










+










φ2 − φ1d2

φ3 − φ1d3

...

φn−1 − φ1dn−1

φn − φ1dn










φy(y) = φ1 + yd2

where φi denotes the ith component of the vector φ. Both

φy and φz are locally Lipschitz in their arguments. Note that

due to φ(0) = 0, we have φy = yφ̄y(y) and φz(y) = yφ̄z(y).
Finally the model for control design is the extended system

consisting of (9) and (4).

B. The Continuous-Time Control

If system (1) is of relative degree one, then we are actually

dealing with the following system

ż = Dz + φz(y)

ẏ = z1 + φy(y) + uc1 (10)

and the continuous-time control uc1 is designed as

uc1 = −φy − ky − yφ̄T
z P 2φ̄z (11)

where k is a positive real and P is the symmetric positive

definite solution of the Lyapunov equation

DTP + PD = −(γ + 2)I (12)

with γ being a positive real.

In the case of relative degree ρ ≥ 2, backstepping

technique will be employed to find the final control u c from

the desirable value of ξ. By introducing ξ̃1 = ξ1 − ξ̂1 with

ξ̂1 = uc1, we have

˙̃
ξ1 = −λ1ξ1 −

∂ξ̂1

∂y
ẏ + ξ2 (13)
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Now we deal with the subsystem consisting of (9) and (13),

which can be stabilized by the stabilizing function

ξ̂2 = −y + λ1ξ̂1 +
∂ξ̂1

∂y
(φy + ξ1) − ξ̃1(

∂ξ̂1

∂y
)2 (14)

Continuing in this way, we can easily obtain a sequence of

ξ̂i (3 ≤ i ≤ ρ)

ξ̂i = −ξ̃i−2 + λi−1ξ̂i−1 +
∂ξ̂i−1

∂y
(φy + ξ1)

−

(
4

3

)i−2

ξ̃i−1(
∂ξ̂i−1

∂y
)2 +

i−2∑

j=1

∂ξ̂i−1

∂ξj

ξ̇j (15)

and a sequence of ξ̃i (3 ≤ i ≤ ρ − 1)

˙̃
ξi = −λiξ̃i −λiξ̂i −

i−1∑

j=1

∂ξ̂i

∂ξj

ξ̇j −
∂ξ̂i

∂y
(φy + ξ1)+ ξi+1 (16)

Note that the item (4/3)i−2 is added for presentation conve-

nience, which eventually results in the form of (18) if P is

chosen as in (12). Finally we set the continuous-time control

as uc = ξ̂ρ.

C. Stability of the Continuous-Time System

We shall establish the asymptotical stability of the origin

of system (1) forced by the continuous-time control u c. To

that end, we start with the Lyapunov function

Vc = zTPz +
1

2
y2 +

1

2

ρ−1
∑

i=1

ξ̃2
i (17)

and from (11) ∼ (16), its time derivative satisfies

V̇c ≤ −ky2 − γzTz − λ0

ρ−1
∑

i=1

ξ̃2
i (18)

where λ0 := min(λ1, · · · , λρ−1). This proves by the theorem

4.10 in [11] that (y, z, ξ̃) = 0 is an exponentially stable

equilibrium point of the extended system of (9) and (4),

which implies that (y, z, ξ) = 0 is an globally asymptotic

equilibrium point, and so is the origin (x, ξ) = 0.

IV. MAIN RESULTS

The following lemma is needed for stability analysis in

sampled-data case.

Lemma 1: Let V : Rn → R+ be a continuously differen-

tiable, radially unbounded, positive definite function. Define

D := {χ ∈ Rn|V (χ) ≤ r} with r > 0. Suppose

V̇ ≤ −αV + βVm, ∀t ∈ (mT, (m + 1)T ], (19)

hold for all χ(mT ) ∈ D, where α, β are any given positive

reals with α > β, T > 0 the fixed sampling period and

Vm := V (χ(mT )). If χ(0) ∈ D, then the following holds:

lim
t→∞

χ(t) = 0 (20)

Proof. Since χ(0) ∈ D, then (19) holds for t ∈ (0, T ] with

the following form

V̇ ≤ −αV + βV (χ(0)).

