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Abstract— This paper presents a new constructive model
predictive control approach to asymptotic stabilization of con-
strained, discrete time-invariant nonlinear dynamic systems.
The constructive approach not only considers the traditional
optimality problem on a finite horizon, but also considers a
feasibility constraint imposed at the end of each finite horizon
(prediction horizon). The feasibility constraint is included in
the optimization formulation as a set of inequality constraints.
Sufficient conditions for establishing asymptotic stability of
discrete nonlinear systems are derived from the simultaneous
solutions of the optimality and the feasibility problems on
the finite horizon. The proposed approach is appealing in the
sense that no necessary conditions regarding stabilizability of
the linearization of the nonlinear dynamic system around an
equilibrium, or the identification of an a priory stabilizing
control law in a neighborhood of the equilibrium are needed;
known as common requirements in many nonlinear model
predictive control formulations. Simulation examples for the
proposed approach are presented.

I. INTRODUCTION

Since its origins in the late 70’s and early 80’s and until its

blooming period in the 90’s and thereafter, Model Predictive

Control (MPC), an optimization based approach for stabi-

lizing linear and nonlinear dynamic systems, has become

an important control design methodology. The increase in

popularity and therefore in applications is based on its ability

to achieve desired system performance while at the same

time being able to handle constraints on the controlled system

[1]. Beside successful applications in industry [2], over the

last two decades there has been a great increase in theoretical

results and algorithms that focus on showing and enforcing

properties such as stability and robustness ([3], [4], and [5]).

These results aim to broaden the family of problems and

systems where model predictive control has been considered,

improving the way in which objectives promoted by higher

standards are accomplished.

The main idea of constrained model predictive control

(also known as constrained receding horizon control) is

to solve a finite horizon optimal control problem for a

system, starting from current states xk over the time interval

[k∆t,(k + N)∆t], where ∆t is a sampling time and N is the

control horizon length, under a set of constraints on the

system states and/or control inputs. After a solution from the

optimization problem is obtained, a portion of the computed

control actions is applied on the interval [k∆t,(k + n)∆t],

This work has been supported by the Boeing Company via the Informa-
tion Trust Institute at the University of Illinois at Urbana-Champaign

PhD student Juan S. Mejı́a and Assistant Professor Dušan M. Stipanović
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where n is the receding step, satisfying n < N. This process

is then repeated as the finite horizon moves by time steps of

n∆t units of time, yielding a state feedback control scheme

strategy.

It has been expressed in [6] that even for the case where

there is no model mismatch between the real system and

the model, and no disturbances are present, the closed-loop

inputs and state trajectories will differ from the ones obtained

by the open-loop prediction in the optimization problem.

Such observation motivates the fact that most implementation

choose n = 1, holding a constant control input between the

sampling times. By choosing n = 1, an optimization problem

is solved at every sampling time, therefore minimizing the

mismatch between the calculated and actual plant state

response by considering the latest information used for the

optimization process. Under assumptions that the nonlinear

dynamic system would not deviate too far from the predicted

trajectory, we have a freedom to choose 1 < n < N, such that

the on-line optimization is not performed at every sampling

time, thus reducing the computational load.

In the case of constrained Nonlinear Model Predictive

Control (NMPC), over the recent years different approaches

to establish stability properties have been proposed, in-

cluding stability constraints, contractive constraints, Control

Lyapunov Functions (CLF), and inverse optimality based

schemes, among others. Stability constraint approaches share

two common ideas: 1) the use of the value function (optimal

cost function over the finite horizon) as a valid Lyapunov

function and 2) the definition of a terminal region of at-

traction EF (non empty) in the state space, where the last

state of the finite horizon at the first optimization iteration

at time k = 0 must belong to EF . This terminal condition is

then included in the optimization formulation in the form of

equality or inequality constraints.

In [7], [8], and [9], a final equality constraint is used,

defining EF = {0}, such that at time ∆tN, the last state in

the horizon must reach the equilibrium. The problem with

such approach is the high computational demand required

for satisfying the equality constraint exactly, therefore not

being efficient in practice. This issue motivated alternative

formulations such as the ones presented in [10], [11], and

[12], where instead of satisfying an equality constraint, an

inequality constraint is used to define a terminal region EF

in a neighborhood of the origin. In this terminal region EF ,

a local linear control law KL is assumed to be available and

is obtained from the linearization of the nonlinear system at

the equilibrium. Also in [11] and [12], a final penalty term

or final cost F(·) is included, representing an upper bound
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on the optimal cost to go until reaching the equilibrium.

