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Abstract— In this paper, we propose a new method for
the identification of linear Multiple Inputs-Multiple Outputs
(MIMO) systems. By introducing a particular user-defined ma-
trix that does not change the rank of the extended observability
matrix when multiplying this latter matrix on the left, the
subspace identification problem is recasted into a simple least
squares problem with all regressors available. Therefore, the
Singular Value Decomposition algorithm which is a customary
tool in subspace identification can be avoided, thus making our
method appealing for recursive implementation. The technique
is such that the state coordinates basis of the estimated
matrices is completely determined by the aforementioned user-
defined matrix, that is, given such a matrix, the state basis
of the identified matrices does not change with respect to the
realization of input-output data.

I. INTRODUCTION

The identification of linear dynamical Multiple Input-

Multiple Output (MIMO) systems achieved in the last two

decades a remarkable development from the so-called sub-

space methods [1], [2], [3]. The main appealing feature

of these methods over the more traditional error prediction

methods [4], is that they directly provide minimal and not

necessarily canonical state space models from input-output

(I/O) data.

However, the application of subspace identification meth-

ods to the estimation of certain types of systems such as

composite systems with linear constituent submodels [5],

switched linear systems [6], [7] or recursive identification

[8], [9], sometimes comes with some technical difficulties.

One issue is related to the multiplicity of possible bases for

representing the system equations in the state space. For

example, in the case of recursive subspace identification,

most of the existing contributions [8], [9] do not guarantee

that the state basis remains fixed during the whole recursive

identification procedure. This is also a crucial problem when

dealing for example with the identification of multi-models

or switched systems. Indeed, in these cases, all the different

submodels of the system must be obtained in the same basis

[6]. Failing to this requirement may have the consequence

of altering the I/O behavior of the system.

A second issue is related to the SVD algorithm that

is generally required in subspace identification. In fact,

subspace methods involve an SVD step in which one decides

arbitrarily on the basis of the range space of the extended
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observability matrix to be estimated. An important problem

is that the SVD is computationally heavy and technically

hard to update recursively, thus making its use in online

identification a fastidious task [8]. Moreover, updating an

SVD neither solves the problem of coordinate basis deviation

during the estimation. Therefore, an attempt to reconstruct

the I/O behavior from the estimated matrices may result in

a shifted behavior.

In this paper, we focus on developing a new, simple,

efficient and SVD-free identification method for linear dy-

namical state space models, that could overcome the afore-

mentioned problems. Since a state model holds only up to

a similar transformation, one can indeed choose in advance

the basis of the model to be identified. This is carried out

by introducing a user-defined matrix Λf (notation of the

paper), that preserves the rank properties of the extended

observability matrix when multiplying this latter matrix on

the left. We then show that, under the assumption that the

considered system is observable, if one draws Λf randomly

from a uniform distribution for example, we can obtain

a consistent realization of the system. Being based on a

conversion of the subspace estimation problem into a Least

Squares problem, the developed method can be regarded as

an interesting solution to the problem of subspace tracking

frequently encountered in signal array processing, recursive

system identification and many other applications [10].

The outline of the paper is as follows. In Section II we

formulate the subspace identification problem. A relevant

sufficiency of excitation concept is defined and used to

derive conditions that guarantee consistency of the subspace

identification. In Section III, we present a new subspace-

based identification algorithm. Some illustrative simulation

results shown in Section IV demonstrate the applicability of

our method.

II. PROBLEM STATEMENT

We consider a Linear Time-Invariant (LTI) system de-

scribed by a discrete-time model of the form
{

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + v(t),

(1)

where x(t) ∈ R
n, u(t) ∈ R

nu , y(t) ∈ R
ny are respectively

the state, the input and output vector and w(t) ∈ R
n and

v(t) ∈ R
ny symbolize the process noise and measurement

noise. Here, these noises are assumed to be zero-mean

white noise processes. A, B,C, D are the system matrices

relatively to a certain basis of the state space.

The identification problem can then be formulated as

follows: given I/O data {u(t), y(t)}
N

t=1
generated by a system
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of the form (1), estimate the matrices (A, B,C, D) in any

state coordinates.

