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Abstract— In this paper we present a general tool to handle
the presence of zero dynamics which are asymptotically, but
not locally exponentially, stable in problems of robust nonlinear
stabilization by output feedback. We show how it is possible to
design locally Lipschitz stabilizers under conditions which do
not rely upon any observability assumption on the controlled
plant, by thus obtaining a robust stabilizing paradigm which is
not based on design of observers and separation principles. The
main design idea comes from recent achievements in the field
of output regulation and specifically in the design of nonlinear
internal models. In this sense the results presented in this paper
also complement in a non trivial way a certain number of works
recently proposed in the field of output regulation by presenting
meaningful conditions under which a locally Lipschitz regulator
exists.
The present work is complemented by a part II paper submitted
to this conference ([11]) in which possible applications of the
presented tool in the context of the robust stabilization and
regulation of minimum-phase nonlinear systems and robust
nonlinear separation principle are presented.

Notation For x ∈ IRn, |x| denotes the Euclidean norm
and, for C a closed subset of IRn, |x|C = miny∈C |x − y|
denotes the distance of x from C. For S a subset of IRn,
clS and intS are the closure of S and the interior of S
respectively, and ∂S its boundary. A class-KL function
β(·, ·) satisfying |s| ≤ d ⇒ β(t, s) ≤ Ne−λt|s| for some
positive d, N , λ is said to be a locally exponential class-KL
function. For a locally Lipschitz system of the form ż = f(z)
the value at time t of the solution passing through z0 at time
t = 0 will be written as φf (t, z0) or, if the initial condition
and the system are clear from the context, as z(t) or z(t, z0).
For a smooth system ẋ = f(x), x ∈ IRn, a compact set A
is said to be LAS(X ) (respectively LES(X )), with X ⊂ IRn

a compact set, if it is locally asymptotically (respectively
exponentially) stable with a domain of attraction containing
X . By D(A) we denote the domain of attraction of A if the
latter is LAS/LES for a given dynamics.

I. THE FRAMEWORK

The main goal of this paper is to present a design tool
to handle the presence of asymptotically but not necessarily
exponentially stable zero dynamics in robust output-feedback
stabilization problems of nonlinear systems. Although the
tool we are going to present lends itself to be useful in
a significant variety of control scenarios, in order to keep
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confined the discussion while maintaining a certain degree
of generality, we focus our attention on the class of smooth
systems of the form

ẋ = f(w, x, y) x ∈ IRn

ẏ = a(w, x, y) [κHy + B(q(w, x, y) + v)] y ∈ IRr

(1)
with measurable output ym = Cy, ym ∈ IR, in which the
triplet (H, B, C) is assumed to be prime with the pair (H, C)
which is observable, κ is a positive design parameter, v is
a control input and a(w, x, y) a smooth real valued function
with a(w, x, y) > 0 for all w, x and y. In the previous system
the variable w ∈ IRs represents an exogenous variable which
is governed by

ẇ = s(w) w ∈ W ⊂ IRs (2)

with W a compact set which is invariant for (2). As a
particular case, the signals w(t) generated by (2) may be
constant signals, i.e. s(w) ≡ 0, namely constant uncertain
parameters taking value in the set W and affecting the
system (1). In general, the variables w can be considered
as exogenous signals which, depending on the considered
control scenario, may represent references to be tracked
and/or disturbances to be rejected as better explained in the
accompanying paper [11].

Remark As a consequence of the fact that W is a (forward
and backward) invariant set for (2), the closed cylinder
Cn+r := W × IRn+r is invariant for (1),(2). Thus it is
natural to regard system (1), (2) on Cn+r and endow the
latter with the relative topology. This will be done from now
on by referring to system (1),(2). Analogously, the dynamics
described by the first n equations of (1) and by (2) will be
thought as evolving on the closed set Cn := W × IRn which
will be endowed with the relative topology. /

We shall study the previous system under the following
“minimum-phase” assumption.

Assumption There exists a compact sets A ⊂ Cn and X ⊆
Cn, with A ⊂ intX , such that the set A is LAS(X ) for the
system

ẇ = s(w)
ẋ = f(w, x, 0) /

(3)

In this framework we consider the (robust) output feedback
stabilization problem which consists of designing a locally
Lipschitz regulator of the form

η̇ = ϕk(η, ym) v = ρk(η, ym) η ∈ IRν , (4)

and, given arbitrary bounded sets Y ⊂ IRr and N ⊂ IRν , a
positive κ?, such that for all κ ≥ κ? and for some B ⊂ IRν

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuC11.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1575



the set A×{0}×B is LAS(X ×Y ×N ) for the closed-loop
system (1), (4).