Adequate selection of a terminal region EF , the local linear

control law KL and the cost F(·) in the mentioned approaches

guarantee asymptotic stability of the considered nonlinear

system. Another approach within the terminally constraint

schemes is the one presented in [13], where no stabilizable

linearization condition around the equilibrium is necessary,

but a stabilizing control law needs to be identified within EF .

The identification of such control law may be a challenging

task for some systems. Resemblance to the CLF design

methodology is clear in this setting.

Another approach is the contractive NMPC introduced in

[14] and extended in [15]. This method, similarly to the

the ones mentioned previously, also uses a Lyapunov-based

approach. In [15] an a priori chosen Lyapunov function

is decreasing at some discrete instances instead of being

decreasing uniformly (at all sample times k). By imposing

an extra inequality constraint in the optimization process, the

a priori chosen Lyapunov function decreases at the desired

discrete instances by a factor of α ∈ (0,1), guaranteeing that

the system is exponentially stable. In [15] an assumption

regarding the linearization of nonlinear systems around the

origin being stabilizable is also used.

Other methods based on CLF and inverse optimality have

also been considered in [16] and [17], respectively. For more

detailed information on NMPC stability approaches, we refer

to [4] and the excellent survey presented in [18].

The main idea of this paper is to present an NMPC

scheme where asymptotic stability of the considered non-

linear system is guaranteed (under appropriate assumptions)

without necessary conditions such as the nonlinear sys-

tem being stabilizable once linearized around the desired

equilibrium, or the identification of a stabilizing control

law within a neighborhood of the origin; as assumed in

many existing NMPC formulations. The exclusion of such

conditions allows the proposed approach to broaden the types

of nonlinear systems that can be stabilized using NMPC,

including important systems such as certain nonholonomic

systems, where some previously proposed approaches fail

due to the associated assumptions.

The paper is structured as follows: In Section II we

introduce some preliminaries on NMPC and the notation

that is used throughout the paper. Section III presents the

proposed NMPC approach, followed by the main results in

Section IV. Simulation results based on the proposed NMPC

approach are presented in Section V. Finally in Section

VI we draw some conclusions and propose future research

directions.

II. PRELIMINARIES AND NOTATION

Let us consider the following time-invariant nonlinear

discrete model:

xk+1 = f (xk,uk), (1)

where xk ∈ R
p defines the set of states, uk ∈ R

q defines the

control inputs at time k and f (·, ·) is a continuous function,

where f (0,0) = 0. All control inputs satisfy uk ∈ UN , where

UN is a convex, compact set which defines the set of all

admissible control inputs (for a horizon of length N). Having

defined the system model in (1) we can state a formulation

of the receding finite time horizon optimal control problem,

denoted by P(k), starting from initial condition xk at time

k, as:

P(k) : V ◦
N(xk) = min

uk+i|k

{VN(xk+i|k,uk+i|k) : uk+i|k ∈ UN ,

i ∈ {1, . . . ,N}}. (2)

The formulation in (2) is subjected to a set of equal-

ity constraints h(·) = 0 representing the system model in

(1) over a finite horizon with N samples and a set of

inequality constraints g(·) ≤ 0 that impose system’s con-

trol input constraints. Future predicted states starting from

initial conditions xk are defined by xk+i|k, i ∈ {1, . . . ,N},

and these are generated by predicted control inputs uk+i|k,

i ∈ {1, . . . ,N}. A sequence of control inputs on the finite

horizon staring from initial conditions xk will be defined

as U(xk) =
{

uk+1|k,uk+2|k, . . . ,uk+N|k

}

. Optimal future pre-

dicted states and controls are represented by x◦
i+k|k and

u◦
k+i|k, i ∈ {1, . . . ,N} respectively. The function to be min-

imized in P(k), VN(xk+i|k,uk+i|k), penalizing future states

and control inputs, is the following cost function:

VN(xk,U(xk)) =
N

∑
i=1

l(xk+i|k,uk+i|k)+F(xk+N|k), (3)

with two components, a running cost
N

∑
i=1

l(xk+i|k,uk+i|k) and

a final cost F(xk+N|k). The running cost and the final cost are

chosen (as in most NMPC formulations) as time-invariant,

positive definite, radially unbounded functions. Advantages

from such choices will become evident later in developing

stability properties for the proposed control scheme.