To begin with the identification procedure, let us define

uf (t) =
[

u(t)⊤ · · · u(t + f − 1)⊤
]⊤
∈ R

fnu , (2)

with f > n. In a similar manner as uf (t), we define

yf (t) ∈ R
fny , wf (t) ∈ R

fn and vf (t) ∈ R
fny . Finally, in

accordance with these signal vectors, we define the matrices

Γf =
[
(C)⊤ (CA)⊤ · · · (CAf−1)⊤

]⊤
∈ R

fny×n,

Hf =








D 0 · · · 0
CB D · · · 0

...
. . .

. . .
...

CAf−2B · · · CB D







∈ R

fny×fnu ,

Gf =








0 0 · · · 0
C 0 · · · 0
...

. . .
. . .

...

CAf−2 · · · C 0







∈ R

fny×fn.

From the recurrent equation (1), one can easily obtain, by

successive substitutions over a time horizon [t, t + f − 1],

yf (t) = Γfx(t) + Hfuf (t) + ef (t), t ≥ 1 (3)

with ef (t) = Gfwf (t) + vf (t).
Let N be an integer such that n < f ≪ N and define

Xt,N =
[
x(t) · · · x(t + N − 1)

]
∈ R

n×N ,

Ut,f,N =
[
uf (t) · · · uf (t + N − 1)

]
∈ R

fnu×N .

Similarly to Ut,f,N , we define also Yt,f,N ∈ R
fny×N ,

Et,f,N ∈ R
fny×N . Then, based on Eq. (3), we can write

the following block data equation for t = f + 1.

Yf+1,f,N = ΓfXf+1,N + HfUf+1,f,N + Ef+1,f,N . (4)

In the literature of subspace identification, data matrices of

the form Y1,f,N and Yf+1,f,N are sometimes respectively

referred to as past and future data. In order to alleviate the

notations we will, throughout the paper, denote whenever

possible the future data more simply as Y = Yf+1,f,N , U =
Uf+1,f,N , E = Ef+1,f,N and X = Xf+1,N . In this way,

Eq. (4) can be written simply as

Y = ΓfX + HfU + E. (5)

Based on this embedded data equation, subspace methods

for solving the problem of identifying system (1) proceed by

first extracting either the state sequence X or the extended

observability matrix Γf , making use of geometric projection

techniques and rank factorization algorithms such as the

SVD [2], [11]. A second step then consists in computing

the system matrices in an arbitrary state coordinates basis.

However, the use of these methods in for instance a recur-

sive identification context may be subject to two important

issues: 1) the SVD factorization in addition of being com-

putationally cumbersome, is technically difficult to update,

2) the state space basis in which the matrices are obtained

may change during the identification procedure or from one

mode to another when dealing with multi-modal systems.

The method developed in the present paper mainly intends

to overcome the aforementioned difficulties. But, in a more

general framework, the proposed method turns out to be an

interesting Least Squares solution to the well known problem

of subspace tracking.

Consistent estimation of the parameter matrices in (5) that

we can re-write as

Y =
[

Γf Hf

]
[

X
U

]

+ E, (6)

requires the measured data to have some properties of

richness. Therefore, we start by introducing such conditions

that will be useful throughout the paper. We first make

the following definition of sufficiency of excitation of the

exogenous input {u(t)}.
Definition 1 (sufficiently exciting input sequence): The

process {u(t)} is said to be sufficiently exciting of order at

least l if there exist an integer N0 and a time index t0 such

that rank(Ut,l,N0
) = lnu for all t ≤ t0. We then say that

{u(t)} is SE(l).
Note that Definition 1 differs from the classical definition of

persistency of excitation [4] that concerns infinite sequences

of signals. Here, a finite horizon is considered instead as the

number of data available for identification is generally finite

in practice.

A consequence of Definition 1 is as follows.

Proposition 1: Assume that the system (1) is reachable

and let the noise terms w(t) and v(t) be identically zero in

(1). Then the following holds.

If {u(t)} is SE(n + f) in the sense of Definition 1 with

N ≥ N0 + n and f + 1 ≤ t0, then

rank
([

Xf+1,N

Uf+1,f,N

])

= n + fnu.