Remark We remark how, in the previous framework, the
regulator solving the problem at hand is required to be locally
Lipschitz. /

II. A BRIEF DIGRESSION ABOUT THE PROBLEM

The structure of (1) and the associated problem, apparently
very specific, are indeed recurrent in a number of control
scenarios in which robust non linear stabilization is involved.
We defer to the second part of this paper (see [11]) the
presentation of a few relevant cases where this occurs. For
the time being it is interesting to note how the previous
formulation presents two main peculiarities which make the
problem at hand particularly challenging.
The first is that the function q(w, x, y), coupling the x and y
subsystem in (1), is not necessarily vanishing on the desired
attractor A × {0}, namely the desired attractor A × {0} is
not necessarily forward invariant for (1) in the case v ≡ 0. In
this respect the first crucial property required to the regulator
is to be able to reproduce, through the input v, the uncertain
coupling term q(w, x, 0) by providing a not necessarily zero
steady-state control input. This issue is intimately connected
to arguments which are usually addressed in the output
regulation literature (see [10], [3]), [6], [13]), in which the
goal is precisely to make attractive a set, on which regulation
objectives are met, which is not invariant for the open-loop
system.

The second peculiarity, apparently not correlated to the
previous one, relies in the fact that the set A is assumed to
be ”only” asymptotically stable for (3) and no exponential
properties are required. In this respect the study of the
interconnection (1) is particularly challenging as it is not
sufficient, in general, to decrease the linear asymptotic gain
([16]) between the ”inputs” x and the ”outputs” y of the y-
subsystem (which is what one would make by increasing the
value of κ since the matrix H is Hurwitz) to infer asymptotic
properties in the interconnection. Indeed the presence of a
not necessarily linear asymptotic gain between the ”inputs” y
and the ”outputs” x of the x-subsystem requires a non trivial
design of the input v which, intuitively, should be chosen
to infer a certain (non-linear) ISS gain to the y-subsystem.
Interestingly enough, we will show in the following that the
two previous issues are indeed correlated, in the sense that
the ability to solve the first will allow us to get rid also of
the second.

The rich available literature on nonlinear stabilization
already provides successful tools to solve the problem
at hand if the previous two pathologies are dropped,
namely if the assumption is strengthen by asking that
the set A is also LES(X ) for (3) and that the ”coupling”
term q(w, x, y) is vanishing at A × {0}. As a matter of
fact, under the previous conditions, it is a well-known
fact that the set A × {0}, which is forward invariant
for (1) with v = 0, can be stabilized by means of a large
value of k as formalized in the following theorem ([14], [2]).

Theorem 1: Let A be LES(X ) for the system (3) and
q(w, x, 0) ≡ 0 for all (w, x) ∈ A. Then for any compact
set Y ⊂ IRr there exists a κ? > 0 such that for all κ ≥ κ?

the set A× {0} is LES(X × Y) for (1) with v ≡ 0.

In the case A is not exponentially stable for (3) and/or
the coupling term q(w, x, y) is not vanishing on the desired
attractor, the problem becomes challenging and more sophis-
ticated choices for v must be envisaged. In particular the only
conclusions which can be drawn if v ≡ 0 is that the origin is
semiglobally practically stable in the parameter κ, that is the
trajectories of the system can be steered arbitrary close to the
set A×{0} by increasing the value of κ (see [14], [2], [10]).
Even in the simpler scenario in which q(w, x, 0) ≡ 0 for all
(w, x) ∈ A, a large value of k is not sufficient to enforce
the desired asymptotic behavior in the case the set A fails to
be exponentially stable for (3). In this case the asymptotic
properties of the system have been studied in [4] by showing
how the trajectories are attracted by a manifold which, only
in a particular case depending on the linear approximation
of the system, collapses to the origin (see Theorem 6.2 in
[4]).

