
Self Configuration of Dependent Tasks for Dynamically Reconfigurable Automotive

Embedded Systems

Lei Feng, DeJiu Chen, Martin Törngren

Abstract— The configurations of an automotive embedded
system are normally fixed in production and remain static
over the vehicle lifetime. Future scenarios, however, call for
more flexible configuration support. DySCAS (Dynamically
Self-Configuring Automotive Systems) project aims to introduce
context-awareness and self-management features into automo-
tive embedded systems via middleware technologies. Contribut-
ing to online configuration decisions, this paper formalizes a
fundamental self-configuration problem. It forms a basis for
managing the cross interdependencies of configurational items,
assessing the system-wide impacts of changes, and making
dynamic decisions about new configurations.

I. INTRODUCTION

A modern automobile normally contains dozens of elec-

tronic control units (ECUs) [1], [2], which communicate

and collaborate through networks. Automotive manufactures

currently configure the functions of the ECUs statically at

design time. AUTOSAR (AUTomotive Open System ARchi-

tecture) [3], for instance, is an emerging standard to address

the software integration challenge via promoting the platform

transparencies, interface standardization, and code portability

of automotive software [4], but the support is delimited to

static configuration.

The DySCAS (Dynamically Self-Configuring Automotive

Systems) [5], [6] project aims to develop a middleware

architecture and technologies that allow context-awareness

and self-adaptiveness of automotive embedded systems, in

particular in the vehicular infotainment domain. For example,

a vehicle should be able to automatically detect various

external devices attached to it, e.g., mobile phones and PDAs,

and integrate them into the vehicular network. Exploiting

their computational resources and services, the vehicle can

then provide additional personalized services.

The main research objectives of the DySCAS project

include a middleware architecture that supports context-

awareness and dynamic configuration management using

policies [6], [7], and a set of algorithms that determine

new system configurations in the events of, e.g., attach-

ing/detaching new devices [6], hardware failures, and anoma-

lous resource usage. Contributing to the latter objective, this

paper formalizes a self-configuration problem, which focuses

on the interdependencies of (application) tasks, the system-

wide impacts of changes, and the configuration decisions

As a part of DySCAS project, this work is funded by the 6th framework
program “Information Society Technologies” of the European Commission.
Project number: FP6-IST-2006-034904.

The authors are with the Department of Machine Design, Royal Insti-
tute of Technology - KTH, Stockholm, Sweden. {leifeng, chen,
martin}@md.kth.se

on tasks. The result will support Autonomic Configuration

Management [7] service of the DySCAS middleware.

The self-configuration problem is as follows. Suppose a

set of ECUs, with limited memory and CPU resources, con-

nected by a local area network (LAN). Each ECU is assigned

with a group of tasks with specified resource usage and

timing requirements, and whose executing status depends on

the availability of required signals in the ECU system. Find

an algorithm to determine the tasks that may successfully

run and meet their timing requirements. Here a task is a

concurrent thread of an application program running on top

of the real-time operating system (RTOS) and middleware at

an ECU. We assume that the task-to-ECU allocation [8], [9]

has been decided, and do not consider in this paper run-time

task-migration [10]. The only action on the tasks is to switch

them on or off and only the selected tasks will be scheduled

in RTOS.

While many research projects and publications on re-

configurable software emerged recently [11]–[15], most

of them propose new software architectures and focus on

implementation techniques. To the best of our knowledge,

there is no report on any distributed algorithmic solution of

the self-configuration problem formalized above.

Roman and Islam [13] developed a middleware infras-

tructure that allows the user to specify the execution order

of micro building blocks (MBBs) as a directed graph and

manipulate it for system reconfiguration. Similar to our work,

Kinnebrew et al. [15] also address the task selection problem

based on the data dependencies of tasks. The most relevant

tasks for a mission goal are selected using the spreading

activation task network. The fundamental difference of our

work is that we do not assume a global model of all tasks in

the system. The decision is based on distributed computation.

Section II presents the model of task execution process.

