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Abstract— This paper presents synthesis procedures for the
design of both robust and gain-scheduled H∞ static output
feedback controllers for discrete-time linear systems with time-
varying parameters. The parameters are assumed to vary inside
a polytope and have known bounds on their rate of variation.
The geometric properties of the polytopic domain are exploited
to derive a finite set of linear matrix inequalities that consider
the bounds on the rate of variation of the parameters. A
numerical example illustrates the proposed approach.

I. INTRODUCTION

For more than a decade, analysis and control design for

linear parameter-varying (LPV) models have received a lot

of attention from the control community. This stems from the

fact that LPV models are useful to describe the dynamics of

linear systems affected by time-varying parameters as well as

to represent nonlinear systems in terms of a family of linear

models [1]. In the LPV control framework, the scheduling

parameters that govern the variation of the dynamics of the

system are usually unknown, but supposed to be measured

or estimated in real-time [2]. There is a continuing effort to-

wards the design of LPV controllers, scheduled as a function

of the varying parameters, to achieve higher performance

while still guaranteeing stability for all possible parameter

variations (see, for instance, [1, 3–8]).

One practical way (e.g. [9–11]) to compute a gain-

scheduled controller for a given LPV system consists of

the following steps. First determine a family of linear time-

invariant (LTI) models by selecting different operating con-

ditions of the system and then design a local controller for

each one of the LTI models. Next, based on the values of

the parameters (measured or estimated on-line), schedule the

local controllers using some interpolation method. The final

step consists of checking the closed-loop stability and per-

formance using extensive simulation. Although the system

performance can be improved by means of increasing the

number of local models (at the expense of increasing the

computational burden) this approach may be unreliable, since

the closed-loop stability and performance are only verified

through simulations.

To overcome these difficulties, several analysis and syn-

thesis results for LPV systems have been proposed based on
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different types of Lyapunov functions that are able to guar-

antee closed-loop loop stability and performance. However,

many of these approaches (e.g. [12, 13] among others) use

the notion of quadratic stability where the Lyapunov matrix

is constant. This generally leads to conservative results for

practical applications since it allows arbitrarily fast variation

of the scheduling parameters.

To alleviate some of the conservatism associated with

the quadratic stability-based approaches, many works using

parameter-dependent Lyapunov functions have been pub-

lished (e.g. [14–21]). For instance, an affine Lyapunov matrix

is used in [20] to derive linear matrix inequality (LMI)

conditions for the synthesis of gain-scheduled H∞ state

feedback controllers for linear discrete-time systems with

time-varying parameters belonging to a polytope. Although

less conservative than the approaches based on quadratic

stability, these LMI conditions still allow arbitrarily fast

parameter variations which are not realistic for practical

applications. In [14], a piecewise-constant Lyapunov function

is used to derive synthesis conditions for gain-scheduled H∞

static state feedback controllers for discrete-time multi-affine

LPV systems with bounded parameter variation. In [21],

on the other hand, LMI conditions are presented for the

synthesis of stabilizing gain scheduled full state feedback

controllers for polytopic time-varying systems considering

bounds on the rate of variation of the scheduling parameters.

The aim of this work is to provide LMI conditions for

the synthesis of gain-scheduled H∞ static output feedback

controllers for discrete-time linear systems with time-varying

parameters belonging to a polytope with a prescribed bound

on the rate of variation. In this way, this paper extends

the results in [21] by allowing static output feedback and

considering H∞ performance. The approach is restricted to

the case where the measurement equation is unaffected by

the control inputs, the exogenous disturbance inputs and the

scheduling parameter.

The paper is organized as follows. Section III provides pre-

liminary material concerning the modeling of the polytopic

domain. Section IV provides a finite set of LMIs to calculate

an upper bound on the H∞ performance, while Section V

extends this result to the synthesis of an H∞ static output

feedback controller. A numerical example is presented in

Section VI that shows the benefits of the proposed approach.

The conclusions are presented in Section VII.
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II. NOTATION

The ℓn
2 space of square-summable sequences on the set of

nonnegative integers Z+ is given by

ℓn
2 ,

{

f : Z+ →R
n

∣

∣

∣

∞

∑
k=0

f [k]
T f [k] < ∞

}

.

The 2-norm is defined as ‖x[k]‖2
2 = ∑∞

k=0 x[k]T x[k]. The identity

matrix of size r × r is denoted as Ir. The notation 0n,m

indicates an n×m matrix of zeros. The convex hull of a

set X is denoted by co{X}.