In these critical scenarios an appropriate design of the con-
trol input v becomes unavoidable in order to compensate for
the coupling term q(w, x, y) which cannot be only dominated
by a large value of κ. In particular, a first possible option,
motivated by small gain arguments and gain assignment
procedures for nonlinear systems (see [9], [8]), is to design
the control v in order to assign, to the y-subsystem, a certain
nonlinear ISS gain suitably identified according to small gain
criterions and to the asymptotic gain of the x-subsystem
in (1). This option, however, necessarily leads to design
control laws which are not, in general, locally Lipschitz close
to the compact attractor and, thus, which violates a basic
requirement of the above problem.
An alternative option to design the control v is to be in-
spired by nonlinear separation principles (see, besides others,
[14], [15], [2], [7], [5]), namely to design an appropriate
state observer yielding an asymptotic estimate (ŵ, x̂, ŷ) of
the state variables, and to asymptotically compensate for
the coupling term q(w, x, y) by implementing a “certainty
equivalence” control law of the form v = −q(ŵ, x̂, ŷ).
Indeed, under suitable conditions, the tools proposed in
[15] would allow one to precisely fix the details and to
solve the problem at hand in a rigorous way. This way
of approaching the problem, though, presents a number of
drawbacks which substantially limit its applicability. First,
the design of the observer clearly requires the formulation of
suitable observability assumptions1 on the controlled plant,
not in principle necessary for the stabilization problem to
be solvable, which may be not fulfilled for a number of
relevant cases. Moreover, according to the state-of-the-art of
the observer design literature ([5]), the design of the observer

1It must be noted that only local observability notion are potentially
needed at this level as a consequence of the fact that practical stability
is already guaranteed by the high-gain law κ.
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may be a challenging (if not impossible) task in case of un-
certain parameters affecting the observed dynamics. Finally,
it is worth noting how approaching the problem according to
the previous design philosophy, leads to inherently redundant
control structures, by requiring the explicit estimate of the
full state (and of possible uncertainties) in order to “only”
reproduce the signal q(w, x, y).

As opposite to the previous strategies, we shall show in
the following how the problem at hand can be solved by
means of a locally Lipschitz, not observed-based, controller.

III. THE NEW ASYMPTOTIC RESULTS
The goal of this part is to present new results regarding

the solution of the robust stabilization problem formulated
above. In order to ease the notation, in the following we
shall drop in (1) the dependence from the variable w which,
in turn, will be thought as embedded in the variable x (with
the latter varying in the set Cn). This, with a mild abuse of
notation, will allow us to rewrite system (1) and (2) in the
more compact form

ẋ = f(x, y) x ∈ Cn ⊂ IRs+n

ẏ = a(x, y) [κHy + B(q(x, y) + v)] y ∈ IRr (5)

and system (3) as ẋ = f(x, 0).
The existence of a locally Lipschitz regulator solving

the problem at hand, will be claimed under an assumption
which involves the ability of asymptotically reproducing the
function q(x(t), 0), where x(t) is any solution of ẋ = f(x, 0)
which can be generated by taking initial conditions on A,
by means of a locally Lipschitz system properly defined.
The following definition, which will be commented after its
statement, aims to formally state the required reproducibil-
ity condition which will be then used in the forthcoming
Theorem 2.

Definition 1: (LER, rLER) A triplet (g(·), h(·),A), where
g : IRm → IRm and h : IRm → IR are smooth functions and
A ⊂ IRm is a compact set, is said to be Locally Exponentially
Reproducible (LER), if there exists a compact set R ⊇ A
which is LES for ż = g(z) and, for any bounded set Z
contained in the domain of attraction of R, there exist an
integer p, locally Lipschitz functions ϕ : IRp → IRp, γ :
IRp → IR, and ψ : IRp → IRp, with ψ a complete vector
field, and a smooth function T : IRm → IRp, such that

h(z) + γ(T (z)) = 0 ∀ z ∈ R , (6)

and for all ξ0 ∈ IRp and z0 ∈ Z the solution (ξ(t), z(t)) of

ż = g(z) z(0) = z0

ξ̇ = ϕ(ξ) + ψ(ξ)h(z) ξ(0) = ξ0
(7)

satisfies,

|(ξ(t), z(t))|graphT |R ≤ β(t, |(ξ0, z0)|graphT |R) (8)

where β(·, ·) is a locally exponentially class-KL function.
Furthermore the triplet in question is said to be robustly