Section III introduces a simple recursive algorithm to solve

the task self-configuration problem. The algorithm is further

verified through a Matlab simulation in Section IV. Finally

Section V draws the conclusion and outlines future works.

II. TASK EXECUTION MODEL

In a networked embedded system, software tasks commu-

nicate via input and output signals. Thanks to communication

transparency support [7], tasks access signals and I/O ports

by directly referring to their names without any knowledge

of their actual locations in the network. At one ECU, the

names and signals have a one to one mapping. In the sequel,

we do not distinguish a signal and its name.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeC17.6

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3737

Consider a network of m ECUs, where each ECU k ∈
m := {1, · · · , m} runs an instance of the DySCAS middle-

ware. Every ECU works as a node in the network. Supported

by middleware services, an ECU directly manages analog

and digital I/O ports. Let IPk (k ∈ m) be the name set of

the input ports at ECU k and OPk the set of the output ports.

The UML state machine diagram in Fig. 1 shows the

execution procedure of one task. To avoid clutter, we ignore

the indexes of the events and the event labels within state

“Active” as they are well known. At the initial state, the task

is not loaded. Then it is deployed to an ECU via event load.

The event may occur not only at the startup process, but also

be invoked by the middleware for dynamic configuration,

e.g., attaching new devices and task migration. Upon the

occurrence of event load, the task must allocate memory

space of the ECU for code and data entries. In case of

inadequate memory space, the middleware must disable event

load.

Off
 Inactive

load
 activate

deactivate

unload

unload

Running
Ready

Blocked

Active

Fig. 1. Task Execution Model

Suppose that there are nk tasks loaded at ECU k ∈ m.

Denote each task τik (i ∈ nk, k ∈ m). After loaded, every

task registers to the middleware at ECU k its input and output

names, Iik, Oik (i ∈ nk, k ∈ m). Let

Ik :=

nk
⋃

i=1

Iik and Ok :=

nk
⋃

i=1

Oik (1)

be the collections of input and output names managed at

ECU k. Since these tasks within ECU k may communicate,

a name can be the output of one task and the input of itself

or another, i.e., it may be true that Ik ∩ Ok 6= ∅.

At state “Inactive”, if the middleware can locate all the

required inputs of the task, event activate may happen. The

occurrence of this event, however, also relies on the CPU

utilization of the ECU. If the CPU is too busy to execute the

task, the middleware must disable the event and choose the

right response according to the designer’s preference: The

task may stay at state “Inactive”, still occupy the memory,

and wait for required inputs or CPU slots. Alternatively, it

may be unloaded from the memory via event unload.

At state “Active”, the task has secured the necessary inputs

and resources, and operates under the scheduling of an

RTOS, as illustrated by the sub machine within “Active”.

Event deactivate switches off the task in the CPU but does

not affect the memory. Event unload removes the task from

the ECU. At ECU k ∈ m, we denote all the active tasks as a

set TAk. Then the outputs of these active tasks are available

to the whole system. They form the set

OAk :=
⋃

{Oik|i ∈ nk, τik ∈ TAk} (2)

These available outputs will be used as inputs by the tasks

in the system. Hence the available inputs for ECU k form

the set

IAk := [Ik ∩ (

m
⋃

j=1

OAj)] ∪ IPk (3)

Based on the available inputs at ECU k, the set of active

tasks at the ECU is

TAk ⊆ {τik|Iik ⊆ IAk} (4)

which must be schedulable [16], namely all members in the

set meet deadlines. The necessary condition to activate τik

is that all its inputs are available, i.e., Iik ⊆ IAk.

Equations (2) to (4) are closely coupled. We must carefully

choose the active task sets TAk (k ∈ m) to satisfy the

three equations. Moreover, it is NP-hard to find an “optimal”

solution that maximizes, for example, the total number of

active tasks. The startup and reconfiguration processes of

the middleware are essentially iterative procedures to find a

solution of this problem. The solution need not be optimal

owing to the high complexity.