Using comparison lemma [11] it is easy to get from the

above that for t ∈ (0, T ],

V (χ(t)) ≤ e−αtV0 +
1 − e−αt

α
βV0

= q(t)V0, (21)

where

q(t) :=

(

e−αt +
β

α
(1 − e−αt)

)

Since α > β > 0, then q(t) ∈ (0, 1), ∀t ∈ (0, T ]. Then we

have

V (χ(t)) < V0, ∀t ∈ (0, T ]. (22)

Particularly, letting t = T in (21) leads to

V1 ≤ q(T )V0 (23)

which means that V1 ∈ D. Therefore (19) holds for t ∈
(T, 2T ]. By induction, we have

V (χ(t)) < Vm, ∀t ∈ (mT, (m + 1)T ]. (24)

which states inter-sample behaviour of the sampled-data

system concerned, and in particular

Vm+1 ≤ q(T )Vm (25)

indicating that V decreases at two consecutive sampling

points with a fixed ratio. From (25),

Vm ≤ q(T )Vm−1 ≤ qm(T )V0 (26)

which implies that limm→∞ Vm = 0. The conclusion then

follows from (24), which completes the proof.

A. Stability of the Sampled-Data System

It is easy to see from (3) that ξ(mT ) is the exact, discrete-

time model of the filter

ξ̇ = −Λξ + bfud (27)

due to the fact that ud remains constant during each interval

and the dynamics of ξ shown in (27) is linear. Then (3) and

(27) are virtually equivalent at each sampling instant. This

indicates that we can use (27) instead of (3) for stability

analysis of the sampled-data system.

Let χ := [z; y; ξ̃] and we have the following result:

Theorem 1: For the extended system consisting of (9), (4)

and the sampled-data controller ud1 shown in (2) and (3), and

a given neighbourhood of the origin B r := {χ ∈ Rn| ||χ|| ≤
r} with r any given positive real, there exists a constant

T1 > 0 such that, for all 0 < T < T1 and for all χ(0) ∈ Br,

the system is asymptotically stable.

Proof. We still choose V (χ) = zTPz + 1
2y2 + 1

2

∑ρ−1
i=1 ξ̃2

i

as the Lyapunov function candidate for the sampled-data

system. We start with some sets used throughout the proof.

Define c := maxχ∈Br
V (χ) and the set Ωc := {x ∈

Rn|V (χ) ≤ c}. There exist two K functions ψ1, ψ2 such

that ψ1(||χ||) ≤ V (χ) ≤ ψ2(||χ||). Let l = ψ−1
1 (c) + ν with

ν a positive number, and define Bl := {χ ∈ Rn| ||χ|| ≤ l}.

Then Br ⊂ Ωc ⊂ Bl. The constants L1 and L2 are Lipschitz

constants of the functions φy , φz with respect to Bl.
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These local Lipschitz conditions establishes that for the

overall sampled-data system with χ(0) ∈ Ωc, there exists a

unique solution χ(t) over some interval [0, t1). Notice that

t1 might be finite. However, our analysis below will show

that the solution can be extended one sampling interval after

another, and thus exists for all t ≥ 0 with the property that

limt→∞ χ(t) = 0. Particularly we intend to formulate the

time derivative of the Lyapunov function V into the form

shown in (19) (or (45)), which is shown below.

Consider the case when t = 0, χ(0) ∈ Br ⊂ Ωc. First,

there exists a T ∗
1 > 0, and for all T ∈ (0, T ∗

1 ), the following

holds:

χ(t) ∈ Bl, ∀t ∈ [0, T ], χ(0) ∈ Ωc (28)

The existence of T ∗
1 is ensured by continuous dependency

of the solution χ(t) on the initial conditions.