Proof: Assume that there are α ∈ R
n and β ∈ R

fnu

verifying

α⊤Xf+1,N + β⊤Uf+1,f,N = 0. (7)

We then need to show that α and β are both necessarily equal

to zero. Since N ≥ N0 + n, for any t such that f + 1 ≤ t ≤
f + 1 + N −N0,

α⊤Xt,N0
+ β⊤Ut,f,N0

= 0. (8)

On the other hand, we can write from the system equations

in (1),

x(t) = Anx(t− n) + ∆nun(t− n), t > n, (9)

where ∆n =
[
An−1B · · · AB B

]
∈ R

n×nnu . By

making use of the Cayley-Hamilton theorem, we get after

some calculations

x(t) = −(a⊤⊗In)xn(t−n)+∆n(K⊗Inu
)un(t−n), (10)

where xn(t − n) and un(t − n) are defined as in (2), ⊗

refers to the Kronecker product, a =
[
a1 · · · an

]⊤
is a

vector formed with the coefficients aj , j = 1, · · · , n of the

characteristic polynomial of A, chA(z) = det (zI −A) =
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a1 +a2z + · · ·+anzn−1 + zn. Here, the matrix K is defined

as

K =










a2 a3 · · · an−1 an 1
a3 a4 · · · an 1 0
...

... · · ·
...

...
...

an 1 · · · 0 0 0
1 0 · · · 0 0 0










∈ R
n×n.

For all t > n, Eq. (10) reads as

x(t) + anx(t− 1) + · · ·+ a1x(t− n)

−∆n(K ⊗ Inu
)un(t− n) = 0.

(11)

Define τ = f + n + 1 > n. Then, Eq. (11) implies

Xτ,N0
+ anXτ−1,N0

+ · · ·+ a1Xτ−n,N0

−∆n(K ⊗ Inu
)Uτ−n,n,N0

= 0.
(12)

Multiplying the equation (12) on the left by α⊤ yields

α⊤Xτ,N0
+ anα⊤Xτ−1,N0

+ · · ·+ a1α
⊤Xτ−n,N0

− ᾱ⊤Uτ−n,n,N0
= 0,

(13)

with ᾱ⊤ = α⊤∆n(K⊗ Inu
). Combining now the foregoing

equation with (8) results in

−β⊤Uτ,f,N0
− anβ⊤Uτ−1,f,N0

− · · ·

− a1β
⊤Uτ−n,f,N0

− ᾱ⊤Uτ−n,n,N0
= 0.

(14)

Note that all the matrices of the form Uk,f,N0
,

τ − n ≤ k ≤ τ can be expressed as a combination of
the rows of Uτ−n,f+n,N0

. In this way, we have Uk,f,N0
=

PkUτ−n,f+n,N0
for τ − n ≤ k ≤ τ , and Uk,n,N0

=
QkUτ−n,f+n,N0

, with

Pτ−j =
[

0fnu×(n−j)nu
, Ifnu

, 0fnu×jnu

]

∈ R
fnu×(f+n)nu

Qτ−n =
[

Innu
, 0nnu×fnu

]

∈ R
nnu×(f+n)nu ,

for j = 0, . . . , n. Using these notations, we get

(

β⊤Pτ + anβ⊤Pτ−1 + · · ·

+ a1β
⊤Pτ−n + ᾱ⊤Qτ−n

)

Uτ−n,f+n,N0
= 0 (15)

Since {u(t)} is sufficiently of order at least n+f the matrix

Uτ−n,f+n,N0
= Uf+1,f+n,N0

is full row rank. Consequently,

the term of (15) that is in the parentheses is null. If we let

β⊤ and ᾱ⊤ be partitioned as

ᾱ⊤ =
[
ᾱ⊤

1 · · · ᾱ⊤
n

]
, ᾱ⊤

j ∈ R
1×nu ,

β⊤ =
[
β⊤

1 · · · β⊤
f

]
, β⊤

j ∈ R
1×nu ,

then, by straightforward calculations, we arrive at









1 an · · · · · · a1

1 an · · · · · · a1 0
0 . . .

. . .
. . .

. . .
. . .