III. DYNAMIC CONFIGURATION PROCESS

When dynamic configuration is wanted, e.g., in the cases

of system startup or new device attachment, the middleware

services at the ECUs communicate through the network and

find active tasks at all ECUs. Our underlying assumption

is that the network need not have a master ECU, so that a

global description of the entire system configuration may be

unavailable.

A. Ignoring CPU Limitation

Starting from a simple question, we temporarily ignore the

CPU limitation; hence (4) is simplified as

TAk := {τik|i ∈ nk, Iik ⊆ IAk} (5)

We propose an iterative selecting procedure to find the active

tasks at every ECU. The procedure starts by supposing all

the loaded tasks to be active, and then verifies if these active

task sets satisfy (5). We remove the tasks that do not have

necessary inputs and then update the sets of available outputs

and inputs at all ECUs. This change may affect the active

task sets again. The procedure is formalized as follows.

Let Tk be all the tasks already loaded at ECU k ∈ m.

Let Ik, Ok, computed by (1), be the input and output name

sets at ECU k. Because we initially assume that all tasks are

active, for all k ∈ m we have

TAk(0) :=Tk

OAk(0) :=
⋃

{Oik|τik ∈ TAk(0)} = Ok

IAk(0) :=[Ik ∩ (

m
⋃

j=1

OAj(0))] ∪ IPk

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.6

3738

Let integer r = 0, 1, · · · . From TAk(r), OAk(r), IAk(r),
we can derive

TAk(r + 1) :={τik|Iik ⊆ IAk(r)}

OAk(r + 1) :=
⋃

{Oik|τik ∈ TAk(r + 1)}

IAk(r + 1) :=[Ik ∩ (
m
⋃

j=1

OAj(r + 1))] ∪ IPk

If the sequence {TAk(r)} converges, its final limit is then

the set of possible active tasks at ECU k.

Proposition 1: Sequences {TAk(r)} for all k ∈ m as

defined above converge.

Proof: Using mathematical induction, we prove that

for all k ∈ m the three sequences {TAk(r)}, {OAk(r)},

{IAk(r)} are all nonincreasing.

When r = 0, we immediately have TAk(1) ⊆ TAk(0)
and OAk(1) ⊆ OAk(0), as TAk(0) = Tk and OAk(0) =
Ok. Consequently,

⋃m
k=1

OAk(1) ⊆
⋃m

k=1
OAk(0) and

IAk(1) ⊆ IAk(0).
Suppose that for any integer r, it is true that TAk(r+1) ⊆

TAk(r), OAk(r +1) ⊆ OAk(r), IAk(r +1) ⊆ IAk(r). By

the definition of the sequences and the induction assumption,

we can show

TAk(r + 2) = {τik|Iik ⊆ IAk(r + 1)}

⊆ {τik|Iik ⊆ IAk(r)} = TAk(r + 1)

Using the same argument, we further have OAk(r + 2) ⊆
OAk(r + 1) and IAk(r + 2) ⊆ IAk(r + 1). Therefore

sequences {TAk(r)}, {OAk(r)}, and {IAk(r)} are all

nonincreasing.

Since TAk(0) are finite for all k ∈ m, there must be

an index such that (∀r ≥ r∗)TAk(r) = TAk(r∗) for all

k ∈ m. Sequences {TAk(r)} converge to sets TAk(r∗) for

all k ∈ m.

Alternatively, one may propose an incremental configura-

tion process that begins with empty task sets and gradually

adds the tasks whose inputs are all available. This process,

unfortunately, does not work for tasks forming loops in the

network. For example, Fig. 2 shows two tasks forming a

loop. Suppose Task 1 is deployed at ECU1 and Task 2 at

ECU2. If we start from the empty sets at both ECUs, i.e.,

TA1(0) = TA2(0) = ∅, then OA1(0) = OA2(0) = ∅,

IA1(0) = {inPort}, and IA2(0) = ∅. Consequently,

TA1(1) = TA2(1) = ∅ and the two sequences both converge

to ∅. Evidently, this is incorrect. The method proved in

Proposition 1, however, can achieve the right answer.

