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Abstract—Methods for direct data-driven tuning of the
parameters of precompensators for LPV systems are developed.
Since the commutativity property is not always satisfied for
LPV systems, previously proposed methods for LTI systems
that use this property cannot be directly adapted. When the
ideal precompensator giving perfect mean tracking exists in
the proposed parameterisation of the precompensator, the LPV
transfer operators do commute and an algorithm using only two
experiments on the real system is proposed. It is shown that
this algorithm gives consistent estimates of the ideal parameters
despite the presence of stochastic disturbances. For the more
general case, when the ideal precompensator does not belong to
the set of parameterised precompensators, another technique
is developed. This technique requires a number of experiments
equal to twice the number of precompensator parameters and
it is shown that the calculated parameters minimise the mean
squared tracking error.

I. INTRODUCTION
It is commonplace to use precompensators, based on the

inverse of the closed-loop system, in order to improve the
tracking performance of linear time-invariant (LTI) systems.
This technique typically uses the inverse of a model of
the closed-loop system for the precompensator. However,
the model will be subject to uncertainty and when this
is above a certain level, the tracking performance of the
system can be adversely affected [1]. In [2] a data-driven
method is proposed for direct tuning of the parameters of
precompensators for LTI systems. This method minimises
the tracking control criterion directly using measured data,
rather than passing through a system modelling step and then
minimising a criterion based on the uncertain model. This
approach means that the achieved tracking is not affected
by system model uncertainty and leads to high performance
tracking. The method is based on parameter estimation
algorithms using instrumental variables and takes advantage
of the commutativity of LTI transfer operators. However, in
many applications the LTI assumption is not satisfied e.g.
certain mechatronic systems such as x-y positioning tables
where the dynamics change as a function of position and
consequently the method proposed in [2] cannot be applied.
A class of systems whose dynamics change as a function

of the operating point are linear parameter varying (LPV)
systems. For LPV systems, methods have been proposed ([3],
[4]) to tune precompensators and feedforward controllers
whose parameters vary also as a function of the operating
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point. These methods, however, are based on uncertain
identified LPV models and thus, unlike direct data-driven
methods, suffer from model uncertainty.
No data-driven precompensator, or feedforward controller,

tuning methods for LPV systems have been proposed to the
authors’ knowledge. But, as is the case for LTI systems,
system identification techniques for LPV systems should be
adaptable to the tuning of these controllers.
Research into the problem of identifying LPV systems has

been active in recent years (see e.g. [5], [6], [7], [8]). In [9]
a method is proposed for the identification of the parameters
of Single Input Single Output (SISO) LPV systems in input-
output form. Each parameter of the system transfer operator
is a linear combination of predefined, operating point de-
pendent functions. The identification procedure is then one
of identifying the coefficients multiplying these functions,
which is a linear regression problem, and so can be computed
using the standard least squares technique. However, as
occurs in the LTI case, the least squares technique generally
gives biased parameter estimates. Consistent estimates can
be obtained in the general case using instrumental variables
[10].
In this paper the application of instrumental variables to

the problem of direct, data-driven tuning of precompensators
for LPV systems is considered. It is shown that if the
ideal precompensator giving zero mean tracking exists in the
proposed precompensator parameterisation, the LPV transfer
operators commute and a tuning technique is proposed which
gives consistent estimates using measurements from just two
experiments. For the more general case, where the LPV
transfer operators do not commute, another algorithm is
proposed requiring a number of experiments equal to twice
the number of precompensator parameters. The algorithm
leads to parameter estimates that converge to those that
minimise the desirable mean squares criterion.
The paper is organized as follows. Notation and prelimi-

naries are given in Section II. The tuning scheme when the
ideal precompensator exists in the precompensator param-
eterisation is presented in Section III. In Section IV, the
tuning method for the general case is explained. Finally,
some concluding remarks are made in Section V.