1 an · · · · · · a1

















β⊤
1

...

...

β⊤

f









= 0,

and








a1

a2 a1 0
...

...
. . .

an an−1 · · · a1















β⊤
1

...

β⊤
n







+







ᾱ⊤
1

...

ᾱ⊤
n







= 0.

It follows immediately that β = 0 and ᾱ = α⊤∆n(K ⊗
Inu

) = 0. Since the system (1) is reachable, we have

rank(∆n) = n and so, from the definition of K, ∆n(K⊗Inu
)

is clearly full row rank n. Consequently, we have also α = 0

and hence, the rows of
[

X⊤
f+1,N U⊤

f+1,f,N

]⊤
are linearly

independent.

For future reference, we shall also state the following

proposition.

Proposition 2: Assume that the system (1) is reachable

and observable and let w(t) and v(t) be identically null in

(1). Then the following statements are equivalent.

1) rank

([
X
U

])

= n + fnu.

2) rank(XΠ⊥
U ) = n, where

Π⊥
U = IN − U⊤(UU⊤)−1U, (16)

IN being the identity matrix of order N .

3) rank

([
Y
U

])

= n + fnu.

4) rank
(
Y Π⊥

U

)
= n.

Proof: 1)⇐⇒ 2): Notice that
[

X
U

][
X
U

]⊤

=

[
XX⊤ XU⊤

UX⊤ UU⊤

]

.

Then, by using the identity [12]
[

In −XU⊤(UU⊤)−1

0 Ifnu

] [
XX⊤ XU⊤

UX⊤ UU⊤

]

×

[
In 0

−(UU⊤)−1UX⊤ Ifnu

]

=

[
XΠ⊥

U X⊤ 0
0 UU⊤

]

,

it is clear that

rank
([

X
U

])

= rank
( [

XΠ⊥
UX⊤ 0
0 UU⊤

])

= fnu + rank(XΠ⊥
UX⊤)

= fnu + rank(XΠ⊥
U ),

from which it can be concluded that

rank
([

X
U

])

= n + fnu ⇐⇒ rank(XΠ⊥
U ) = n.

1)⇐⇒ 3): The result follows directly from the relation
[
Y
U

]

=

[
Γf Hf

0 Ifnu

]

︸ ︷︷ ︸

[
X
U

]

(17)

since the underbraced matrix is full column rank when the

system is observable, i.e., when rank(Γf ) = n.
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3) ⇐⇒ 4): A proof of this statement is similar to the one

derived for 1)⇐⇒ 2).

III. A NEW SUBSPACE IDENTIFICATION METHOD

We develop in this section a new method for the identifica-

tion of linear state space models. In contrast to most of the

existing subspace techniques, our method does not require

any SVD. Therefore, it can be naturally and straightforwardly

extended to recursive identification [8], [13], [9]. Moreover,

it allows to set up very simply the state basis of the matrices

to be identified.

To begin with, assume the order n of the system (1) to

be available. Consider a known matrix Λf ∈ R
n×fny that

satisfies1

rank(ΛfΓf ) = n. (18)

If we multiply Eq. (5) on the left by Λf , we get

ΛfY = (ΛfΓf )X + ΛfHfU + ΛfE. (19)

Since T = ΛfΓf ∈ R
n×n is nonsingular, one realizes a state

coordinates basis change by setting X ← X̄ = TX . Then,

the state sequence can be obtained in the new basis as

X̄ = ΛfY − ΛfHfU − ΛfE. (20)

As a consequence of this change of the coordinates sys-

tem, the matrices (A, B,C, D) change into (Ā, B̄, C̄, D̄) =
(TAT−1, TB,CT−1, D) and Γf becomes Γ̄f = ΓfT−1 but

Hf remains unchanged as it does not depend on the state

basis.

For the sake of clarity, we shall first consider the noise-free

case, i.e., the case where E in (5) is identically null. Then,

we shall demonstrate the applicability of the method on noisy

data.

A. Deterministic case

In the absence of noise in the data, the state equation (20)

reduces to

X̄ = ΛfY − ΛfHfU. (21)

It is obvious from this relation that the choice of Λf

determines completely the state basis since it directly defines

a linear combination of the I/O data that gives the state.