Task 1

inPort

Task 2

x
 y

y

Fig. 2. Tasks Forming a Loop

In the configuration process, network communications are

required to obtain sets IAk(r + 1), which use OAk(r + 1)
from all ECUs in the system. To reduce the communication

overhead and avoid the synchronization of all ECUs, we hope

to update IAk(r) to IAk(r + 1) by considering only the

output names that have been changed in OAk(r+1), namely,

those in sets OAk(r) − OAk(r + 1).
To this end, we require the system to satisfy the condition

that the output name sets of all ECUs are pairwise disjoint,

namely,

Oik ∩ Oi′k′ 6= ∅ ⇒ k = k′ (6)

The limitation is not mandatory, but a helpful suggestion

for implementation. According to (6), if two tasks output

an identical name, then they must reside at the same ECU.

In real implementation, if two ECUs do output an identical

name, we simply add ECU stamps to it. Define the following

sequences:

TA′

k(0) := Tk, OA′

k(0) :=
⋃

{Oik|τik ∈ TA′

k(0)}

IAO′

k(0) := Ik ∩(
m
⋃

j=1

OA′

j(0)), IA′

k(0) := IAO′

k(0)∪IPk

Let integer r = 0, 1, · · · . We further derive

TA′

k(r + 1) :={τik|Iik ⊆ IA′

k(r)}

OA′

k(r + 1) :=
⋃

{Oik|τik ∈ TA′

k(r + 1)}

∆OA′

k(r + 1) :=OA′

k(r) − OA′

k(r + 1)

IAO′

k(r + 1) :=IAO′

k(r) −
m
⋃

j=1

∆OA′

j(r + 1)

IA′

k(r + 1) :=IAO′

k(r + 1) ∪ IPk

Two new sequences are introduced at each ECU to re-

duce network communication. Sequence {IAO′

k(r) |r =
0, 1, · · · } represents the available inputs at ECU k that are

provided by the outputs of all tasks in the system. Sequence

{∆OA′

k(r)|r = 1, 2, · · · } contains all the outputs that

become unavailable at ECU k at step r. Since we have proved

in Proposition 1 that sequence {OAk(r)} is monotonically

nonincreasing and can show OA′

k(r) = OAk(r), no new

outputs may become available at step r and set ∆OA′

k(r)
indeed contains all the changed outputs. Only these changed

ones need to be communicated over the network. The result

is formalized in Proposition 2, whose proof relies on (6).

Proposition 2: For all k ∈ m and all possible integers

r, TAk(r) = TA′

k(r), OAk(r) = OA′

k(r), and IAk(r) =
IA′

k(r).

B. Considering CPU Limitation

Next we consider the CPU limitation in the configuration

process. The major difference is that the active task set TAk

at ECU k is determined by (4) and TAk must be schedulable.

Following the same procedure developed in Section III-A,

we define the following sequences for all k ∈ m,

TAk(0) :=Tk, OAk(0) := Ok

IAk(0) :=[Ik ∩ (

m
⋃

j=1

OAj(0))] ∪ IPk

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.6

3739

and for integer r = 0, 1, · · · , TAk(r + 1) is a schedulable

subset of {τik|Iik ⊆ IAk(r)},

OAk(r + 1) :=
⋃

{Oik|τik ∈ TAk(r + 1)}

IAk(r + 1) :=[Ik ∩ (

m
⋃

j=1

OAj(r + 1))] ∪ IPk

There exist two problems for this straightforward ap-

proach. First, the result of TAk(r+1) is not unique. Second,

the more important problem is that the sequences {TAk(r)}
may not be monotonic. During the configuration process,

when an active task is deactivated because of insufficient

input, more CPU time is available and then tasks previously

disabled owing to heavy CPU workload may run. Sequences

{TAk(r)}, therefore, may not converge. This situation is

illustrated by the example in Fig. 3.