II. PRELIMINARIES
The output of a SISO Linear Parameter Varying (LPV)

system G(σ(t), q−1) is given by:

y(t) = G(σ(t), q−1)u(t) + H(σ(t), q−1)e(t)

= G(σ(t), q−1)u(t) + v(t) (1)
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F (σ(t), q−1) G(σ(t), q−1) !! ! ! !
"yd(t) u(t) y(t)

v(t)

+

Fig. 1. System with precompensator

where σ(t) ∈ Rnσ is a measurable scheduling parameter
vector at time t, H(σ(t), q−1) a, possibly LPV, transfer
operator filtering the sequence of zero-mean, independent
random variables e(t) to give v(t), and q−1 the backward-
shift time operator. The scheduling parameter vector contains
the measurable signal(s) which correspond to the system’s
current operating point. It should be noted that G(σ(t), q−1)
and H(σ(t), q−1) may be the transfer operators of either an
open or closed-loop system, under the condition that they
are uniformly stable for all σ(t) in the operating zone.
Definition: An LPV transfer operator P (σ(t), q−1),

σ(t) ∈ A:

P (σ(t), q−1) =
∞
∑

k=0

pk(σ(t))q−k, σ(t) ∈ A (2)

is said to be uniformly stable if

|pk(σ(t))| ≤ pk, for t = 0, 1, . . . ,

∞
∑

k=0

pk < ∞. (3)

The output of the system, with an LPV precompensator
F (σ(t), q−1), is given by (see Fig. 1):

y(t) = G(σ(t), q−1)F (σ(t), q−1)yd(t) + v(t). (4)

The objective is to calculate the parameters of the prec-
ompensator F (σ(t), q−1) such that the tracking error:

ε(t) = yd(t) − y(t) (5)

is reduced, where yd(t) is the desired system output, which
is defined over the duration t = 0, . . . , N − 1.
In this paper we consider the ideal precompensator to be

that which gives zero mean tracking error. It can clearly be
seen from (4) and (5) that the ideal precompensator is the
precompensator for which:

G(σ(t), q−1)F (σ(t), q−1) = 1. (6)

A fact which should be noted is that due to the time-
varying nature of the transfer operators, commutativity does
not apply to them, in general. In fact the backward-shift oper-
ator should obey a non-commutative multiplicative operation
‘◦’ defined as [11]:

q−i ◦ q−j = q−(i+j), q−i ◦ x(t) = x(t − i)q−i. (7)

A. Precompensator Parameterisation
The precompensator is parameterised such that

F (σ(t), q−1) is linear in its parameters and can be
expressed as:

F (ρ, σ(t), q−1) = βT (σ(t), q−1)ρ (8)

where

βT (σ(t), q−1) = [β1
0(q

−1) ◦ σ(t)T ◦ β2
0(q−1),

β1
1(q−1) ◦ σ(t)T ◦ β2

1(q−1), . . . ,

β1
nρ

(q−1) ◦ σ(t)T ◦ β2
nρ

(q−1)], (9)

and ρ ∈ R(nσ+1)(nρ+1) is the vector of controller parameters:

ρ = [ρ0
0, ρ1

0, . . . , ρnσ
0 , ρ0

1, ρ1
1, . . . , ρnσ

1 , . . . , ρ0
nρ

,

ρ1
nρ

, . . . , ρnσ
nρ

]T . (10)

For ease of notation the number of precompensator parame-
ters (nσ + 1)(nρ + 1) will be denoted by n.
The βj

i (q
−1) are linear discrete-time transfer operators,

which can be any orthonormal basis functions, such as
Laguerre or Kautz. In the sequel, however, for clarity of
presentation, we suppose that β1

i (q−1) = 1 and β2
i (q−1) =

q−i. This choice means βT (σ(t), q−1) is given by:

βT (σ(t), q−1) = [σ0(t), σ1(t), . . . , σnσ (t),

σ0(t)q
−1, σ1(t)q

−1, . . . , σnσ (t)q−1, . . . ,

σ0(t)q
−nρ , σ1(t)q

−nρ , . . . , σnσ (t)q−nρ ] (11)

where σj(t) represents the jth element of σ(t). This pa-
rameterisation allows a wide range of dependence on the
scheduling parameter to be described. For example each
σj(t) could represent a function of a different scheduling
parameter. Alternatively the σj(t) could be a set of orthog-
onal basis functions of a single scheduling parameter e.g.
polynomials:

σj(t) = σ̄j(t), (12)

where σ̄(t) is the single scheduling parameter.
These choices lead to the following expression for F :

F (ρ, σ(t), q−1) =
[

ρ0
0σ0(t) + ρ1

0σ1(t) + · · · + ρnσ
0 σnσ (t)

]

+
[

ρ0
1σ0(t) + ρ1

1σ1(t) + · · · + ρnσ
1 σnσ (t)

]

q−1 + . . .