The following notation will be used throughout the rest of

the paper:

• EF := {x ∈ R
p : 0 ≤ H(x) ≤ C}, is a closed invariant

subset of R
p including the origin, for a given constant

C and a positive semi-definite function H(x). That is,

after system states xk enter EF , all future system states

xk+ j, j ∈ {1, . . . ,∞}, must remain in that set.

• Instead of a time-invariant EF ⊂ R
p, we define a time

varying EF(k) ⊂ R
p such that as k increases, EF(k +

1) ⊂ EF(k).
• Predicted control inputs uk+i|k will also be denoted by

uk+i(xk), making more explicitly their dependence on

the initial condition xk.

• The sequence of N predicted optimal control actions that

achieves V ◦
N starting from initial condition xk is denoted

as U◦(xk) = {u◦k+1(xk),u
◦
k+2(xk), . . . ,u

◦
k+N(xk)}.

• The sequence of n predicted optimal control actions

starting from initial condition xk is denoted as K◦
n (xk) =

{u◦k+1(xk),u
◦
k+2(xk), . . . ,u

◦
k+n(xk)}, Kn(xk) ⊂U◦(xk).
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• The sequence of n chosen control actions (not

necessarily optimal) applied from initial condition

x◦
k+N|k such that the future states xk+N+ j|k,

j = {1, . . . ,n}, stay within a closed invariant subset

EF(k) ⊂ R
p, EF(k) =

{

x ∈ R
p : F(x) ≤ F(x◦

k+N|k)
}

is denoted as KF(x◦
k+N|k) =

{ûk+N+1(x
◦
k+N|k), ûk+N+2(x

◦
k+N|k), . . . , ûk+N+n(x

◦
k+N|k)}.

• The sequence of N optimal states generated by

predicted optimal control inputs U◦(xk) starting

from initial condition xk is denoted as X◦(xk) =
{x◦

k+1|k,x
◦
k+2|k, . . . ,x

◦
k+N|k}.

• The sequence of n states generated by chosen

control inputs KF(x◦
k+N|k) starting from initial

condition x◦
k+N|k is denoted as X̂(x◦

k+N|k) =

{x̂k+N+1|k, x̂k+N+2|k, . . . , x̂k+N+n|k}.

• The sequence of the control actions resulting from

the union of U◦(xk) and KF(x◦
N|k) is denoted

as Ũ(xk) = {u◦k+1(xk),u
◦
k+2(xk), . . . ,u

◦
k+N(xk),

ûk+N+1(x
◦
N|k), ûk+N+2(x

◦
N|k), . . . , ûk+N+n(x

◦
N|k)}.

• The sequence of the states generated by the

control inputs Ũ(xk) is denoted as X̃(xk) =
{x◦

k+1|k,x
◦
k+2|k, . . . ,x

◦
k+N|k, x̂k+N+1|k, x̂k+N+2|k, . . . , x̂k+N+n|k}.

Elements of a particular sequence S(y) will be denoted

by S(i;y) where i ∈ {1, ..., length(S(y))} and y is an initial

condition for the sequence.