Task 1

inPort

Task 2

x

Fig. 3. Two Tasks at One ECU

The two tasks reside at a single ECU1 and Task2 has

higher priority. Both tasks have 60% CPU utilization at

ECU1. Task2 needs signal x to be active and x comes

only from the output of low priority Task1. Evidently

TA1(0) = {Task1, T ask2}, OA1(0) = {x}, and IA1(0) =
{inPort, x}. Then either TA1(1) = {Task1} or TA1(1) =
{Task2}, because the two tasks cannot both properly run

at ECU1. Since Task2 has higher priority, it seems more

appropriate to set TA1(1) = {Task2}. Correspondingly,

OA1(1) = ∅ and IA1(1) = {inPort}. Now that x is not

included in IA1(1), Task2 should be deactivated and Task1

can now become active, i.e., TA1(2) = {Task1}, OA1(2) =
{x}, IA1(2) = {inPort, x}. Notice that IA1(2) = IA1(0).
The same results for the sequences recur and this iterative

process goes forever. Even if we chose TA1(1) = {Task1}
at step 1, we shall still encounter this endless oscillation.

A simple but not necessarily optimal solution to the

convergence problem is to always guarantee sequences

{TAk(r)} (k ∈ m) monotonic. Based upon this rule, the

sequences {TAk(r)} should start from schedulable task sets

Sk ⊆ Tk rather than the full task sets Tk. Consequently,

we can still use the sequences presented in Section III-A

for system configuration under the CPU constraint, with the

only modification of setting TAk(0) := Sk. Since we have

already shown that sequences {TAk(r)} are monotonically

nonincreasing, the limits TAk(r∗) must be schedulable.

At ECU k ∈ m there are generally many candidates of

the schedulable set Sk. If the ECU adopts the fixed priority

scheduling strategy [16], [17], we choose Sk by preferring

tasks with higher priorities. Therefore, we formalize the

property of such an Sk.

We use priority numbers to symbolize the task priorities.

priok : Tk → Z
+

To guarantee that every task has a unique priority, we

suppose function priok to be injective. Here, a smaller

priority number stands for a higher task priority, with 1 for

the highest one. Let Tk be the set consisting of all tasks at

ECU k and Sk ⊆ Tk a task subset. We call Sk the most

important schedulable task subset of Tk if Sk is schedulable

at ECU k and for any task t ∈ Tk − Sk, the set

{s ∈ Sk|priok(s) ≤ priok(t)} ∪ {t} (7)

is not schedulable. According to the definition, even if we

remove all tasks in Sk whose priorities are lower than task t,

t is still not schedulable together with other higher priority

tasks in Sk.

Given a task set Tk, the priority numbers of all tasks, and

a criterion of deciding whether a task subset is schedulable,

we propose an algorithm to compute the most important

schedulable task subset Sk. Let the cardinality of Tk be nk.

Sort the tasks in Tk in the descending order on priorities,

namely, Tk = {t1, · · · , tnk
}, and

(∀i, j ∈ nk) i ≤ j ⇒ priok(ti) ≤ priok(tj)

Let X0 = ∅. For all r = 1, · · · , nk,

Xr :=

{

Xr−1 ∪ {tr}, if schedulable

Xr−1, otherwise
(8)

Finally, Sk := Xnk
.

Proposition 3: Set Sk obtained above is the most impor-

tant schedulable task subset of task set Tk.

Proof: Because ∅ is schedulable, (8) ensures that all Xr

are schedulable. Therefore, Sk = Xnk
must be schedulable.

For further derivation, we also claim that the sequence {Xr}
is monotonic in the way that

(∀r, r′ ∈ nk) r ≤ r′ ⇒ Xr ⊆ Xr′ (9)

For any task ti ∈ {t1, · · · , tnk
}, we define

HP (ti) := {s ∈ Sk|priok(s) ≤ priok(ti)}

to represent the tasks in Sk whose priorities are higher than

or equal to ti. Owing to the priority assignments of the tasks,

we can prove that

HP (ti) = Xi, i = 1, · · · , nk (10)

by mathematical induction. The details are omitted because

of the space limit.

