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Abstract— This paper complements the accompanying
work [12] by presenting a few control scenarios where
the tool presented in that work can be successfully used
to solve specific robust output feedback stabilization
problems. The problem of robust asymptotic stabilization
and regulation of nonlinear systems with non hyperbolic
zero dynamics via locally Lipschitz partial state or output
feedback is addressed.

I. INTRODUCTION

This paper aims to complement the accompanying
work [12] by presenting a few control scenarios where
the tool presented in that work can be successfully used
to solve specific robust output feedback stabilization
problems. More specifically we first address the prob-
lem of robust output feedback stabilization and robust
regulation of nonlinear systems in normal form whose
zero dynamics are asymptotically but not exponentially
stable by showing how to design locally Lipschitz
regulators. In the second part of the paper we focus our
attention on the robust nonlinear separation principle
proposed in [17] by showing how, also in this case, the
lack of exponential stability of the asymptotic attractor
can be overtaken by a proper design of locally Lipschitz
regulators. The key notion on which the developed
theory relies, is the one of Local Exponential Repro-
ducibility which has been introduced and characterized
in terms of sufficient conditions in [12]. The proposed
ideas represent a preliminary step toward the design
of robust stabilization paradigms which do not only
rely on high gain arguments and brute domination of
interconnection terms between zero and output dynam-
ics nor on state observability, but rather on asymptotic
estimation of the stabilizing control law. In this respect
it is expected that the proposed ideas can be inspiring
also to approach output feedback stabilization problems
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for nonminimum-phase systems.
The reader is referred to the accompanying paper [12]
for key facts which are instrumental for the following
analysis.

Notation For x ∈ IRn, |x| denotes the Euclidean
norm. A class-KL function β(·, ·) satisfying |s| ≤ d
⇒ β(t, s) ≤ Ne−λt|s| for some positive d, N , λ is
said to be a locally exponential class-KL function. For
a smooth system ẋ = f(x), x ∈ IRn, a compact set
A is said to be LAS(X ) (respectively LES(X )), with
X ⊂ IRn a compact set, if it is locally asymptotically
(respectively exponentially) stable with a domain of
attraction containing X . Somewhere, by D(A), we
denote the domain of attraction of A if the latter is
LAS/LES for a given dynamics.

II. ROBUST STABILIZATION AND REGULATION OF

MINIMUM-PHASE NONLINEAR SYSTEMS

We consider the class of smooth nonlinear systems
described in the normal form

ż = f(w, z, y1) z ∈ IRm

ẏ1 = y2
... yi ∈ IR

ẏr−1 = yr

ẏr = b(w, z, y) + a(w, z, y)u
(1)

with control input u ∈ IR and measurable output ym =
y1, in which y = col(y1, . . . , yr) and the variable w is
thought as generated by an autonomous smooth system
of the form

ẇ = s(w) w ∈ W ⊂ IRs (2)

in which W is a compact set invariant for (2). The
“high frequency gain” a(·) in (1) is assumed bounded
away form zero and, without loss of generality, such
that a(w, z, y) > 0 for all (w, z, y) ∈ W × IRm × IRr.
The previous system will be studied under the
following “minimum-phase” assumption.
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Assumption. There exists a compact set A ⊂ W × IRm

which is LAS for the system

ẇ = s(w)
ż = f(w, z, 0) (3)

with a domain of attraction D(A)./

In this framework the control problem we are going
to address is the one of semiglobal output-feedback
stabilization by means of a locally Lipschitz regulator
precisely stated in the following.

Problem. Given arbitrary compact sets Z ∈ D(A) and
Y ∈ IRr, design a locally Lipschitz regulator of the
form

η̇ = Φ(η, ym) η ∈ IRν

u = Υ(η, ym) (4)

such that, for the closed-loop system (1), (2), (4), the
set A×{0}×B is LAS(Z×Y×N ) for some compact
sets B and N of IRν ./

It is interesting to note how, in the previous frame-
work, both robust output-feedback stabilization and
output regulation problems, which can not be easily
handled with the available design tools, can be framed.