+
[

ρ0
nρ

σ0(t) + ρ1
nρ

σ1(t) + · · · + ρnσ
nρ

σnσ (t)
]

q−nρ . (13)

Remark: In the special case that the desired output yd(t)
and scheduling parameter σ(t) are known a priori, they can
be used to improve the tracking of systems with a time delay.
This improvement is achieved by setting β1

i (q−1) = qδ ,
where δ equals the system’s time delay. This fact can be
illustrated via the following example. Consider the noise-free
system with a time delay m:

y(t) = −a1(σ(t))y(t−1)−a2(σ(t))y(t−2)+u(t−m). (14)

We want y(t) = yd(t), so substituting this equality into the
above equation gives:

u(t − m) = yd(t) + a1(σ(t))yd(t − 1) + a2(σ(t))yd(t − 2)
(15)

or

u(t) = yd(t + m) + a1(σ(t + m))yd(t + m − 1)

+ a2(σ(t + m))yd(t + m − 2), (16)
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which shows that the structure required for perfect tracking
is achieved by choosing δ = m. This implies that values
of σ(t) and yd(t) at t + δ should be used at time t, which
is possible if they are known in advance. Unfortunately, in
many applications, i.e. those where σ(t) is measured in real
time, advanced knowledge of σ(t) will not be available.

B. Single Realisation Behaviour and Ergodicity
It is often useful to be able to equate the time average

properties of a signal over a single realisation with the
ensemble average taken over many realisations. Signals with
this property are called ergodic and Theorem 2B.1 in [12]
indicates when certain types of nonstationary signals can be
ergodic in the correlation.
Theorem 2B.1 [p. 55 in [12]] Let {Pθ(q−1), θ ∈ Dθ} and

{Mθ(q−1), θ ∈ Dθ} be uniformly stable families of filters,
and assume that the deterministic signal w(t), t = 1, 2, . . . ,
is subject to

|w(t)| ≤ Cw, ∀t. (17)

Let the signal sθ(t) be defined, for each θ ∈ Dθ, by

sθ(t) = Pθ(q
−1)vl(t) + Mθ(q

−1)w(t) (18)

where

vl(t) =
∞
∑

k=0

lk(t)el(t − k) = L(t, q−1)el(t) (19)

and el(t) is a sequence of independent random vectors with
zero mean values, E{el(t)eT

l (t)} = Λt and bounded fourth
moments, and {L(t, q−1), t = 1, 2, . . .} is a uniformly stable
family of filters. E{·} denotes the mathematical expectation.
Then:

sup
θ∈Dθ

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[

sθ(t)s
T
θ (t) − E{sθ(t)s

T
θ (t)}

]

∥

∥

∥

∥

∥

→ 0 (20)

w.p. 1, as N → ∞,

where ‖ · ‖ is the Frobenius norm.

III. TUNING WHEN LPV TRANSFER OPERATORS
COMMUTE

As mentioned previously, in general, time-varying op-
erators do not commute. One case, however, where they
do is when the two operators considered are reciprocal.
Thus, in the case that the precompensator’s parameteri-
sation and parameters are such that (6) is satisfied then
F (ρ0, σ(t))G(σ(t)) = G(σ(t))F (ρ0, σ(t)) = 1, where ρ0

are the parameters satisfying (6). This fact gives an idea for
a tuning scheme for the precompensator’s parameters.

A. Tuning scheme
We have that the tracking error of the system, with a

precompensator, is given by:

ε(t) = yd(t) − G(σ(t))F (ρ, σ(t))yd(t) − v(t), (21)

where the dependence of the transfer operators on the
backward-shift time operator has been left out for notational
clarity.