Finally, we prove that Sk is the most important schedulable

subset by the definition. Let tj ∈ Tk − Sk. Then

{s ∈ Sk|priok(s) ≤ priok(tj)} ∪ {tj}

= HP (tj−1) ∪ {tj} = Xj−1 ∪ {tj}

If this set is schedulable, then Xj = Xj−1 ∪ {tj}. Eq. (9)

implies tj ∈ Sk, which conflicts with the original assumption

on tj . The above set, therefore, cannot be schedulable.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.6

3740

IV. SIMULATION

We implement the proposed configuration approach in

Matlab and have it verified via simulation. To realize the

real-time scheduling strategies of ECUs and the network

communication, we use the Matlab/Simulink-based simulator

TrueTime [18].

We demonstrate the proposed configuration methods and

the Matlab implementation through the simulations on the

simple imaginary distributed system depicted in Fig. 4. The

system consists of two ECUs connected by a Controller Area

Network (CAN). The two big squares represent two ECUs,

with the left one numbered 1 and the right one 2. The small

rounded squares represent application tasks.

CAN

bk

y
_
z

y
 z

dev

x

bk

xz
_
y

z

x
 y

1
 2

Fig. 4. A Simple Networked Embedded System

All tasks, except the highlighted task “dev”, are perma-

nently allocated to the target ECUs; thus the four tasks

participate in the configuration process following the system

startup, i.e., the beginning of the simulation. Task “dev”

serves for a new device that might be attached to ECU1 in

the future; hence it is normally absent in the system. When

the device is connected to ECU1, it will trigger an external

interrupt, which loads the application task associated to the

device in the ECU and calls upon a system configuration

using CAN communication.

All tasks in Fig. 4 are periodic. Task “bk” stands for a

background task running at both ECUs. Task “y z” reads

input y and outputs z. Task “xz y” has two inputs x, z and

one output y. Task “dev” only outputs x. The three tasks form

a simple control loop, with “y z” acting as a plant,“xz y” as

a controller, and “dev” issuing reference input.

The parameters of the tasks are listed in Table I. In

column 6, acronym “WET” means worst-case execution

time. Without losing generality, the memory footprints of

the tasks are assumed to be simple nominal numbers instead

of exact byte sizes.

TABLE I

TASK PARAMETERS

Name ECU RAM Prio Perid WET In Out

bk 1, 2 1 9 0.15 0.03 ∅ ∅

y z 1 0.5 8 0.1 0.02 y z

dev 1 1 7 0.1 0.03 ∅ x

xz y 2 1 6 0.1 0.04 x, z y

We assume that both ECUs have 3 slots of memory

resources and adopt the fixed priority scheduling strategy.

Based on the foregoing system setup, we first derive the

expected simulation results using mathematics, and then

examine if the prospect matches the TrueTime simulation.

The simulation starts without the new device; hence the

full task sets at the two ECUs are T1 = {bk, y z} and

T2 = {bk, xz y}, respectively. The I/O ports of the two

ECUs are both ∅.

When the configuration process begins, the ECUs first load

the tasks into the ECU RAMs. According to the system

setup, there are sufficient RAM to load all the tasks. The

remaining memory at ECU 1 is 1.5 and that at ECU 2

is 1. The input and output name sets of the ECUs are

I1 = {y}, O1 = {z}, and I2 = {x, z}, O2 = {y}.

The next step is to determine the active tasks according to

the schedulability and data dependency. As the task priorities

are assigned by the rate monotonic approach, we use the

simple criterion that if overall CPU utilization U at an ECU

meets the relation [16], [17] U ≤ n(21/n − 1), where n is

the number of periodic tasks, then the task set is schedulable.

When n = 2, the scheduling threshold is around 0.828. The

utilizations for sets T1 and T2 are 0.4 and 0.6, respectively.

Hence the two task sets are both schedulable, i.e., S1 = T1

and S2 = T2 in the terminology of Section III-B.

We derive the sequences formalized in Section III as

follows.