Locally Exponentially Reproducible (rLER) if it is LER and,
in addition, for all locally essentially bounded v(t), for all
ξ0 ∈ IRp and z0 ∈ Z the solution (ξ(t), z(t)) of

ż = f(z) z(0) = z0

ξ̇ = ϕ(ξ) + ψ(ξ)[q(z) + v(t)] ξ(0) = ξ0
(9)

satisfies

|(ξ(t), z(t))|graphT |R ≤ β(t, |(ξ0, z0)|graphT |R)+
`(supτ≤t |v(τ)|) (10)

where β(·, ·) is a locally exponentially class-KL function and
` is a class-K function. /

A few words to comment the previous definition are in
order. First of all note that, for a triplet (f, g,A) to be
LER, the key first requirement is that there exists a set R
which contains A and which is LES for the autonomous
system ż = g(z). As it will be shown in Section IV (see
Lemma 1), this is always the case if the set A is LAS for
ż = g(z). According to this result, since in the framework
where the previous definition will be used (see Theorem 2)
the set A will be assumed LAS, the existence of the set R
can be always considered fulfilled in our setting. The second
crucial requirement characterizing the previous definition is
that there exists a locally Lipschitz system of the form

ξ̇ = ϕ(ξ) + ψ(ξ)uξ

yξ = h(ξ)
(11)

with input uξ and output yξ, such that system (7), modelling
the cascade connection of the autonomous system ż = g(z)
with output yz = h(z) with the system (11), has a locally
exponentially stable set described by graph T |R and, on
this set, the output yξ equals yz (see (6)). The domain of
attraction of graph T |R is required to be of the form Z×IRp

with Z any compact set in the domain of attraction of R
(note that, according to the definition, system (11) is allowed
to depend on the choice of Z). In this respect the second
requirement can be regarded as the ability, of the system (11),
of asymptotically reproducing any output function h(z(t)) of
system ż = h(z) with initial conditions of the latter taken
in Z . As far as the definition of robust LER is concerned,
we only note that, in addition to the previous properties, it
is required that system (9) exhibits an ISS property (without
any special requirement on the asymptotic gain) with respect
to the exogenous input v. This enforced property will be
needed in the accompanying paper [11] and does not play
any special role in the next analysis.

We shall show in Section IV a meaningful sufficient
condition under which a given triplet can be claimed to
be rLER and, as a consequence, LER (see Lemma 2). For
the time being it is worth concluding the comments to the
previous definition with a couple of final observations. First,
it is interesting to observe how the ”output reproducibility”
property required to system (11) does not hide, in principle,
any kind of state observability property of the system ż =
g(z) with output yz = h(z). In other words system (11) must
be not confused with a state observer of the z-subsystem as
its role is to reproduce the output function h(z(t)) and not
necessarily to estimate its state. Finally, it is worth stressing
the crucial requirement of the definition asking system (11)
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to be locally Lipschitz. In this respect it is interesting to note
that, if this requirement is dropped (namely in case system
(11) were allowed to be only continuous), the theoretical
tools presented in [10] are sufficient to prove that any smooth
triplet (g, h,A) is rLER if A is LAS for ż = g(z). For
reasons of space we omit details in this direction which,
though, can be easily retrieved by the interested reader going
through the proof of the forthcoming Lemma 2.

With this definition at hand, we pass to formulate the
following theorem which fixes a framework where the
stabilization problem previously formulated can be solved
by means of a locally Lipschitz regulator.

Theorem 2: Let A be LAS(X ) for the system ẋ = f(x, 0)
for some compact set X ⊂ C. Assume, in addition, that the
triplet (f(x, 0), q(x, 0),A) is LER. Then there exist a locally
Lipschitz regulator of the form (4), a compact set R ⊇ A, a
continuous function τ : R → IRν , and, for any compact set
Y ⊂ IRr and N ⊂ IRν , a positive constant κ?, such that for
all κ ≥ κ? the set

graph τ × {0} = {(x, y, η)∈ R× IRr × IRν :
y = 0 , η = τ(x)} (12)

is LES(X × Y ×N ) for (5), (4) and the set

graph τ |A × {0} = {(x, y, η)∈ A× IRr × IRν :
y = 0 , η = τ(x)} (13)

is LAS(X × Y ×N ) for (5), (4).