In the first case (robust output feedback stabilization)
([9], [11]), a possible representative and meaningful
scenario to be considered in order to value the challeng-
ing aspects of the proposed problem, is the one in which
the variable w models constant parametric uncertainties
whose values range in the set W (in which case system
(2) simplifies as ẇ = 0), the set A collapses to W×{0}
(namely the origin z = 0 is an equilibrium for the
system ż = f(w, z, 0) which is LAS for any possible
value of the uncertainties), and the function b(·) in
(1) is such that b(w, 0, 0) = 0 for all w ∈ W (in
which case the origin of system (1) with u ≡ 0 is
an equilibrium point). Under these circumstances, the
addressed problem boils down to a “classical” problem
of stabilizing an equilibrium point (the origin) of a
system in presence of parametric uncertainties. Even in
this simplified scenario, though, the problem at hand
is far to be easily solvable due to two main features
characterizing the previous framework: the first is the
absence of local exponential stability properties of the
set A (only assumed to be LAS) while the second is the
requirement that the solving regulator has to be locally
Lipschitz. As a matter of fact (see also the discussion
in [12]) the fact that the set A is only LAS (and not
LES) prevents one to use, off-the-shelf, high-gain linear
arguments in order to deal with the stability of system

(1) due to the fact that the local asymptotic gain (see
[9]) of the “zero dynamics” (3) is not, in general, linear.
On the other hand, the fact that the regulator is required
to be locally Lipschitz does not allow one to use control
laws which are only continuous at the origin which,
having in mind small gain arguments and results on
gain assignment for nonlinear systems (see [10], [11]),
one would adopt to handle the nonlinearity of the local
asymptotic gain of (3).

The story becomes even more challenging if one look
at the previous framework as a problem of output regu-
lation (see [2], [13], [14], [8], [6]) in which the variable
w may assume the meaning of reference signals to be
tracked and/or of disturbances to be rejected generated
by the autonomous system (2) which, in the output
regulation literature, is usually referred to as the exosys-
tem. In this context the measurable output ym, which
must be asymptotically steered to zero, has the role of
regulation error and the set A assumes the meaning of
steady state locus (by using the terminology introduced
in [2]). The latter, according to recent developments in
the field ([13]), is usually expressed as the graph of a
map, namely it is assumed the existence of a smooth
function π : IRs → IRm, possibly set-valued (see [2]),
such that

A = {(w, z) ∈ W × IRm : z = π(w)} .

Not surprisingly, it turns out that the output regulation
problem hides the same challenging design aspects
highlighted above for the stabilization problem which
are even worsened by the fact that the function b(·) in
(1) is not, in general, vanishing on the desired attractor
A×{0} which thus is not necessarily forward invariant
for (1) with u ≡ 0. In this respect, what it is required to
the controller (4), is also the ability to asymptotically
generate a not-zero steady state control input, namely
to offset the term b(w, z, 0)/a(w, z, 0) with (w, z) ∈
A, by only processing the regulation error. Indeed,
this distinguishing feature of the problem of output
regulation is what motivates the key concept of internal
model and the need of designing internal model-based
controllers (see [2], [13], [6]). It is worth noting how, in
a local setting, the problem of handling not hyperbolic
zero dynamics in output regulation problems has been
addressed in [7].

To the best knowledge of the authors, it turns out that
the question whether a locally Lipschitz internal model-
based regulator exists, in a not-local setting, under
the conditions expressed above is still unanswered.
The goal of this section (see forthcoming Proposition
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1) is precisely to give an answer to this point by
taking advantage of the design tools described in the
accompanying paper [12].

In order to simplify the notation, in the following
we shall drop in (1) the dependence from the variable
w which, in turn, will be thought as embedded in the
variable z. This, with a mild abuse of notation, will
allow us to rewrite system (1) and (2) in the more
compact form

ż = f(z, y1) z ∈ W × IRm

ẏ1 = y2
... yi ∈ IR

ẏr−1 = yr

ẏr = b(z, y) + a(z, y)u

(5)

and system (3) as ż = f(z, 0). Furthermore, since W
is invariant for (2)), system (5) evolves on the closed
cylinder W × IRm+r and it is natural to regard these
dynamics restricted to W × IRm+r and endow the
latter with the relative topology. This will be done
from now on by referring to system (5).

Proposition 1: Let A be LAS(Z) for the system ż =
f(z, 0) with Z a compact set of D(A). Let the triplet
(f(z, 0), b(z, 0)/a(z, 0),A) be rLER (see [12]). Then
there exist an integer ν, a continuous function T : A →
IRν and, for any compact set Y ⊂ IRr and N ⊂ IRν ,
a controller of the form (4) such that the set

graphT × {0} = {(z, y, η) ∈ A× IRr × IRν :
y = 0 , η = T (z)}

is LAS(Z × Y ×N ).
The proof of the previous proposition, which is omitted
for reason of space, can be obtained by a proper
application of the general tool proposed in [12].