To obtain Γ̄f , we can report Eq. (21) in Eq. (5). This results

immediately in

Y = Γ̄f X̄ + HfU

= Γ̄fΛfY + (Ifny
− Γ̄fΛf )HfU

=
[

Γ̄f Ωf

]
[

ΛfY
U

]

,

(22)

where Ωf = (Ifny
−Γ̄fΛf )Hf . This shows that the subspace

identification problem can be transformed into an ordinary

Least Squares problem by eliminating the unknown state. As

shown by Propositions 1 and 2, when the input process is

1Discussion on the concrete determination of such a matrix Λf is deferred
to Subsection III-C.

sufficiently exciting of order at least n + f , and the model

(1) is minimal, it holds that

rank
([

Y
U

])

= n + fnu.

By following a similar procedure as in the proof of Propo-

sition 2 (see Eq. (17)), one can easily establish that the

following holds also

rank
([

ΛfY
U

])

= n + fnu and rank(ΛfY Π⊥
U ) = n.

Thus, we can estimate directly the matrices Γ̄f and Ωf from

Eq. (22) and then deduce the system matrices.

Remark 1: If Λf ∈ R
n×fny obeys the rank property (18),

then by denoting im(·) and ker(·) respectively the image and

the kernel operators for matrices, we have:

1) im(Γf ) = im(Γ̄f ) = ker(Ifny
− Γ̄fΛf ).

2) rank(Ifny
− Γ̄fΛf ) = fny − n.

3) The matrix Ifny
− Γ̄fΛf is a projection matrix that

projects the ambiant vector space R
fny onto im(Ifny

−
Γ̄fΛf ) = ker(Λf ) along im(Γf ). In this way, Eq. (22)

can be viewed as a projection of Eq. (5) obtained by

applying (Ifny
− Γ̄fΛf ) to it.

Thanks to this remark, we know that Ifny
− Γ̄fΛf is not full

column rank and so Hf cannot be retrieved directly from

the estimate Ω̂f of Ωf in (22). However, by appropriately

exploiting the structure of Hf , it is still possible to recover

the matrices B and D from Ω̂f and ˆ̄Γf similarly as in [1, p.

54].

Another way to proceed is to remove the term Ωf from

(22) by multiplying this latter equation on the right by Π⊥
U

before computing Γ̄f . We then get

Γ̄f = Y Π⊥
U

(
ΛfY Π⊥

U

)†
,

= ΣyuΛ⊤
f

(
ΛfΣyuΛ⊤

f

)−1
,

(23)

where Σyu = 1

N
Y Π⊥

UY ⊤. Here, Σyu is a correlation matrix

while Π⊥
U defined in (16) is a matrix of projection onto the

orthogonal complement of the rows space of U . The symbol

† refers here to the Moore-Penrose inverse. In practice, the

orthogonal projection Π⊥
U may be implemented by resorting

to methods that are known to be numerically robust such as

the QR factorization [2]. Once Γ̄f is available, an extraction

of the matrices Ā and C̄ can be simply achieved by exploiting

the so-called A-invariance property of Γ̄f [1].

Now, given the matrices Ā and C̄, it remains to determine

the matrices B̄ and D̄. This can be achieved by solving a

linear regression problem. For more details on the concrete

procedure, we refer to, for example the papers [2], [8].

B. Stochastic case

Consider now the more realistic case where the data are

subject to noise. Then, the combination of Eq. (5) and Eq.

(20) gives

Y = Γ̄fΛfY + (Ifny
− Γ̄fΛf )HfU + (Ifny

− Γ̄fΛf )E.
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As previously, the term Ωf = (Ifny
− Γ̄Λf )Hf is removed

by post-multiplying the equation by Π⊥
U . We get

Y Π⊥
U = Γ̄fΛfY Π⊥

U + (Ifny
− Γ̄fΛf )EΠ⊥

U . (24)