IV. SUFFICIENT CONDITIONS FOR ASYMPTOTIC
REPRODUCIBILITY

The main goal of this section is to present a number
of results which are useful to test when a triplet (g, h,A)
is rLER (and thus LER). As also commented just after
its statement in Section III, the definition relies upon two
requirements, the first being the existence of a compact set
R ⊇ A which is LES for ż = g(z), while the second asking
the existence of locally Lipschitz functions (ϕ, ψ, γ) and of
a smooth function T such that system (9) presents the ISS
property (10).

Towards this end we start with a result which claims
that the first requirement for a triplet (g, h,A) to be rLER,
namely the existence of a set R which is LES for ż = g(z),
is automatically guaranteed if the set A is LAS for ż = g(z).
Thus, put in the context of Theorem 2, the first requirement
of the definition is not restrictive at all. Details of this fact
are reported in the following lemma whose proof can be
found in [12].

Lemma 1: Consider system

ż = g(z) z ∈ IRm (14)

evolving on an invariant closed set C ⊂ IRm. Let A ⊂ C
be a compact set which is LAS with domain of attraction
D(A) ⊆ C. For any compact set S ⊂ C such that A ⊂ intS ,
there exists a compact set R satisfying A ⊆ R ⊂ S which
is LES for (14) with domain of attraction D(R) ≡ D(A).

We pass now to analyze the second crucial requirement
behind the definition of rLER, namely the existence of
locally Lipschitz functions (ϕ,ψ, γ) and of a smooth
function T such that condition (10) is satisfied for system
(9). In this respect we present, in the next lemma, a
meaningful condition which is sufficient for a triplet to be
rLER. Such a condition relies upon the existence of an open
bounded set which is invariant for ż = g(z) . We postpone
to the statement of the lemma the comments to the given
condition and the presentation of an additional result which
aims to make the condition applicable also to cases where
the bounded invariant open set is not guaranteed to exist.

Lemma 2: Let O be an open bounded set which is invari-
ant for ż = g(z) with g : IRm → IRm a C∞ function. Let
A be LAS for ż = g(z) and let h : IRm → IR be a smooth
function. If there exists a c > 0 such that

dimΩ(z) = c ∀ z ∈ O (15)

where

Ω(z) :=
∞∑

k=0

span
∂

∂z
Lk

g(z)h(z) (16)

then the triplet (g, h,A) is rLER.

The proof of this lemma is sketched in Section V.
Remark Condition (15)-(16) must be not confused with a

(local) uniform observability property for the system ż =
g(z) with output yz = h(z) which can be obtained by
limiting the sum in (16) to k ≤ m and asking that c = m. /

The requirement about the existence of the invariant set
O which characterizes the previous result may limit in a
substantial way the class of systems for which the robust
reproducibility condition can be checked through (15).
In this respect we present a result which can be useful,
besides others, to overtake this limitation. In short, we shall
show that the property of a triplet (g, h,A) to be rLER is
guaranteed if the pair (g, h) is immersed, in a neighborhood
of A, into an immersing pair (g̃, h̃) through a smooth
function τ , and the triplet (g̃, h̃, τ(A)) is rLER. The details
of the result are presented in the next lemma whose proof
is omitted for reasons of space.

Lemma 3: Let g : IRm → IRm and h : IRm → IR be
given smooth functions. Let A be a compact set which is
LAS for the system ż = g(z) and let S be a compact set
such that A ⊂ intS . Assume that the pair (g, h) is immersed,
through a C1 map τ : IRm → IRm̃, into a smooth pair
g̃ : IRm̃ → IRm̃ and h̃ : IRm̃ → IR, with respect to S ,
namely

∂τ

∂z
g(z) = g̃(τ(z))

h(z) = h̃(τ(z))
∀ z ∈ S . (17)

Assume, in addition, that g̃ is a complete vector field. If
(f̃ , q̃, τ(A)) is rLER then (f, q,A) is such.
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We present now a simple example to show how the previ-
ous result can be effectively used to overtake the limitation
imposed in Lemma 2 by the existence of the invariant
bounded set.
Example. Consider the system (3) in the form

ẇ = 0 w ∈ W := {w ∈ IR : w ≤ w ≤ w}
ẋ = −x3 + w z ∈ IR

(18)

with “output” h(w, x) = x, defined on the closed cylinder
C := W × IR, for which the set A := {(w, x) ∈ C :
x = 3

√
w} is LAS with D(A) = C. If one is willing to

check the robust exponential reproducibility of the triplet
(g, h,A) with g = col(0,−x3 + w) the previous lemma
cannot be applied as such due to the absence of a bounded
invariant set containing A (indeed finite escape times occur
in backward time for initial conditions outside A). To this
purpose, however, lemma 3 helps as shown in the following.