F (σ(t), q−1)G(σ(t), q−1) ! !! ! !
" ŷ(t)yd(t) z(t) ym(t)

v(t)

+

Tuning experiment

Fig. 2. Precompensator tuning scheme

In the absence of noise, and when G(σ(t)) and F (ρ, σ(t))
are commutative, the same tracking error would be obtained
if the positions of the system and the precompensator were
swapped so that F acts as a post-compensator. Using this
idea, it is possible to estimate ε(t) from one set of data
obtained from the system without a precompensator as:

ε̂(t) = yd(t) − ŷ(t) = yd(t) − F (ρ, σ(t))ym(t)

= yd(t) − F (ρ, σ(t))G(σ(t))yd(t) − F (ρ, σ(t))v(t)

= yd(t) − F (ρ, σ(t))z(t) − F (ρ, σ(t))v(t) (22)

where z(t) and ym(t) are the noise-free and noisy outputs,
respectively, of the system when yd(t) is applied as the input
(see Fig. 2).

B. Algorithm
It is possible to express ε̂(t) in linear regression form as:

ε̂(t) = yd(t) − F (ρ, σ(t))ym(t) = yd(t) − φT
m(t)ρ (23)

where:

φT
m(t) = [σ0(t)ym(t), σ1(t)ym(t), . . . , σnσ (t)ym(t),

σ0(t)ym(t − 1), σ1(t)ym(t − 1), . . . , σnσ (t)ym(t − 1), . . . ,

σ0(t)ym(t−nρ), σ1(t)ym(t−nρ), . . . , σnσ (t)ym(t−nρ)].
(24)

The precompensator parameters can then be found by the
minimisation of a quadratic cost function:

JN
m (ρ) =

1

2N

N−1
∑

t=0

ε̂2(t). (25)

The minimiser of this criterion is given by:

ρN
mLS =

[

1

N

N−1
∑

t=0

φm(t)φT
m(t)

]−1
1

N

N−1
∑

t=0

φm(t)yd(t).

(26)
Unfortunately when F (ρ, σ(t)) is placed as a post-

compensator, it filters the noise v(t) also, as seen in Fig.
2. Therefore the parameters which minimise the variance of
the tracking error estimate will not be the same as those
which minimise the variance of the true tracking error.
The Instrumental Variables (IV) method can be used,

nonetheless, to give consistent estimates of the true minimis-
ing parameters ρ0. For the IV estimates to converge to the
true values, the IV vector must be correlated with the non-
noisy component of ym(t), but not with the noise v(t). Many
choices of IV vector satisfy these conditions, such as a vector
of time shifted versions of yd(t). The choice considered in
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this paper is to use a vector similar to φm(t), but with ym(t)
obtained from a second experiment, performed in the same
way as the first. The second experiment will, however, be
affected by a different, independent noise realisation. This
choice has been made as it leads to an IV vector that is
strongly correlated with the non-noisy component of ym(t),
and so leads to parameter estimates with low variances. The
IV estimate is thus given by:

ρN
mIV = M−1 1

N

N−1
∑

t=0

φm1(t)yd(t), (27)

with

M =

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]

where φm1(t) and φm2(t) are the φm(t) from the two
experiments.
The consistency of the IV estimates is not directly obvious

as, unlike the standard LTI case, the signals considered
contain nonstationary stochastic components. The applica-
bility of ergodicity type results typically used in consistency
analysis is not, therefore, immediately evident. An analysis
is thus performed in the next subsection which demonstrates
that IV does indeed lead to consistent estimates, despite the
presence of these types of disturbances.

C. Consistency of IV Estimates
To see that the IV method gives consistent estimates we

begin by rewriting (27) as:

ρN
mIV = M−1 1

N

N−1
∑

t=0

φm1(t)φ
T
z (t)ρ0

= M−1 1

N

N−1
∑

t=0

φm1(t)
(

φT
m2(t) − φT

v2(t)
)

ρ0

= ρ0 −M−1 1

N

N−1
∑

t=0

φm1(t)φ
T
v2(t)ρ0, (28)

where φz(t) and φvi(t) are similar to φmi(t), but ymi(t)
is replaced by z(t) and vi(t) respectively. Additionally
φmi(t) = φz(t) + φvi(t).
In order for the parameter estimates to be consistent i.e.

that ρN
mIV converges almost surely to ρ0 as N → ∞, it is

necessary that:

i) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t) be nonsingular. (29)

ii) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
v2(t)ρ0 = 0, (30)

where 0 is the zero vector.
Condition i) is a persistency of excitation condition. It

is similar to the persistency of excitation condition found
in methods for the identification of input-ouput form LPV
models, as similar signals are involved i.e. noisy output
signals multiplied by functions of the scheduling parameter.