III. PRELIMINARIES

Consider the discrete-time polytopic linear time-varying

system

x[k+1] = A(α [k]) x[k]+ Bw(α [k]) w[k]+ Bu(α [k]) u[k]

z[k] = Cz(α [k]) x[k]+ Dw(α [k]) w[k] + Du(α [k]) u[k]
(1)

where x[k] ∈ R
n is the state, w[k] ∈ R

r the exogenous input,

u[k] ∈ R
m the control input and z[k] ∈ R

p the system out-

put. The system matrices A(α [k]) ∈ R
n×n, Bw(α [k]) ∈ R

n×r,

Bu(α [k]) ∈ R
n×m, Cz(α [k]) ∈ R

p×n, Dw(α [k]) ∈ R
p×r and

Du(α [k]) ∈R
p×m belong to the polytope

D = { (A,Bw,Bu,Cz,Dw,Du)(α [k]) :

(A,Bw,Bu,Cz,Dw,Du)(α [k])

=
N

∑
i=1

αi[k](A,Bw,Bu,Cz,Dw,Du)i , α [k] ∈ ΛN} ,

where, for all k ≥ 0, the vector of time-varying parameters

α [k] belongs to the unit simplex

ΛN =

{

ξ ∈R
N :

N

∑
i=1

ξi = 1,ξi ≥ 0, i = 1, . . . ,N

}

. (2)

For all k ≥ 0, the rate of variation of the parameters

∆αi[k] = αi[k+1]−αi[k], i = 1, . . . ,N (3)

is assumed to be limited by an a priori known bound b such

that

−bαi[k] ≤ ∆αi[k] ≤ b(1−αi[k]), i = 1, . . . ,N (4)

with b ∈ R, b ∈ [0,1]. As recently discussed in [21], less

conservative results can be obtained by explicitly taking into

account that ∆αi[k] satisfies (4). Following [21], the space

where the vector ∆α [k] can assume values can be modeled

by the set

Γb =
{

δ ∈R
N : δ ∈ co

{

h1, . . . ,hN
}

,

N

∑
i=1

h
j
i = 0, j = 1, . . . ,N, h ∈R

N
}

.

The first step to construct the vectors h j is to observe that

due to (2) and (3), one has

N

∑
i=1

∆αi[k] = 0.

Solving this equality under the extreme values of (4), one

has the following vectors (solutions) h j (depending on both

b and α [k])

[

h1 · · ·hN
]

= b











1−α1[k] −α1[k] . . . −α1[k]

−α2[k] 1−α2[k] . . . −α2[k]

...
...

. . .
...

−αN [k] −αN [k] . . . 1−αN [k]











By taking the convex combination of the N columns h j using

β [k] ∈ ΛN , the following expression is obtained

∆α j [k] = b(β j[k]−α j[k]). (5)

The next section presents LMI conditions, based on affine

parameter-dependent Lyapunov functions, that provide, for

all α ∈ ΛN and ∆α ∈ Γb, an upper bound η on the H∞

performance of system (1).

IV. GUARANTEED H∞ PERFORMANCE

The aim of this section is to provide through a finite set

of LMIs an H∞ guaranteed cost for system (1) in open-loop,

such that for any input w[k] ∈ ℓr
2, the system output z[k] ∈ ℓp

2

satisfies

‖z[k]‖2 < η ‖w[k]‖2, 0 < η < ∞,

for any possible variation of the parameter α [k] ∈ ΛN with

prescribed bound b on its rate of variation. This main analysis

result is presented in Theorem 2.

Consider the discrete-time linear system (1) in open-loop.

Using the well known bounded-real lemma [22], the H∞

performance for system (1) can be characterized using a

parameter-dependent LMI as described in the next lemma.

Lemma 1 The system (1) in open-loop has an H∞ perfor-

mance bounded by η if, for all α [k] ∈ ΛN , there exists a

symmetric positive definite matrix P(α [k]) such that








P(α [k+1]) ⋆ ⋆ ⋆
P(α [k])A(α [k])T P(α [k]) ⋆ ⋆

Bw(α [k])T 0 ηI ⋆
0 Cz(α [k])P(α [k]) Dw(α [k]) ηI









> 0. (6)

The above characterization of the H∞ performance can

be extended by introducing additional instrumental matrix

variables, in a similar way as done in [23] for the time-

invariant polytopic case. This property is presented in the

next theorem.