III. PROPOSED NMPC APPROACH

The main idea of the proposed NMPC approach is to solve,

at each sampling time k, two problems simultaneously, an

optimality problem P(k) and a feasibility problem F (k)
where both problems depend on each other. In the proposed

approach instead of considering the traditional control hori-

zon of length N we will consider an extended horizon of

length P called the prediction horizon, where N < P. The

idea of a prediction horizon is not new [1], and it is used

to obtain further insights about the future behavior of the

plant based on current predictions. The prediction horizon

is constructed by concatenating the usual control horizon

of size N and a tail of size P−N generated by applying

the last control input U◦(N; ·) from the sequence of optimal

control actions as a constant input to obtain P−N predicted

states, starting from the last state in the control horizon. It is

important to mention that in many approaches this tail is also

penalized through the cost function. Instead of obtaining the

tail of the predicted horizon in the traditional way (constant

control input), we will allow the control inputs in the tail of

the predicted horizon (P = N + n), defined by the control

sequence KF(x◦
k+N|k), to be variables which will not be

incorporated (penalized) into the cost function, either directly

or through the states they generate. The control sequence

KF(x◦
k+N|k) will be a solution to the feasibility problem

(F (·)) defined by satisfying the following two conditions:

C1 The states X̂(x◦
k+N|k) (predicted states) generated by

KF(x◦
k+N|k) belong to an invariant set EF(k) := {x∈

R
q|0 ≤ F(x) ≤ F(x◦

k+N|k)}

C2 The set EF(k) contracts as k recedes in time.

The feasibility conditions introduced above can be included

into the proposed NMPC formulation (optimization problem)

by introducing two sets of inequality constraints that must

be satisfied at each optimization horizon. The first set of

inequalities (gC1(·) ≤ 0),

F(X̂( j;x◦k+N|k))−F(x◦k+N|k) ≤ 0, ∀ j ∈ {1, ...,n}, (4)

enforces condition C1 such that X̂(x◦
k+N|k) ∈ EF(k). On the

other hand, the second set has just one inequality (gC2 ≤ 0),

F(x̂k+N+n|k)−F(x◦k+N|k)+
n

∑
i=1

l(x̂k+N+i|k,KF(i;x◦k+N|k)) ≤ 0,

(5)

which enforces C2 and implies the contraction of of the set

EF(k) in between finite horizons as k recedes.

A clear implication of this formulation is the requirement

to use a final penalizing cost in the cost function. This final

cost can be chosen as an appropriate scaled version of the

last element (or associated last state) of the running cost that

is being minimized over each horizon.

With all necessary elements being introduced we can

redefine the optimization problem to be solved at each

sampling time as,

P̂(k) : V ◦
N(xk) = min

uk+i|k

{VN(xk+i|k,uk+i|k) : uk+i|k ∈ UN ,

i ∈ {1, . . . ,N}}, (6)

s.t.















h(i) = 0,∀i ∈ {1, . . . ,P}
g(i) ≤ 0,∀i ∈ {1, . . . ,P}
gC1( j) ≤ 0,∀ j ∈ {1, . . . ,n}
gC2 ≤ 0,

where again equality constraints h(·) = 0 represent the dy-

namic model in (1), inequality constraints g(·)≤ 0 represent

constraints on the control input and inequality constraints

gC1(·) ≤ 0 and gC2 ≤ 0 are the expressions that enforce

conditions C1 and C2. Notice that all inequality constraints

are being expressed in the traditional negative null form.

From the formulation of P̂(k) in (6) it can be observed

that it includes elements from both the stability and the

contractive constraint approach. Regarding relations with the

stability constraint approach, instead of using a local control

law (which may not be available) to enforce X̂(x◦
k+N|k) ∈

EF(k), the proposed scheme uses KF(x◦
k+N|k), a sequence

of control action which is available provided there is a

feasible solution for P̂(k). The availability of KF(x◦
k+N|k) by

obtaining a solution to the feasibility problem (satisfaction

of C1-C2) will allow us to later show stability properties in

a constructive way. A difference with respect to the stability

constraint approach is the fact that EF(k) can change size and

it is not static. This fact is what makes a direct resemblance to

the contractive approach since the set EF(k) contracts as the

problem is iteratively solved and k recedes, guiding system

states toward the desired equilibrium.
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IV. MAIN RESULT

Before introducing our main result for establishing stabil-

ity properties of the proposed NMPC approach defined in

(6), let us state the following nonrestrictive assumptions:

A1 There exist at least one control sequence, U∞ ∈UN ,

such that as k → ∞, xk → 0. This implies that

at each optimization horizon there is at least one

feasible solution U◦(xk) for P̂(k), which implies

satisfaction of the set of constraints gC1(·)≤ 0 and

gC2 ≤ 0 on the finite horizon of length P.