To deal with the noisy data, we adopt the well known method

of instrumental variable (IV) [4]. The basic idea of this

method is to choose a matrix of instruments Z ∈ R
nz×N ,

nz ≥ n (formed for example with past input and output

[3]) to zero out the effect of the noise while preserving the

information conveyed by the data. By multiplying Eq. (24)

on the right by Z⊤ and dividing by the number of samples

N , we obtain

1

N
Y Π⊥

U Z⊤ = Γ̄f

1

N
ΛfY Π⊥

U Z⊤ + (Ifny
− Γ̄fΛf )

1

N
EZ⊤

− (Ifny
− Γ̄fΛf )

1

N
EU⊤

( 1

N
UU⊤

)−1 1

N
UZ⊤. (25)

Under the assumption that the sequence {u(t)} is ergodic

and independent of {w(t)} and {v(t)}, the last term of (25)

vanishes when N →∞. Thus, Eq. (25) reduces to

lim
N→∞

( 1

N
Y Π⊥

U Z⊤
)

= Γ̄f lim
N→∞

( 1

N
ΛfY Π⊥

U Z⊤
)

+ (Ifny
− Γ̄fΛf ) lim

N→∞

( 1

N
EZ⊤

)
. (26)

In view of the previous equation, we require the instruments

matrix Z to verify the following two conditions






lim
N→∞

( 1

N
EZ⊤

)
= 0,

rank
(

lim
N→∞

1

N
ΛfY Π⊥

U Z⊤
)

= n.
(27)

When Z fulfills the requirements (27), the following asymp-

totic relation holds

lim
N→∞

1

N
Y Π⊥

U Z⊤ = Γ̄f lim
N→∞

( 1

N
ΛfY Π⊥

U Z⊤
)

. (28)

From this equation, we can estimate Γ̄f , then compute as

previously Ā and C̄ and subsequently obtain B̄ and D̄ by

linear regression as indicated in Subsection III-A. Turning

now to the question of how to choose the instruments matrix

Z, we will follow [14] where the concatenation of the the

past inputs and past outputs,

Z =
[

U⊤
1,f,N Y ⊤

1,f,N

]⊤
(29)

is shown to be a valid set of instruments.

C. Setting the matrix Λf

The method described above for the identification of state

space models relies on the possibility to find a matrix

Λf ∈ R
n×fny that verifies the rank condition (18). This

naturally raises the question of whether such a matrix always

exists and more importantly, how to determine it while Γf is

unknown. The question of the existence is readily answered

under the assumption that the system is observable since

then, Λf = Γ⊤
f (for example) verifies (18). But, as we do

not know Γf , we cannot set Λf to be equal to Γ⊤
f . However,

as stated by Propositions 1 and 2, if {u(t)} is SE(n + f),

then rank(ΛfΓf ) = n if and only if rank(ΛfY Π⊥
U ) = n.

In view of this remark, Λf can be selected just such that

rank(ΛfY Π⊥
U ) = n because contrarily to Γf , Y Π⊥

U is

known. But this solution may require an SVD factorization.

Therefore, an alternative solution is to generate Λf at

random as suggested by the following proposition.

Proposition 3: Assume that the system (1) is observable.

Let the above matrix Λf be drawn randomly from a uniform

distribution. Then, it holds with probability one that

rank(ΛfΓf ) = n.
Proof: Let λ = vec(Λf ) ∈ R

fnny , where vec(·) is

the vectorization operator. Denote Λf = Λf (λ), that is, let

us view Λf as a function of λ and consider the set S ={

λ ∈ R
fnny/P (λ) = det(Λf (λ)Γf ) = 0

}

of all λ such that

rank(Λf (λ)Γf ) < n. Consider the probability measure Pr

associated to the uniform distribution and defined on a σ-

algebra R (containing S) over R
fnny . Clearly, for a given

Γf , the polynomial P is not identically null since we have

for example P (vec(Γ⊤
f )) 6= 0. Then, the hypersurface S is

a subset of the probability space
(
R

fnny ,R, Pr
)

that is of

dimension strictly less than fnny . From the measure theory

[15], a subset such as S is known to be a null set. Thus, the

property rank(Λf (λ)Γf ) = n holds almost everywhere.2

Proposition 3 states in other words that if we draw

randomly the matrix Λf from a uniform distribution for

example, the rank property (18) holds with probability one.

The system matrices are then correctly estimated by the

above method with probability one.