Theorem 1 The system (1) in open-loop has an H∞ perfor-

mance bounded by η if, for all α [k] ∈ΛN , there exist a matrix

G(α [k]) and a symmetric positive definite matrix P(α [k]) such

that








P(α [k+1]) ⋆
G(α [k])T A(α [k])T G(α [k])+ G(α [k])T −P(α [k])

Bw(α [k])T 0

0 Cz(α [k])G(α [k])

⋆ ⋆
⋆ ⋆

ηI ⋆
Dw(α [k]) ηI









= Θ(α) > 0. (7)
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Proof:

Actually, (6) and (7) are equivalent. To prove that (6)

implies (7), choose G(α [k]) = G(α [k])T = P(α [k]).
Conversely, assume that (7) is feasible. Hence G(α [k])+

G(α [k])T −P(α [k]) > 0, which implies that G(α [k]) is non-

singular for all α [k] ∈ ΛN . Since P(α [k]) is positive definite

for all α [k] ∈ ΛN the inequality

(P(α [k])−G(α [k]))T
P(α [k])−1 (P(α [k])−G(α [k])) > 0

holds. Therefore

G(α [k])P(α [k])−1G(α [k])T > G(α [k])+ G(α [k])T −P(α [k])

and the LMI (7) becomes








P(α [k+1]) ⋆ ⋆ ⋆
G(α [k])T A(α [k])T Θ22 ⋆ ⋆

Bw(α [k])T 0 ηI ⋆
0 Cz(α [k])G(α [k]) Dw(α [k]) ηI









> 0. (8)

with Θ22 = G(α [k])T P(α [k])−1G(α [k]).
Since G(α [k]) is nonsingular, the LMI (8) can be multiplied

by

T := diag
{

I,G(α [k])−1P(α [k]), I, I
}

on the right and by T T on the left to recover the LMI (6).

This concludes the proof.

For analysis, the conditions in Lemma 1 and Theorem 1

are equivalent. However, for synthesis, the introduction of

G(α [k]) yields less conservative results, as shown in [24].

It is worth to emphasize that the conditions of Theo-

rem 1, which consist in evaluating the parameter depen-

dent LMI for all α [k] in the unit simplex ΛN , leads to

an infinite dimensional problem. However, by imposing on

the Lyapunov matrix P(α [k]) the following affine parameter-

dependent structure

P(α [k]) =
N

∑
i=1

αi[k]Pi, α [k] ∈ ΛN , (9)

a finite set of LMIs in terms of the vertices of the polytope

D can be obtained, as shown in the next theorem.

Theorem 2 The system (1) in open-loop has an H∞ perfor-

mance bounded by η if there exist matrices Gi ∈R
n×n and

symmetric matrices Pi ∈R
n×n such that









(1−b)Pi + bPℓ ⋆ ⋆ ⋆
GT

i AT
i Gi + GT

i −Pi ⋆ ⋆
BT

w,i 0 ηI ⋆

0 Cz,iGi Dw,i ηI









= Θiℓ > 0,

(10)

holds for i = 1, . . . ,N and ℓ = 1, . . . ,N and









Ξ11 ⋆ ⋆ ⋆
GT

j AT
i + GT

i AT
j Ξ22 ⋆ ⋆

BT
w,i + BT

w, j 0 2ηI ⋆

0 Cz,iG j +Cz, jGi Dw,i + Dw, j 2ηI









= Θi jℓ > 0,

(11)

with

Ξ11 = (1−b)Pi +(1−b)Pj + 2bPℓ

Ξ22 = Gi + GT
i + G j + GT

j −Pi−Pj

holds for ℓ = 1, . . . ,N, i = 1, . . . ,N −1 and j = i+ 1, . . . ,N.

Proof:

First note that using (5) and (9), it can be shown that

P(α [k+1]) =
N

∑
i=1

((1−b)αi[k]+ bβi[k])Pi.

Now, multiply (10) by α2
i βℓ and sum for i = 1, . . . ,N and

ℓ = 1, . . . ,N. Likewise, multiply (11) by αiα jβℓ and sum for

ℓ = 1, . . . ,N, i = 1, . . . ,N−1 and j = i+1, . . . ,N. Adding the

resulting two expressions yields

Θ(α) =
N

∑
i=1

N

∑
ℓ=1

α2
i βℓΘiℓ +

N

∑
ℓ=1

N−1

∑
i=1

N

∑
j=i+1

αiα jβℓΘi jℓ.

Therefore, the conditions of Theorem 1 are satisfied since

the set of LMIs (10)–(11) ensures that Θ(α) > 0.