III. OUTPUT-FEEDBACK FROM UCO
STATE-FEEDBACK IN PRESENCE OF

NON-HYPERBOLIC ATTRACTORS

In this part we show how the theory of robust
nonlinear separation principle presented in [17], [1]
can be extended with the tools developed in [12].
In particular we are interested to extend the theory
of [17] by showing how to design a pure output-
feedback semiglobal controller stabilizing an attractor
when it is known how the latter can be asymptoti-
cally (but not exponentially) stabilized by means of a
Uniform Completely Observable (UCO) state-feedback
controller. The results we are going to discuss are (non-
trivial) refinements of preliminary results presented

in [15]. In the latter the claimed results were given
by assuming the existence of smooth regulators, sat-
isfying an appropriate reproducibility condition, not
better characterized. Here (and in [12]) we refine that
results by providing sufficient conditions for a locally
Lipschitz regulator to exists (see Proposition 2 in [12]).
In order to meet page-constraints, we only present the
main propositions by sketching the proofs and we refer
the reader to the extended journal version in preparation
for further details.

Consider the smooth system

ẇ = s(w) w ∈ W ⊂ IRs

ż = A(w, z, u) z ∈ IRm, u ∈ IR
y = C(w, z) y ∈ IR

(6)

in which u and y are respectively the control input
and the measured output and W is a compact set
which is invariant for ẇ = s(w). As discussed in
the previous section, the variables w emphasize the
possible presence of parametric uncertainties and/or
disturbance to be rejected and/or reference to be tracked
(in the latter case the measurable output y plays more
likely the role of regulation/tracking error). As done
before, in order to simplify the notation, we drop the
dependence of the variable w and we compact system
(6) in the more convenient form

ż = A(z, u) z ∈ IRm, u ∈ IR
y = C(z) y ∈ IR

(7)

which is argued to evolve on a closed invariant set C
which is endowed with the subset topology (such a
closed set being, in the form (6), the closed cylinder
C := W × IRm).

We recall (see [17]) that a function ū : IRm → IR is
said to be UCO with respect to (7) if there exist two
integers ny, nu and a C1 function Ψ such that, for each
solution of

ż = A(z, u0)
u̇i = ui+1 0 = 1, . . . , nu − 1

u̇nu
= v

(8)

we have, for all t where the solution makes sense,

ū(z(t)) = Ψ(y(t), y(1)(t), . . . , y(ny)(t), u0(t), . . . , unu
(t))

(9)
where y(i)(t) denotes the ith derivative of y at time t.

Motivated by [17] we shall study system (7) under
the following two assumptions:
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a) there exist a smooth function ū : IRm → IR and
compact sets A ⊂ C and Z ∈ C, such that the A
is LAS(Z) for system (7) with u = ū(z);1

b) ū(z) is UCO with respect to (7).
In this framework we shall be able to prove, under

suitable reproducibility conditions specified later, that
the previous two assumptions imply the existence of
a locally Lipschitz dynamic output (y) feedback reg-
ulator able to asymptotically stabilize the set A. The
main theorem in this direction is detailed next. In this
theorem we refer to an integer `u ≥ nu defined as that
number such that for the system

ż = A(z, ξ0)
ξ̇0 = ξ1

...
ξ̇`u

= u1 ,

(10)

there exist smooth functions Ci such that the first ny+1
time derivatives of y can be expressed as

y(i) = Ci(z, ξ0, . . . , ξ`u
) ∀ i = 0, . . . , ny + 1 .

Theorem 1: Consider system (7) and assume the
existence of a compact set A ⊂ C and of a smooth
function ū(z) such that properties (a) and (b) specified
above are satisfied. Assume, in addition, that the triplets

(A(z, ū(z)), L(`u+1)
A(z,ū(z))ū(z),A) (11)

and
(A(z, ū(z)), L(ny+1)

A(z,ū(z))C(z),A) (12)

are rLER. Then there exist a positive o, a compact set
B ⊂ IRo and, for any N ⊂ IRo, a locally Lipschitz
controller of the form

ζ̇ = Φ(ζ, y) ζ ∈ IRo

u = Υ(ζ, y)
(13)

such that the set A×B is LAS(Z ×N ) for the closed-
loop system (7), (13).

We refer the reader to [12], for the presentation of
sufficient conditions under which triplets of the form
(11), (12) can be claimed to be rLER.