A2 EF(k) ⊂ R
p, EF(k) is closed and {0} ∈ EF(k).

A3 F(x◦
N|0)≤ F(x0) along the solutions of the first op-

timization problem. This condition can be enforced

by choosing a suitable horizon length N.

A4 System state feedback is available at all sampling

instances.

A5 No disturbances are considered in the system envi-

ronment.

Using the proposed control scheme and the previous

assumptions we introduce the following result.

Theorem 1. Under the assumptions A1-A5, the proposed

receding time horizon control scheme with 1 < n < N that

iteratively solves the optimal control problem P̂(·) in (6),

asymptotically stabilizes the system described in equation

(1).

Proof: Let us define the associated optimal cost starting

from the initial conditions xk+n|k and apply control sequence

Ũ(xk) (well defined from A1), matching time accordingly

by,

VN(xk+n|k,Ũ(xk)) = V ◦
N(xk,U

◦(xk))−
n

∑
i=1

l(x◦k+i|k,K
◦
n (i;xk))

− F(x◦k+N|k)+
n

∑
i=1

l(x̂k+N+i|k,KF(i;x◦k+N|k))

+ F(x̂k+N+n|k). (7)

The cost VN(xk+n|k,Ũ(xk)) is an upper bound on the optimal

cost V ◦
N(xk+n|k,U

◦(xk+n|k)) and therefore the following is a

consequence of (7):

V ◦
N(xk+n|k,U

◦(xk+n|k))≤V ◦
N(xk,U

◦(xk))−
n

∑
i=1

l(x◦k+i|k,K
◦
n (i;xk)),

(8)

provided that,

F(x̂k+N+n|k)−F(x◦k+N|k)+
n

∑
i=1

l(x̂k+N+i|k,KF(i;x◦k+N|k)) ≤ 0.

The above inequality follows from the existence of a feasible

solution (assumption A1) and therefore satisfaction of con-

straint gC2 ≤ 0. Also, by satisfying gC1(·) ≤ 0 (assumption

A1), invariance of xk+N+ j|k, j = {1, . . . ,n} with respect to

EF(k) is guarantied.

Provided
n

∑
i=1

l(x◦
k+i|k,K

◦
n (i;xk)) > 0, ∀xk 6= {0}, which is

enforced by an appropriate selection of the cost function VN ,

from (8) we obtain the relation,

∆V ◦
N(k) = V ◦

N(xk+n|k,U
◦(xk+n|k))−V ◦

N(xk,U
◦(xk))

≤ −
n

∑
i=1

l(x◦k+i|k,K
◦
n (i;xk)) < 0,∀xk 6= {0}. (9)

The running cost and final cost are originally chosen as time-

invariant, positive definite, radially unbounded functions. If

we add such choice of the cost function to the condition in

(9), the optimal cost can be identified as a valid discrete Lya-

punov function. Therefore, from the condition in (9) we can

conclude by Lyapunov second theorem for discrete systems

([19], [20]), that the proposed receding time horizon control

scheme asymptotically stabilizes the constrained nonlinear

system in (1).

The following Lemma is used to reformulate the result

of Theorem 1 for the case of n = 1 which is again almost

always the exclusive choice in NMPC implementations.

Lemma 1. In the case where the receding step n = 1,

condition C2 implies condition C1

Proof: Condition C2 is captured by the feasibility of

gC2 ≤ 0. Then, suppose that the problem P̂(k) at time k

produces a feasible solution and therefore the inequality is

satisfied. Now, let us rewrite the inequality gC2 ≤ 0, for the

case when n = 1 in the following form,

F(x̂k+N+1|k)−F(x◦k+N|k) ≤−l(x̂k+N+1|k,KF(1;x◦k+N|k)).

Since the portion of the cost l(x̂k+N+1|k,KF(1;x◦
k+N|k)) ≥ 0,

given l(·, ·) is chosen as a positive definite function, then

F(x̂k+N+1|k)−F(x◦
k+N|k) ≤ 0. This last inequality is the one

that enforces condition C1 for the case where n = 1. Thus

the Lemma is proved.

The following is a Corollary of Theorem 1 and Lemma 1.