V. GAIN-SCHEDULED STATIC OUTPUT

FEEDBACK

In this section, the analysis result presented in Theorem 2

is extended to provide a finite set of LMI conditions for

the synthesis of a gain-scheduled H∞ static output feedback

controller for system (1). The goal is to provide a parameter-

dependent control law

u[k] = K(α [k])y[k], with K(α [k]) ∈R
m×q,

such that the closed-loop system

x[k+1] = Acl(α [k])x[k]+ Bw(α [k])w[k]

z[k] = Ccl(α [k])x[k] + Dw(α [k])w[k],
(12)

with

Acl(α [k]) = A(α [k])+ Bu(α [k])K(α [k])Cy

Ccl(α [k]) = Cz(α [k])+ Du(α [k])K(α [k])Cy

is asymptotically stable with a bound η on the closed-loop

H∞ performance, guaranteed for all possible variation of the

parameter α [k] ∈ ΛN .

It is assumed that the first q states of the system can be

measured in real-time for feedback without corruption by the

exogenous input w[k], that is, y[k] = Cy x[k], where y[k] ∈ R
q

is the measured output. The matrix Cy is independent of the

time-varying parameters and has the structure

Cy =
[

Iq 0q,n−q

]

, (13)

If this is not the case, one can use a similarity transformation

as in [25], whenever the output matrix is not affected by the

time-varying parameter.

A solution to this H∞ static output feedback design

problem, in terms of a finite set of LMIs, is provided by

the next theorem.
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







(1−b)Pi +(1−b)Pj + 2bPℓ ⋆ ⋆ ⋆
GT

j AT
i + GT

i AT
j + ZT

j BT
u,i + ZT

i BT
u, j Gi + GT

i + G j + GT
j −Pi−Pj ⋆ ⋆

BT
w,i + BT

w, j 0 2ηI ⋆

0 Cz,iG j +Cz, jGi + Du,iZ j + Du, jZi Dw,i + Dw, j 2ηI









= Ψi jℓ > 0 (15)









P(α [k+1]) ⋆ ⋆ ⋆
G(α [k])T A(α [k])T + Z(α [k])T Bu(α [k])T G(α [k])+ G(α [k])T −P(α [k]) ⋆ ⋆

Bw(α [k])T 0 ηI ⋆
0 Cz(α [k])G(α [k])+ Du(α [k])Z(α [k]) Dw(α [k]) ηI









= Ψ(α) > 0 (18)

Theorem 3 If there exist matrices Gi,1 ∈ R
q×q, Gi,2 ∈

R
n−q×q, Gi,3 ∈R

n−q×n−q, Zi,1 ∈ R
m×q, and symmetric ma-

trices Pi ∈R
n×n such that the following LMIs









(1−b)Pi + bPℓ ⋆ ⋆ ⋆
GT

i AT
i + ZT

i BT
u,i Gi + GT

i −Pi ⋆ ⋆

BT
w,i 0 ηI ⋆

0 Cz,iGi + Du,iZi Dw,i ηI









= Ψiℓ > 0,

(14)

hold for i = 1, . . . ,N and ℓ = 1, . . . ,N and the LMIs Ψi jℓ (15)

on the top of the page hold for ℓ = 1, . . . ,N, i = 1, . . . ,N −1

and j = i+ 1, . . . ,N, with

Gi =

[

Gi,1 0

Gi,2 Gi,3

]

and Zi =
[

Zi,1 0
]

(16)

then the parameter-dependent static output feedback gain

K(α [k]) = Ẑ(α [k])Ĝ(α [k])−1, (17)

with

Ẑ(α [k]) =
N

∑
i=1

αi[k]Zi,1, and Ĝ(α [k]) =
N

∑
i=1

αi[k]Gi,1,

stabilizes the system (1) with a guaranteed H∞ performance

bounded by η for all α ∈ ΛN and ∆α ∈ Γb.

Proof:

Multiply (14) by α2
i βℓ and sum for i = 1, . . . ,N and ℓ =

1, . . . ,N. Multiply (15) by αiα jβℓ and sum for ℓ = 1, . . . ,N,

i = 1, . . . ,N−1 and j = i+1, . . . ,N. Adding the resulting two

expressions yields

Ψ(α) =
N

∑
i=1

N

∑
ℓ=1

α2
i βℓΨiℓ +

N

∑
ℓ=1

N−1

∑
i=1

N

∑
j=i+1

αiα jβℓΨi jℓ,

which is the LMI (18) displayed on the top of the page. Now,

using (16) and (17) and considering the specific structure (13)

for Cy, the LMI Ψ(α) can be written as








P(α [k+1]) ⋆ ⋆ ⋆
G(α [k])T Acl(α [k])T Ψ22 ⋆ ⋆

Bw(α [k])T 0 ηI ⋆
0 Ccl(α [k])G(α [k]) Dw(α [k]) ηI









> 0

with Ψ22 = G(α [k]) + G(α [k])T − P(α [k]). Therefore, as a

result of Theorem 1, feasibility of the LMIs (14) and (15)

ensures that the closed-loop system (12) is asymptotically

stable with an upper bound η on its H∞ performance.