Next we shall derive the bounds for ||ξ(t) − ξ(0)|| and

|y(t) − y(0)| during t ∈ [0, T ] with 0 < T < T ∗
1 . We have

from (27)

ξ(t) = eΛtξ(0) +

∫ t

0

eΛ(t−τ)bfuddτ (29)

Since Λ is a Hurwitz matrix, there exist positive reals k3,

k4, σ2 such that ‖eΛt‖ ≤ k3e
−σ2t and ‖eΛt− I‖ ≤ k4e

−σ2t,

where I is the identity matrix. Then, using the Lipschitz

property of uc with respect to the set Bl and the fact that

ud(0, 0) = 0, it can be obtained from (29) that

∫ t

0

||ξ(τ)||dτ ≤
k3‖ξ(0)‖

σ2

(
1 − e−σ2t

)

+
k3Lu

σ2

(
|y(0)| + ‖ξ(0)‖

)
t (30)

and

‖ξ(t) − ξ(0)‖ ≤ k4‖ξ(0)‖(1 − e−σ2t)

+|ud

(
y(0), ξ(0)

)
|

∫ t

0

k3e
−σ2(t−τ)dτ

≤ δ1(T )|y(0)| + δ2(T )||ξ(0)|| (31)

where δ1(T ) = σ−1
2 k3Lu

(
1 − e−σ2t

)
, δ2(T ) = (k4 +

σ−1
2 k3Lu)

(
1− e−σ2t

)
and Lu is a Lipschitz constant of uc.

Now calculate the estimate of |y(t) − y(0)| during the

interval [0, T ], provided that χ(0) ∈ Br ⊂ Ωc and T ∈
(0, T ∗

1 ). From (9),

y(t) = y(0) +

∫ t

0

z1(τ)dτ +

∫ t

0

ξ1(τ)dτ

+

∫ t

0

(

φy(y) − φy

(
y(0)

))

dτ

+

∫ t

0

φy

(
y(0)

)
dτ (32)

It can then be shown that

|y(t) − y(0)| ≤

∫ t

0

‖z(τ)‖dτ

︸ ︷︷ ︸

∆1

+

∫ t

0

‖ξ(τ)‖dτ

︸ ︷︷ ︸

∆2

+

∫ t

0

L1|y(τ) − y(0)|dτ

+

∫ t

0

L1|y(0)|dτ (33)

where ∆2 is already shown in (30) and ∆1 is computed as

follows. From the first equation of system (9), we obtain

z(t) = eDtz(0) +

∫ t

0

eDtφz

(
y(τ)

)
dτ (34)

Since D is a Hurwitz matrix, there exist positive reals k2,

σ1 such that ‖eDt‖ ≤ k2e
−σ1t. Thus, from (34)

‖z(t)‖ ≤ k2e
−σ1t‖z(0)‖

+

∫ t

0

k2e
−σ1(t−τ)‖φz

(
y(τ)

)
− φz

(
y(0)

)
‖dτ

+

∫ t

0

k2e
−σ1(t−τ)‖φz

(
y(0)

)
‖dτ

≤ k2e
−σ1t‖z(0)‖

+L2

∫ t

0

k2e
−σ1(t−τ)|y(τ) − y(0)|dτ

+L2

∫ t

0

k2e
−σ1(t−τ)|y(0)|dτ (35)

Then the following inequality holds

∆1 ≤
k2‖z(0)‖

σ1

(
1 − e−σ1t

)
+

k2L2

σ1
|y(0)|t

+
k2L2

σ1

∫ t

0

|y(τ) − y(0)|dτ (36)

With (36), (30) and (33), it follows that

|y(t) − y(0)| ≤ A1(1 − e−σ1t) + A2(1 − e−σ2t)

+B2t + H

∫ t

0

|y(τ) − y(0)|dτ (37)

where A1 = σ−1
1 k2‖z(0)‖, H = σ−1

1 k2L2 + L1, A2 =
σ−1

2 k3||ξ(0)|| and B2 = L1|y(0)| + σ−1
1 k2L2|y(0)| +

σ−1
2 k3Lu|y(0)| + σ−1

2 k3Lu||ξ(0)||. Define A3 := A1 + A2

and σ0 := max(σ1, σ2), and we have

|y(t) − y(0)| ≤ A3(1 − e−σ0t)

+B2t + H

∫ t

0

|y(τ) − y(0)|dτ (38)