Corollary 1. Under the assumptions A1-A5, the receding

time horizon control scheme with n = 1 that iteratively solves

the optimal control problem P̂(·) in (6), asymptotically sta-

bilizes the system described in (1) without explicitly including

inequality gC1(1) ≤ 0 in P̂(·).

V. SIMULATION RESULTS

To illustrate the proposed NMPC scheme let us consider

the following two simulation examples, where all considered

systems when linearized around the origin are not stabiliz-

able.

A. Example 1

Let us consider the following constrained continuous non-

linear dynamic system [13],

ẋ = xu, x,u ∈ R, |u| ≤ 1,

which can be discretized to obtain,
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xk+1 = xk(1+∆tu), |u| ≤ 1, (10)

where ∆t is the sampling time.

Now, let us define the cost function by,

VN(xk+i|k,uk+i|k) =
N

∑
i=1

(α(xk+i|k)
2 +β (uk+i|k)

2)+ γ(xk+N|k)
2
,

where α = 1, β = 0.001, γ = 20, and choose parameters

N = 7, n = 1 and ∆t = 0.1[s].
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Fig. 1. System Response Example 1

Simulated state response obtained from implementing the

proposed NMPC approach to the system in (10) starting from

the initial condition x0 = 1 is depicted in Fig. 1. From the

figure it can be observed that the proposed NMPC approach

asymptotically stabilizes the system in (10).

B. Example 2

Consider the so called nonholonomic integrator system,

ẋ1 = u1

ẋ2 = u2 (11)

ẋ3 = x1u2 − x2u1

introduced by Brockett in [21], where x = [x1,x2,x3]
T ∈ R

3

and u = [u1,u2]
T ∈ R

2. This system has the particularity that

it fails to meet Brockett’s condition for smooth stabilizability

[21], and as a consequence there is no time-invariant contin-

uously differentiable control law that would make the origin

asymptotically stable.

By discretizing the system in (11) the following discrete-

time system is obtained:

xk+1(1) = xk(1)+uk(1)∆t

xk+1(2) = xk(2)+uk(2)∆t (12)

xk+1(3) = xk(3)+(xk(1)uk(2)− xk(2)uk(1))∆t.

where the states are given by xk = [xk(1),xk(2),xk(3)]T ∈
R

3 and the control inputs by uk = [uk(1),uk(2)]T ∈ R
2.

The system considered in (12) is intended to minimize the

following cost function,

VN(xk+i|k,uk+i|k) =
N

∑
i=1

(xT
k+i|kQxk+i|k +βuT

k+i|k uk+i|k)

+ γxT
k+N|k xk+N|k, (13)

where Q is a diagonal matrix with diagonal elements

{1,1,2}, β = 0 and γ = 100, while subject to a con-

strained set of admissible control inputs uk(i) ∈ [−1,1], ∀i ∈
{1,2},∀k ≥ 0, and additional constraints |uk+1(i)−uk(i)| ≤
0.5, ∀i ∈ {1,2},∀k ≥ 0. Horizon and receding parameters are

N = 4 and n = 2, and sampling time ∆t = 0.2[s]. Superscript

T in equation (13) denotes vector transpose.
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Fig. 2. System Response Example 2

The system response starting from initial conditions x0 =
[0.2,−0.2,3]T can be observed in Fig. 2. From the figure it

can be noticed that the system converges asymptotically to

the origin.

VI. CONCLUSIONS

The proposed constructive NMPC approach is an alter-

native scheme for stabilizing discrete nonlinear dynamic

systems that are not stabilizable when linearized around an

equilibrium, or discrete nonlinear dynamic systems for which

finding an a priory stabilizing control law in a neighbor-

hood of the origin is a hard task. Sufficient conditions for

guaranteeing asymptotic stability were presented for receding

parameter 1 < n < N. These conditions were later specialized

for the case when n = 1, showing that a simplified version

of the proposed optimization problem could also guaran-

tee system’s asymptotic stability. Two simulation examples

including systems that are not stabilizable when linearized

around an equilibrium were provided. In both examples

the proposed approach proved to stabilize the considered

systems. Our future work will focus on the consideration

of disturbances and also in determining more insightful

directions in the choice of the final cost function.
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