Some remarks are in order now. First, if all states are

available for feedback, that is, y[k] = x[k], the LMIs in

Theorem 3 provide conditions for the existence of a gain-

scheduled static state feedback control law u[k] = K(α [k])x[k].

Moreover, if the bound b on the rate of variation is b = 1,

the set of LMIs from Theorem 3 reduces, upon a similarity

transformation, to the LMIs given in Theorem 2 from [20].

Second, the particular case of a robust H∞ static output

feedback controller

u[k] = K y[k]

is easily derived from Theorem 3, as shown in the next

corollary.

Corollary 1 If there exist matrices G1 ∈ R
q×q, G2 ∈

R
n−q×q, G3 ∈R

n−q×n−q, Z1 ∈R
m×q, and symmetric matrices

Pi ∈ R
n×n such that (14) holds for i = 1, . . . ,N and ℓ =

1, . . . ,N with

Gi = G =

[

G11 0

G21 G22

]

and Zi = Z =
[

Z11 0
]

the control gain K = Z11G−1
11 provides a robust static output

feedback controller that stabilizes (1) with guaranteed H∞

performance bounded by η .

If all states are available for feedback and the bound b on

the rate of variation is b = 0, the above Corollary 1 reduces

to the robust H∞ state-feedback case given by Theorem 10

from [24].

There are two main advantages of introducing the slack

variables. First, if the slack variables would not be intro-

duced, the same structure imposed on Gi in (16) should

have to be imposed on the Lyapunov variables Pi, which is

obviously more restrictive. Second, in Corollary 1, a robust

static output feedback controller is found by enforcing Gi =
G and Zi = Z, for all i. The variables Pi, however, are free.

To obtain a robust static output feedback controller without

introduction of the slack variables, all Lyapunov variables

should have to be the same, that is, all Pi should have to be

Pi = P.

VI. NUMERICAL EXAMPLE

Consider the polytopic time-varying system (1) for n = 3

and N = 2 with the following system matrices:

[

A1 A2

]

=µ





1 0 −2 0 0 −1

2 −1 1 1 −1 0

−1 1 0 0 −2 −1



 ,Bw,1 =





0

1

0



,

Bw,2 =





0

0

1



,Bu,i =





1

0

0



 ,Cz,i =





1

1

1





T

,Du,i = Dw,i = 0,
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i = 1,2, with µ ∈ R a given nonnegative scalar. These

system matrices are borrowed from [21]. The aim in this

example is to determine the maximum bound bmax on the

rate of parameter variation as a function of the scalar µ such

that the system can be stabilized by an H∞ static output

feedback controller. Both gain-scheduled and robust output

feedback controllers are designed for three different cases of

the measurement equation y[k] = Cyx[k]. Case 1: only the first

state is assumed to be measured. Case 2: the first two states

are available. Case 3: all states are available for feedback.

Figure 1 shows bmax as a function of µ . The labeling

is as follows. Case 1: dashed lines, Case 2: dotted lines

and Case 3: dash-dotted lines. For each one of these three

cases, the robust controllers are denoted by R1, R2 and R3

(using thin lines). Likewise, the gain-scheduled controllers

are denoted by G1, G2 and G3 (using thick lines).

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

 

 

µ

bmax
R1

R1

R2

R2

R3

R3

G1

G1

G2

G2

G3

G3

Fig. 1. Maximal bound bmax on the rate of parameter variation as a function
of the scalar µ .

For low values of µ , all control designs result in controllers

that allow the parameters to vary arbitrarily fast in the

unit simplex since bmax = 1. However, as µ increases, the

maximal allowed bound bmax becomes smaller. Obviously,

this occurs first for the robust case R1, since it is the most

restrictive control design. If more states can be measured, the

curves, for the gain-scheduled and robust designs, move to

the right, i.e., for the same bmax, higher values of µ still

give rise to feasible controllers. Note also that since the

gain-scheduled controllers are less restrictive than the robust

controllers, the curves associated with the gain-scheduled

controllers are always on the right of the curves associated

with the corresponding (in terms of output measurements)

robust controllers.