Applying Gronwall-Bellman inequality [11] to (38) produces

|y(t) − y(0)| ≤ A3

(
1 − e−σ0t

)
+

B2

H

(
eHt − 1

)

+A3

(
σ0e

Ht + He−σ0t

−(H + σ0)
)
(H + σ0)

−1
(39)

Setting t = T in the right side of (39) leads to

|y(t) − y(0)| ≤ δ3(T )|y(0)| + δ4(T )||z(0)||

+δ5(T )||ξ(0)|| (40)
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where

δ3(T ) = H−1(L1 + σ−1
1 k2L2 + σ2k

−1
3 Lu)

(
eHT − 1

)

δ4(T ) = σ−1
1 k2

(
σ0e

HT + He−σ0T − (H + σ0)
)

�

(H + σ0)
−1

+ σ−1
1 k2

(
1 − e−σ0T

)

δ5(T ) = σ−1
2 k3(1 − e−σ0T ) + σ−1

2 k3Lu(eHT − 1)

+σ−1
2 k3Lu

(
σ0e

HT + He−σ0T − (H + σ0)
)

�

(H + σ0)
−1

Note that ||ξ(0)|| appears in (31) and (40) while for the

analysis using Lyapunov function to carry on, || ξ̃(0)|| is

needed. Therefore it is necessary to find out an expression

of ||ξ(0)|| that exclusively involves ||ξ̃(0)||, |y(0)|, which is

shown below.

Notice that due to the special structure of the filter (4)

and the backstepping technique, each stabilising function

has the property that ξ̂1 = ξ̂1(y), ξ̂1(0) = 0, and ξ̂i =
ξ̂i(y, ξ1, · · · , ξi−1) and ξ̂i(0, · · · , 0) = 0, i = 2, · · · , ρ − 1.

From ξ̃1 = ξ1 − ξ̂1 we have

|ξ1(0)| ≤ |ξ̃1(0)| + |ξ̂1(0)| ≤ |ξ̃1(0)| + L1|y(0)|(41)

where with a bit abuse of notation, L1 is the Lipschitz

constant of ξ̂1 with respect to the set Bl. It follows from

(41) that |ξ1(0)| is bounded given bounded | ξ̃1(0)| and |y(0)|,
which in return implies that so is |ξ2(0)|, as we have

|ξ2(0)| ≤ |ξ̃2(0)| + |ξ̂2(0)| ≤ |ξ̃2(0)| + L2|y(0)| + L2|ξ1(0)|

Continuing this way we can prove that all |ξi(0)| will be

bounded given [z(0), y(0), ξ̃(0)]T ∈ Bl. Thus, a constant L0

can be found such that the following holds

||ξ(0)|| ≤ L0(||ξ̃(0)|| + |y(0)|). (42)

which implies that if [z(0), y(0), ξ̃(0)]T ∈ Bl, then

[z(0), y(0), ξ(0)]T will be confined in a bounded set, denoted

by B′
l .

Next we shall study the behaviour of the sampled-data

system during the interval t ∈ (0, T ] with χ(0) ∈ Br ⊂
Ωc. When t ∈ (0, T ], the time derivative of the Lyapunov

function V (χ) satisfies

V̇ = −(γ + 2)‖z‖2 + 2zTPφz + y(z1 + φy + ξ1)

+

ρ−2
∑

i=1

ξ̃i
˙̃ξi + ξ̃ρ−1(ud − uc)

)
+

ξ̃ρ−1

(
− λρ−1ξρ−1 + uc −

∂ξ̂ρ−1

∂y
(z1 + φy + ξ1)

≤ −ky2 − γ||z||2 − λ0

ρ
∑

i=1

ξ̃2
i + ||ξ̃|||ud − uc| (43)

In addition, we have

||ξ|||ud − uc| ≤ Lu||ξ||(|y − y(0)| + ||ξ − ξ(0)||)

≤ Lu||ξ||(δ1(T ) + δ3(T ))|y(0)|

+Lu||ξ||δ4(T )||z(0)||

+Lu||ξ||(δ2(T ) + δ5(T ))||ξ(0)||

≤ ε1(T )|y(0)|2 + ε2(T )||z(0)||2

+ε3(T )||ξ(0)||2 + ε4(T )||ξ̃||2 (44)

where ε1(T ) = Lu

2

(
δ1(T ) + δ3(T )

)
, ε2 = Lu

2 δ4(T ), ε3 =
Lu

2 (δ2(T )+ δ5(T )), ε4 = Lu

2

∑5
i=1 δi(T ), Lu is a Lipschitz

constant of uc with respect to the set B ′
l.