Remark 2 (On the estimation of the order): In case the

order n of the system (1) is unknown, it would be also

interesting to estimate it without having to resort to the

SVD. To this purpose, let Λf be selected in R
fny×fny such

that3 for any r ≤ n, it holds that rank(Λ1:r
f Γf ) = r, where

Λ1:r
f = Λf (1 : r, :). Then from the embedded data equation

Y = ΓfX + HfU , one can write
[

Λ1
f

Λ2
f

]

Y Π⊥
U =

[
Λ1

f

Λ2
f

]

ΓfXΠ⊥
U ,

where Λ1
f = Λf (1 : n, :) and Λ2

f = Λf (n + 1 : fny, :).
Taking the square of the first term of this equation yields

Σ =

[
Λ1

fΣyu(Λ1
f )⊤ Λ1

fΣyu(Λ2
f )⊤

Λ2
fΣyu(Λ1

f )⊤ Λ2
fΣyu(Λ2

f )⊤

]

,

with Σyu = Y Π⊥
UY ⊤. The order is then n =

max
{
r : rank(Σ

(
1 : r, 1 : r)

)
= r

}
and can be determined

by following a similar procedure as in [7].

IV. SIMULATION EXAMPLE

We shall in this section, evaluate the performance of

our method on a numerical example. To this purpose, we

consider a linear system of order three with two inputs and

two outputs. The system matrices are given by

2(18) is satisfied everywhere in R
fnny except on a set of measure null.

3In fact, as in Proposition 3, this is the case almost surely when Λf is
generated randomly.
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A =





−0.0398 −0.4909 −0.6115
0.4784 0.4808 −0.4169
−0.6214 0.4020 −0.2488



 , B =





0.7433 0

0 −1.3193
−0.8510 −0.0181



 ,

C =

[
−0.0028 2.3968 0

−0.0857 0.0264 −0.6553

]

, D =

[
−1.7384 0.0425
0.7127 0

]

.

To identify this system, the excitation input is chosen as

a zero-mean white Gaussian noise with unit variance. The

state noise w(t) and output noise v(t) are both set as white

noises in a reasonable proportion of 25 dB respectively of

the state and the output. The user-defined parameter f is

set to be 5. We then carry out a Monte-Carlo simulation

with 1000 different realizations of noise and input. Each of

these simulations generates 1000 I/O data samples. With this

setting, we perform two sets of simulations: one with an

instrumental variable in the form of (29) and the second

without any instrumental variable. The results can be judged

through the following graphs.

In Figure 1, we present the poles of the actual system and

the poles of the estimated model over all the 1000 simula-

tions. One can notice that when no instrumental variable is

introduced, the estimator seems to be biased when the data

are corrupted by noise.

To further show the performance of our method in a

statistical sense, we represent in Figure 2 the histograms

of the relative errors
∥
∥M − M̂

∥
∥/ ‖M‖ between the first

ten Markov parameters (which are invariant under state

basis change) of the true system together with the Markov

parameters of the estimated model.

All the simulation results presented clearly illustrate the

potential of our method as a serious alternative to the

classical subspace methods for the identification of state

space models.
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Fig. 1. Poles of the system superposed to that of its estimate. The big
crosses refer here to the poles of the true system.

V. CONCLUSION

We have proposed a new method for the identification of

MIMO state space models. Contrarily to most of the existing

subspace identification schemes, our method is SVD-free

and therefore, lends itself to a straightforward extension to

recursive identification of multivariable systems. Moreover

the state space basis of the system matrices to be estimated
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Fig. 2. Histograms of the relative errors between the Markov parameters of
the system on the one hand and that of the model estimated by our method
on the other hand. Ns stands for number of simulations.

is fixed in advance through a conversion of the subspace

problem into a least squares one. This is an important feature

for example in the framework of multi-modal systems iden-

tification since in such situation, all the different submodels

need to be identified in the same state coordinates basis.

In future work we will carry out a comparison study of our

algorithms with the standard subspace identification methods

such as MOESP and N4SID in terms of complexity and

performance. We will also consider to extend our method

to the identification of multivariable switched linear systems

described by state space models.
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