To check the achieved performance, µ is now fixed to

be µ = 0.4525. Figure 2 shows the achieved upper bound

η on the closed-loop H∞ performance as a function of the

allowed bound 0 ≤ b ≤ 1 on the rate of variation. For all

control designs, it is clear from Figure 2, that as the bound

b increases, the performance becomes worse since the upper

bound η increases. In the robust case R1 and R2, and the
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Fig. 2. Guaranteed upper bound η on the H∞ cost.

gain-scheduled case G1, the upper bound η increases very

fast as the value of the bound b increases. This can be

expected since Figure 1 shows that for the robust case R1

with µ = 0.4525 the LMI conditions become infeasible for

b > 0.2465 (circle) and for the the robust case R2 the LMIs

become infeasible for b > 0.8997 (diamond). In the gain-

scheduled case G1 the LMIs in Theorem 3 become infeasible

for b > 0.6475 (square). In the other cases R3, G2 and G3,

the conditions are feasible for all values of b.

For the specific case b = 1, where the parameters can vary

arbitrarily fast in the unit simplex ΛN , the gain-scheduled

case G3 yields the performance η = 2.8174, which is exactly

the same value as the one obtained using Theorem 2 from

[20]. This is illustrated in Figure 2 by a diamond. As seen

in Figure 2, the LMI conditions in Theorem 3, by explicitly

considering the bound b on the rate of variation, can provide

a less conservative H∞ bound η for the gain-scheduled case

G3 as compared to the results in [20]. For the case b = 0, the

robust case R3 yields the performance η = 2.5146, which is

the same value as the one obtained using Theorem 10 from

[24]. This is illustrated in Figure 2 by a square.

Finally, the performance and numerical complexity of the

conditions of Theorem 3 are compared to the conditions for

gain scheduled state feedback controllers of [14, Theorem 6],

which are based on a gridding of the parameter space

in subintervals. In [14], the number of decision variables

depends on the number of subintervals. To impose a bound b

on the rate of parameter variation, the number of subintervals

needs to be at least ν = ⌈1/b⌉. Thus, the number of decision

variables grows rapidly for small values of b. Figure 2 shows

that, compared to the results of [14, Theorem 6] (thick, solid

line, denoted by A), the conditions of Theorem 3 result in

smaller upper bounds η , for almost all values of b. Only for

small values of b, the conditions of [14, Theorem 6] lead to

a smaller upper bound. This, however, comes at the cost of

a huge increase in the numerical complexity, which can be

estimated by the number of scalar decision variables V and

number of LMIs rows R. Table I compares the numerical
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complexity of Theorem 3 and [14, Theorem 6] for 3 values

of the bound b. The number of variables V and LMI rows R

in the synthesis conditions of Theorem 3 can be calculated

as follows (for the specific case of full state feedback)

VT3 = Nn(n2 + 3n + 2m)/2 + 1

RT 3 = N2(N + 1)(2n + r + p)/2,

with N the number of vertices, n the number of states, m

the number of control inputs, r the number of exogenous

inputs and p the number of outputs. Obviously, both VT3

and RT 3 are independent of the bound b. However, for the

conditions of [14, Theorem 6], both V and R increase fast,

for decreasing values of b. Note that the results proposed in

this paper can be further improved by using homogeneous

polynomially parameter-dependent Lyapunov matrices and

Pólya’s relaxations, as currently investigated by the authors.

TABLE I

COMPARISON OF THE NUMERICAL COMPLEXITY.

V R

b ν G3 A G3 A

1 1 48 16 37 10

0.1 10 48 448 37 91

0.01 100 48 4768 37 901

VII. CONCLUSION

New LMI conditions are presented for the synthesis of

gain-scheduled H∞ static output feedback controllers for

polytopic linear time-varying discrete-time systems, with a

priori known bounds on the parameter variation.

It is worth to emphasize that previously published results

in the literature can be recovered as special cases of the

proposed results. In the case b = 1, where the parameter

is allowed to vary arbitrarily fast, Theorem 3 provides

equivalent results as the ones presented in [20]. Likewise,

for b = 0, the conditions of Corollary 1 reduce to the robust

H∞ full state feedback conditions of [24].

Compared to the conditions of [14], the proposed approach

yields similar results, with significantly less numerical com-

plexity, estimated by the number of scalar variables and LMI

rows.
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