As also observed in [17] (in which Theorem 1)
was given in a preliminary version, this result extends
Theorem 1.1 of [17] in three directions. First, note that
we are dealing with stabilization of compact attractors

1By referring to (6), a meaningful case to be considered is when
A = W × {0}, in which case this assumption amounts to require
the existence of a state feedback stabilizer, possibly dependent on
the uncertainties, able to asymptotically stabilize the origin with a
certain domain of attraction.

for systems evolving on closed sets. This is a technical
improvement on which, though, we would not like to
put the emphasis. Second, note that the UCO control
law ū(z) is not required to be vanishing on the attractor
A which, as a consequence, is not required to be for-
ward invariant for the open loop system (7) with u ≡ 0.
In this respect the proposed setting can be seen as also
able to frame output regulation problems which do not
fit in the framework discussed in the previous section.
Finally, the previous result claims that by means of a
pure locally Lipschitz output feedback controller we are
able to restore the asymptotic properties of an UCO
controller without relying upon exponential stability
requirements of the latter and robustly with respect
to uncertain parameters. The last two extensions are
conceptually very much relevant and can be seen as
particular application of the tools presented in [12].
Following the main laying of [17], the proof of the
claim is divided in two subsections which contain
results interesting on their own.

A. Robust Asymptotic Backstepping
In this part we discuss how the UCO control law

ū can be robustly back-step through the chain of inte-
grators of (8). As commented above, the forthcoming
proposition extends in a not trivial way the results of
[17] in the measure in which one considers the fact
that ū(z) is not vanishing on the attractor and that A is
not necessarily locally exponential stable for the closed
loop system.

We show that the existence of the static UCO stabi-
lizer for (7) implies the existence of a dynamic stabi-
lizer for (10) using the partial state ξi, i = 0, . . . , `u,
and the output derivatives y(i), i = 1, . . . , ny. This is
formally proved in the next proposition which refines
and extends Theorem 3.2 of [15].

Proposition 2: Consider system (10) under the as-
sumptions (a) and (b) previously formulated. Assume
that the triplet (11) is rLER. Then there exists a positive
ν, a compact set R ⊃ A, a continuous function τ :
R → IRν+`u , and, for any compact set Ξ ⊂ IR`u and
N ′ ⊂ IRν , a locally Lipschitz regulator of the form

η̇ = ϕ(η, ξ, ū(z)) η ∈ IRν

u1 = ρ(η, ξ, ū(z)) ,
(14)

such that the sets
graphτ := {(z, ξ, η) ∈ R× IR`u × IRν :

(ξ, η) = τ(z)} (15)

and
graph τ |A := {(z, ξ, η) ∈ A× IR`u × IRν :

(ξ, η) = τ(z)}
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are respectively LES(Z ×Ξ′×N ′) and LAS(Z ×Ξ′×
N ′) for the closed-loop system (10), (14).

Proof: (sketch) Consider the change of variables

ξ0 → ξ̃0 := ξ0 − ū(z)
ξi → ξ̃i := ξi − ∂(i)ū(z)

∂zi i = 1, . . . , `u .

and note that, having defined yp := u− ū(z), ξ̃i = y
(i)
p

and that

∂(`u+1)ū(z)
∂z`u+1

= L
(`u+1)
A(z,ū(z))ū(z) + g(z, ξ̃)

where g is a smooth function such that g(z, 0) = 0 for
all z ∈ IRs+m with ξ̃ := col(ξ̃1, . . . , ξ̃`u

). Consider the
further change of variable

ξ̃i, → ξ̃′ := g−iξ̃i i = 0, . . . , `u − 1

ξ̃`u
→ ζ = ξ̃`u

−
`u−1∑

i=0

λig
`u−iξ̃i

where g is a positive design parameter and the λi’s are
coefficients of an Hurwitz polynomial.

The system in the new coordinates reads as

ż = A(z, ū(z)) + Ã(z, Cξ̃v)
˙̃
ξv = gHξ̃v + Bζ

ζ̇ = u1 − L
(`u+1)
A(z,ū(z))ū(z) + g′g(z, ξ̃v, ζ)

(16)

where B = col(0, . . . , 0, 1), H is a Hurwitz matrix,
ξ̃v := col(ξ̃′0, . . . , ξ̃′`u−1) and g′g(·) is a smooth function
such that g′g(z, 0, 0) = 0 for all z ∈ IRn. From these
facts, the results follows by taking u1 = −κζ + v and
by properly adapting the tool presented in [12].

B. Extended Dirty Derivatives Observer

In this part we present a result which allows one to
obtain a pure output feedback stabilizer once a partial
state-feedback stabilizer (namely a stabilizer processing
the output and a certain number of its time derivative)
is known. Along the lines pioneered in [5] and [17],
the idea is to substitute the knowledge of the time
derivatives of the output with appropriate estimates
provided by a ”dirty derivative observer” (by using
the terminology of [17]). In our context, though, we
propose an ”extended” dirty derivative observer, where
the adjective ”extended” is to emphasize the presence of
a dynamic extension of the classical observer structure
motivated by the need of handling the presence of pos-
sible not exponentially stable attractors in the partial-
state feedback loop and the fact that, on this attractor,
the measured output is not necessarily vanishing.