Let S be a compact set of the form

S = {(w, x) ∈ C : 3
√

w − 1
2
≤ x ≤ 3

√
w +

1
2
}

and note that, by Lemma 1, there exists a compact setR ⊆ S ,
A ⊆ R, which is LES for (18) with D(R) = C.

Pick a smooth function a : IR → IR≥0 such that a(s) = 1
for all 3

√
w − 1

2 ≤ s ≤ 3
√

w + 1
2 and a(s) = 0 for all

s ≤ 3
√

w−1 and s ≥ 3
√

w+1, and consider the “immersing”
system

˙̃w = 0 ˙̃x = a(x̃)[−x̃3 + w̃] (19)

with “output” h̃(w̃, x̃) = x̃. System (18) is immersed into
system (19) with respect to the set S through any smooth
function τ : IR2 → IR2 such that

τ(w, x) = col(w, x) ∀ (w, x) ∈ S.

Furthermore the bounded set O defined as

O = {(w, x̃) ∈ C : 3
√

w − 1 ≤ x̃ ≤ 3
√

w + 1} ,

which is open with respect to the subset topology induced
by C, is invariant for (19). According to lemma 3, the
triplet (g, h,A) is rLER if the triplet (g̃, h̃,A), with g̃ =
col(0, a(x̃)

[−x̃3 + w̃
]
), is such. But, as O ⊃ A is invariant

for (19) and g̃ is complete, Lemma 2 can be applied. In this
specific case

Ω(w̃, x̃) = span
(

0 1
a(x̃) ∗

)

where ∗ is a junk term, from which it follows that

dimΩ(w̃, x̃) ≡ 2 ∀ (w̃, x̃) ∈ O
which implies that the triplet (g̃, h̃,A) is rLER. /

V. SKETCH OF THE PROOF OF LEMMA 2

Since A is LAS for ż = g(z) it turns out, by Lemma
1, that there exists a compact set R satisfying O ⊃ R ⊇ A
which is LES and D(R) = D(A). Note also that O ⊆ D(R),
because O is backward invariant for ż = g(z).

Let Z(t, z) denote the flow of ż = g(z). Since by
construction g is backward complete and C∞ on O, Z(t, z)

is defined for all (t, z) ∈ (−∞, 0)× IRn and gives rise to a
C∞ function. Also, for each non positive t, z 7→ Z(t, z) is
a diffeomorphism. Set y(t, z) := h(Z(t, z)). For each z, the
function t ∈ (−∞, 0] 7→ y(t, z) is bounded. Also, for each
t in (−∞, 0] and any k in IN , we have

dky(t, z)
dtk

= Lk
gh(Z(t, z)) .

Let (F, G) ∈ IRp×p × IRp×1 be a controllable pair with
F Hurwitz and define T : O → IRp as

T (z) :=
∫ 0

−∞
e−FsGy(s, z))ds . (20)

This map is continuous and satisfies

LgT (z) = F τ(z) + Gq(z) ∀z ∈ O .

Observe that

∂Z

∂z
(0, z) = I ,

∂2Z

∂z2
(0, z) = 0

∂2Z

∂s∂z
(s, z) =

∂g

∂z
(Z(s, z))

∂Z

∂z
(s, z)

and

∂3Z

∂s∂z2
(s, z) =

∂g

∂z
(Z(s, z))

∂2Z

∂2z
(s, z) +(

∂2g

∂z2
(Z(s, z))× ∂Z

∂z
(s, z)

)
∂Z

∂z
(s, z) .

Also, if z is in O then Z(s, z) is in the compact set Cl(O)
for all s. It follows that

∣∣∣ ∂2Z
∂s∂z (s, z)

∣∣∣ and
∣∣∣ ∂2Z
∂s∂z (s, z)

∣∣∣ do not

grow in s faster than eF1|s| and e2F1|s|, respectively with F1

a bound of
∣∣∣∂g
∂z

∣∣∣ on Cl(O). So, when the eigenvalues of F

have real part strictly smaller than ` = −2F1, the function
τ is C2 on O.