From (42) – (44) we then have

V̇ ≤ −ky2 − γ||z||2 − (λ0 − ε4)ξ̃
2

+(ε1(T ) + 2L2
0ε3(T ))|y(0)|2 + ε2(T )||z(0)||2

+2L2
0ε3(T )||ξ̃(0)||2

= −α1(T )V + β1(T )V (z(0), y(0), ξ̃(0)) (45)

where

α1(T )=min

{

2k,
γ

λmax(P )
, 2(λ0 − ε4(T ))

}

β1(T )=max

{

2(ε1(T ) + 2L2
0ε3(T )),

ε2(T )

λmin(P )
, 4L2

0ε3(T )

}

Note from (31), (40) and (44) that each ε i (1 ≤ i ≤ 4) is a

continuous function of T with εi(0) = 0. Define e1(T ) :=
α1(T ) − β1(T ) and we have e1(0) > 0 as α1(0) > 0 while

β1(0) = 0 . It can also be established from (45) that e1(T )
is a decreasingly continuous function of T , which asserts

by the continuity of e1(T ) the existence of T ∗
2 so that for

0 < T < T ∗
2 , e1(T ) > 0, that is, 0 < β1(T ) < α1(T ).

Lastly, set T1 = min(T ∗
1 , T ∗

2 ), and from lemma 1 it is

known that V1 ≤ c, ie, χ(T ) ∈ Ωc, and subsequently, all the

above analysis can be repeated for every interval [mT, mT +
T ]. Applying lemma 1 completes the proof.

Remark 1: Theorem 1 only declares the existence of a

certain upper limit of sampling period, but states no infor-

mation regarding the effects of control parameters and initial

sets of the system on the upper limit. Those effects are still

subject to further investigation.

Remark 2: If ρ = 1, then the controller reduces to a static

output feedback controller. If ρ ≥ 2, the dynamic controller

uses a particular linear filter, which brings in convenience in

control implementation, in contrast to other observer-based

approaches, for instance, [6].

V. SIMULATION

Consider the following system with relative degree ρ = 2

ẋ1 = x2 + y2

ẋ2 = u

y = x1 (46)

The filter ξ̇ = −λξ + u is introduced so that the filtered

transformation η1 = x1 and η2 = x2 − ξ, and the state

transformation z = η2 − λη1 can render the system into the

following form

ż = −λz + y2 − λ2y − λy2

ẏ = z + (λ + y)y + ξ

Finally, the stabilizing function ξ̂ = −ky−(λ+y)y− 1
2λ2(y+

λ)2y2 and the control uc can be obtained using (14). For

simulation, we choose λ = 3, k = 4.

Simulations are carried out by Simulink using zero-order

hold blocks for the case where the initial values are x1(0) =
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1 and x2(0) = 200. Results shown in Fig.1 and Fig.2

indicate that the sampled-data system is asymptotically stable

when T = 0.0001s, which is confirmed by a closer look at

the convergence of V shown in Fig.3. Further simulations

show that the overall system is unstable if T = 0.0005s.

In summary, the example illustrates that for a range of

sampling period T , the sampled-data controller designed in

the former sections can asymptotically stabilise the sampled-

data system.
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Fig. 1. The time response of x1 for T = 0.0001
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Fig. 2. The time response of x2 for T = 0.0001

VI. CONCLUSION

We have presented an analysis for sampled-data output

feedback control of one class of nonlinear systems in output

feedback form under fast-sampling principle. It has been

shown that the sampled-data version of continuous-time

controllers will still semi-globally asymptotically stabilise

the system, provided that the sampling period T is small

enough.
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Fig. 3. The convergence of V for T = 0.0001
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