The setting in which we address the problem (which
integrates with the analysis of the previous subsection

in the framework of Theorem 1) is the one in which
we know, for the system (7), a stabilizer of the form

ς̇ = ϕ̄(ς, y, y(1), . . . , y(ny)) ς ∈ IRd

u = ρ̄(ς, y, y(1), . . . , y(ny))
(17)

such that the following facts hold true:
a) there exists a compact setR ⊃ A and a continuous

function τ : R → IRd such that the sets graphτ
and graph τ |A are respectively LES(Z × H) and
LAS(Z ×H) for the closed-loop system (7), (17)
for some compact set H ⊂ IRd;

b) there exist smooth functions Ci, i = 0, . . . , ny +1,
such that the output derivatives y(i) of the closed-
loop system (7), (17) can be expressed as

y(i) = Ci(z, ς) i = 0, . . . , ny + 1 ;

c) the following holds

ρ̄(ς, y, y(1), . . . , y(ny))
∣∣∣graphτ

= ū(z)

Within the previous framework we are able to
prove the following proposition which, along with
Proposition 2, immediately yields Theorem 1.

Proposition 3: Consider system (7) and assume the
existence of a dynamic regulator of the form (17)
such that the previous properties (a)-(c) are satisfied.
Assume, in addition, that the triplet (12) is rLER. Then
there exist a positive o, a compact set B ⊂ IRo and,
for any compact set N ⊂ IRo, an output feedback
controller of the form (13) such that the set A × B
is LAS(Z ×N ) for the closed-loop system (7), (13).

Proof: (Sketch) As candidate controller, we con-
sider a system of the form

ς̇ = ϕ̄`(ς, y, ŷ1, . . . , ŷny
)

˙̂yi = ŷi+1 + Li+1λi(ŷ0 − y)
˙̂yny

= Lny+1λny
(ŷ0 − y) + v

u = ρ̄`(ς, y, ŷ1, . . . , ŷny
)

in which v is a control input to be designed, L is a pos-
itive design parameters, the λi’s are the coefficients of
an Hurwitz polynomial and ϕ̄`(·) and ρ̄` are appropriate
saturated versions of the functions ϕ̄(·) and ρ̄(·) of (17)
satisfying ϕ̄`(s) = ϕ̄(s) if ‖ϕ̄(s)‖ ≤ `, ‖ϕ̄`(s)‖ ≤ `
for all s, and ρ̄`(s) = ρ̄(s) if ‖ρ̄(s)‖ ≤ `, ‖ρ̄`(s)‖ ≤ `
for all s, with ` a design parameter.

Let now yd = col(y, y(1), . . . , y(ny)), ŷ =
col(ŷ0, ŷ1, . . . , ŷny

) and consider the change of vari-
ables ŷ 7→ e = DL(yd − ŷ) where DL =
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diag(Lny , Lny−1, . . . , 1). In this coordinate setting,
by denoting x = col( z ς ), the overall closed-loop
system reads as

ẋ = f(x) + ∆(x, e)
ė = LHe + B(q(x) + v) (18)

in which H is a Hurwitz matrix in observability
canonical form, B =

(
0 . . . 0 1

)T
ẋ = f(x)

is a compact representation of the system (7), (17),
q(x) = Cny+1(z, ς) and ∆(x, e) is a suitably defined
function such that ∆(x, 0) = 0 for all x ∈ graphτ
provided that the variable ` is properly fixed. From
these facts, by Proposition 4 (by which it can be proved
that (12) rLER ⇒ (f(x), q(x), graph τ |A) LER), and
by the results in [12], the result follows.

APPENDIX

A. Auxiliary Results

Proposition 4: Consider a system of the form

ẋ1 = f1(x1, x2) x1 ∈ IRn1

ẋ2 = f2(x1, x2) x2 ∈ IRn2
(19)

and assume that there exist a compact set A ⊂ IRn1

and a smooth function τ : IRn1 → IRn2 such that the
set

graph τ |A = {(x1, x2) ∈ A× IRn2 : x2 = τ(x1)}
is LES for (19). Let q : IRn1 × IRn2 → IR be a smooth
function. Then the triplet (f, q, graph τ |A) is LER if
the triplet (f1(x1, τ(x1)), q(x1, τ(x1)),A) is rLER.
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