TA1(0) = {bk, y z}, OA1(0) = {z} = IA2(0)

TA2(0) = {bk, xz y}, OA2(0) = {y} = IA1(0)

Since IA2(0) is smaller than the input set of task “xz y”,

the task must be inactive and TA2(1) = {bk}. Correspond-

ingly output name y will not be available any longer, i.e.,

OA2(1) = ∅ and ∆OA2(1) = {y}. Meanwhile, because

IA1(0) is equivalent to the input set of task “y z”, TA1(1) =
TA1(0) = {bk, y z} and ∆OA1(1) = ∅.

IA1(1) = IA1(0) − ∆OA2(1) = ∅

IA2(1) = IA2(0) − ∆OA2(1) = {z}

On the next iteration, we further know TA1(2) =
TA2(2) = {bk}, ∆OA1(2) = {z}, and all others are ∅.

As a result, TA1(3) = TA1(2) and TA2(3) = TA2(2). The

sequences converge at the second iteration. After the system

configuration, only “bk” is active at every ECU. So the actual

CPU utilizations at both ECUs are 0.2.

The configuration result is reasonable. Task “xz y” re-

quires input x, which can only be provided by the new de-

vice. Thus it cannot be active. Consequently, its output name

y is absent in the system. Task “y z” must be deactivated too.

The new device is attached to ECU1 in the simulation. The

corresponding interrupt calls on a configuration process. In

this process, owing to the new device, the full task set at

ECU1 becomes T1 = {bk, y z, dev}. The full task set at

ECU2 is still the same T2 = {bk, xz y}.

As stated before, the remaining memory at ECU1 is 1.5

and the memory footprint of “dev” is 1. So the new task

can be loaded in ECU1. The loaded tasks at ECU1 is then

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.6

3741

the new set T1. The remaining memory at ECU1 changes

to 0.5. There is no memory change at ECU2. Because the

new task “dev” provides output name x, the corresponding

input and output become I1 = {y}, O1 = {x, z}, and I2 =
{x, z}, O2 = {y}.

Since T1 contains 3 tasks, the scheduling threshold for

it is 0.78. The actual utilization for task set T1 is 0.7. So

T1 is schedulable and we still have S1 = T1. The new

configuration process to decide active tasks after introducing

the new device is as follows.

TA1(0) = {bk, y z, dev}, OA1(0) = {x, z} = IA2(0),

TA2(0) = {bk, xz y}, OA2(0) = {y} = IA1(0)

Because IA1(0) = I1 and IA2(0) = I2, TA1(1) =
TA1(0) and TA2(1) = TA2(0). The sequences converge at

step 0. All tasks in Fig. 4 are active after the reconfiguration.

The new CPU utilizations at the two ECUs are 0.7 and 0.6. If

the device is detached later, a configuration process identical

to the startup process will occur.

Finally we present the TrueTime simulation result. The

plots in Fig. 5 show the execution schedules of all tasks at the

two ECUs. The absolute values of the plots are meaningless.

In one plot, high value means that the task is running, thus

occupying the CPU in that time period, low value means

that the task is idle, and medium value implies that the

task is preempted by a higher priority task. The simulation

time is 10s, and the new device is attached and detached

at 3s and 7s, respectively. When the system starts up at 0s,

the configuration process is delayed for 500ms to establish

the network communication. Evidently the simulation agrees

with the theoretical prediction.

0 1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

Time

S
c
h

e
d

u
le

1

bk

dev

y_z

0 1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

Time

S
c
h

e
d

u
le

2

xz_y

bk

Fig. 5. Task Schedules of the Configuration Process

V. CONCLUSION AND FUTURE WORKS

To support the embedded reasoning and decision services

that enable dynamically self-configuring automotive software

systems, we formalize and propose a preliminary solution to

the task self-configuration problem, which seeks to decide

which tasks should be active on ECUs subject to resource

constraints and task dependency. Our result has been verified

by both mathematical proof and simulation.