Finally observe that

∂τ

∂z
(z) =

∫ 0

−∞
e−FsG

∂y

∂z
(s, z) ds . (21)

In [10] (see Proposition 2), it was shown that if p ≥ 2m+2
there exists a set S ⊂ CI of zero Lebesgue measure such that
if σ(F ) ∈ {ζ ∈ CI : <(ζ) < `}\S then there exists a class-K
function %(·) such that

|h(z1)− h(z2)| ≤ %(|T (z1)− T (z2)|) ∀ z1 , z2 ∈ R .
(22)

By Proposition 3 of [10], (22) implies the existence of a
continuous γ : IRp → IR satisfying

γ ◦ T (z) + h(z) = 0 ∀ z ∈ R . (23)

Choose now, as candidate ϕ(·) and ψ(·) the functions

ϕ(ξ) = Fξ ψ(ξ) = G

and note that, with this choice, system (9) is given by

ż = g(z)
ξ̇ = Fξ + G[h(z) + v] .

(24)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC11.1

1579



It turns out that the function T in (20) satisfies

∂T

∂z
g(z) = FT (z) + Gh(z) ∀ z ∈ O

From these facts, since F it Hurwitz, it follows that for any
Z ∈ D(R) ⊂ O the set graph T |R is LES(Z × IRp) for
system (24) if v ≡ 0 and that an estimate of the form (10)
holds, for any bounded v.

The previous facts prove the Lemma with the remarkable
exception that the function γ is only guaranteed to be
continuous. In the remaining part of the proof consists in
showing that if (15) holds then the function γ is also locally
Lipschitz.

First of all, it is observed that the function y(t, z) defined
above is such that:
• For any z in O, any v 6∈ Ω⊥z and any T < 0, there

exists t−(z, v, T ) and t+(z, v, T ) in [T, 0] satisfying :

∂y

∂z
(t, z) · v 6= 0 ∀t ∈ (t−(z, v, T ), t+(z, v, T )) .

• For any z in O and any v in Ω⊥z ,

∂y

∂z
(t, z) · v = 0 ∀t ≤ 0 .

The dimension of Ωz being c at each point of O, it is
possible to choose, at any zj ∈ O, integers k1, . . . , kc such
that

Ωzj =
c∑

i=1

span{∂Lki
g h

∂z
(zj)}

and to choose a local coordinate pair (Uj , Φj) in which the
first c coordinate functions coincide with Lk1

g , . . . , Lkc
g . Split

the vector x = Φj(z) of new coordinates in two parts, xa

collecting the c first coordinates and xb collecting the n− c
last ones, and define, for each x in Φj(Ui),

h̄j(xa, xb) = h(Φ−1
j (x)), ȳj(t, xa, xb) = y(t,Φ−1

j (x)) .

In these coordinates, the properties above can be rewritten
as:
• For each pair (xa, xb) in Φj(Uj), there exist t− and t+

satisfying :

∂ȳj

∂xa
(t, xa, xb) 6= 0 ∀t ∈ (t−, t+) . (25)

• For each pair (xa, xb) in Φj(Uj) :

∂ȳj

∂xb
(t, xa, xb) = 0 ∀t ≤ 0 . (26)

Using these properties and mimicking certain arguments of
[1], it is possible to conclude that the function τ̄j defined as

τ̄j(xa, xb) = T (Φ−1
j (xa, xb))

=
∫ 0

−∞ e−FsGȳj(s, xa, xb) ds ,

is such that

rank
( ∂τ̄j

∂xa
(xa, xb)

)
= c ∀(xa, xb) ∈ Φj(Uj)

while ∂τ̄j

∂xb
(xa, xb) = 0, ∂q̄j

∂xb
(xa, xb) = 0 for all (xa, xb) ∈

Φj(Uj).

From these properties and the fact that T (z) is C2 is it is
possible to show the existence of a number Lj such that, for
any arbitrary pair (z1, z2) in Uj × Uj

|h(z1)− h(z2)| ≤ Lj |T (z1)− T (z2)| ∀(z1, z2) ∈ Vz .

This implies that the function %(·) in (22) is linear near
zero and this in turn guarantees that the (uniquely defined)
function γ(·) in (23) is locally Lipschitz.
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