We are planing to refine this study with the following

approaches: (1) More accurate enforcement of real-time

requirements. The schedulability criterion based on CPU

utilization is very conservative. To be more realistic, we shall

measure task latencies online and detect deadline overrun. (2)

Task migration and load balancing [10]. These are unique

features that DySCAS project investigates for automotive

software systems. (3) Dynamic collaboration between this

configuration decision and adaptive resource management

service [7].

REFERENCES

[1] J.A. Cook, I.V. Kolmanovsky, D. McNamara, E.C. Nelson, and K.
Venkatesh. Control, Computing and Communications: Technologies
for the Twenty-First Century Model T, Proc. IEEE, 95(2):334-355,
2007.

[2] K. Grimm. “Software Technology in an Automotive Company - Major
Challenges”, Proc. 25th Intl. Conf. Software Eng., Portland, OR, USA,
pp.498-503, 2003.

[3] AUTOSAR - Automotive Open System Architecture, http://www.
autosar.org, Aug. 2008.

[4] A. Sangiovanni-Vincentelli and M.D. Natale. Embedded System De-
sign for Automotive Applications, Computer, 40(10):42-51, 2007.

[5] DySCAS - Dynamically Self-Configuring Automotive Systems, http://
www.dyscas.org, Aug. 2008.

[6] R. Anthony, A. Rettberg, O. Redell, T. Quereshi, M. Törngren, C.
Ekelin, and G. deBoer. “Dynamically Reconfigurable Automotive
Control Systems”, Proc. Advanced Automotive Electronics, Gaydon,
UK, Jan. 31, 2007

[7] D.J. Chen, R. Anthony, M. Persson, D. Scholle, V. Friesen, G. deBoer,
A.Rettberg, and C. Ekelin. “An Architectural Approach to Autonomics
and Self-management of Automotive Embedded Electronic Systems”,
Proc. 4th European Congress ERTS, Toulouse, France, Jan. 29-Feb.
1, 2008.

[8] S.H. Bokhari. On the Mapping Problem, IEEE Trans. Comput., C-
30:207-214, 1981.

[9] M. Kafil and I. Ahmad. Optimal Task Assignment in Heterogeneous
Distributed Computing Systems, IEEE Concurr., 6(3):42-51, 1998.

[10] I. Jahnich, I. Podolski, and A. Rettberg. “Integrating Dynamic Load
Balancing Strategies into the Car-Network”, Proc. IEEE Intl. Symp.

Electronic Design, Test and Applications, Hong Kong, China, Jan. 23-
25, 2008.

[11] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and
R. Campbell. “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB”, Proc. Middleware 2000 Conf.,
ACM/IFIP, New York, USA, Apr. 3-7, 2000.

[12] F. Kon, J.R. Marques, T. Yamane, R.H. Campbell, and M.D. Mickunas.
Design, Implementation, and Performance of an Automatic Configura-
tion Service for Distributed Component Systems, Softw. Pract. Exper.,
35(7):667-703, 2005.

[13] M. Roman and N. Islam. “Dynamically Programmable and Reconfig-
urable Middleware Services”, Middleware 2004, LNCS 3231, H.-A.
Jacobsen (Ed.), pp.372-396, 2004.

[14] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G.P. Picco, and S.
Zachariadis. Reconfigurable Component-based Middleware for Net-
worked Embedded Systems. Int. J. Wireless Information Networks,
14(2):149-162, Jun. 2007.

[15] J.S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and D.C.
Schmidt. “A Decision-Theoretic Planner with Dynamic Component
Reconfiguration for Distributed Real-Time Applications”, Proc. 8th

Intl. Symp. Autonomous Decentralized Systems, Sedona, AZ, USA,
Mar. 2007.

[16] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, 2nd ed., Springer Science
+ Business Media, Inc., 2004.

[17] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment, J. ACM, 20(1): 46-61, 1973.

[18] M. Ohlin, D. Henriksson, and A. Cervin. TrueTime 1.5 - Reference

Manual, Department of Automatic Control, Lund University, Sweden,
http:// www.control.lth.se/truetime, Mar. 2008.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC17.6

3742