Consistency of excitation for LPV identification was first
considered in [9]. There sufficient conditions for polynomial
type coefficient dependence on the scheduling parameter are
given. It is shown that if the system input signal is ‘suffi-
ciently rich’ then persistency of excitation is ensured if the
scheduling parameter ‘visits’ nσ +1 distinct points infinitely
many times, where nσ is the order of the polynomial depen-
dence. More recently [13] produced more general sufficient
conditions for other types of coefficient dependence.
To show Condition ii) further analysis is required. We have

that:

1

N

N−1
∑

t=0

φm1(t)φ
T
v2(t) =

1

N

N−1
∑

t=0

φz(t)φ
T
v2(t)

+
1

N

N−1
∑

t=0

φv1(t)φ
T
v2(t). (31)

Considering the first matrix on the right hand side of (31),
each of its elements is the sum over time of products of terms
such as σj(t)z(t− n) and σi(t)v2(t− p). Then, referring to
Theorem 2B.1 given in Subsection II-B, we can define:

s(t) =

[

σj(t)z(t − n)
σi(t)v2(t − p)

]

=

[

0
σi(t)H(σ(t − p), q−1)e2(t − p)

]

+

[

σj(t)G(σ(t − n), q−1)yd(t − n)
0

]

=

[

v1
1(t)

v1
2(t)

]

+

[

w1
1(t)

w1
2(t)

]

(32)

where w1
1(t), w1

2(t), v1
1(t) and v1

2(t) have their obvious
definitions. The signals w1

1(t) and w1
2(t) satisfy (17), due

to the assumed uniform stability of G(σ(t), q−1) and the
boundedness of σj(t) and yd(t). Also v1

1(t) and v1
2(t) fit in

with the desired form of (19) due to the assumed uniform
stability of H(σ(t), q−1). The components of s(t)sT (t) give,
amongst others, σj(t)z(t−n)σi(t)v2(t−p). So by applying
Theorem 2B.1 we can state that:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[φz(t)φ
T
v2(t) − E{φz(t)φ

T
v2(t)}]

∥

∥

∥

∥

∥

→ 0

w.p. 1, as N → ∞,

and, as z(t) and v(t) are not correlated, E{φz(t)φT
v2(t)} = 0

implying:

lim
N→∞

1

N

N−1
∑

t=0

φz(t)φ
T
v2(t) = 0 w.p. 1.

A similar result for the second matrix on the right hand side
of (31) can be derived using Theorem 2B.1 i.e. that:

lim
N→∞

1

N

N−1
∑

t=0

φv1(t)φ
T
v2(t) = 0 w.p. 1

and combining these two satisfies Condition ii), showing
the parameters estimates obtained with the IV method to be
consistent.
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Remark: The values of the scheduling parameter σj(t)
used in the calculation of ρN

mIV will normally also be
measured. They are, therefore, susceptible to measurement
noise as well. In the case that the noise-to-signal ratio is
very low, the effect of this noise can be neglected. However,
if the ratio is not negligible the measurement noise may
degrade the precision of the parameter estimates. It can be
shown, however, by an analysis similar to that previously
presented and also to that found in [10], that when the
scheduling parameter is uncorrelated with the output signal
and the dependency on it is affine the use of an IV vector
like φm2(t), but using σj(t) measured during the second
experiment, leads to consistent estimates.

IV. TUNING WHEN LPV TRANSFER OPERATORS DO NOT
COMMUTE

In general, unfortunately, (6) is unlikely to be satisfied by
a precompensator with the linear parameterisation proposed.
In this case, the order of the precompensator can be increased
until the condition is approximately satisfied and the method
of the previous section can be used. If, however, the required
order is too large to be implemented, and the approximation
achieved with a reduced order controller is not sufficiently
good, the precompensator and system will no longer com-
mute. A method that can be used in this situation is developed
below.
The signal u(t) = F (ρ, σ(t))yd(t) can be expressed as:

u(t) = F (ρ, σ(t))yd(t) = φT (t)ρ (33)

where

φT (t) = [σ0(t)yd(t), σ1(t)yd(t), . . . , σnσ (t)yd(t),

σ0(t)yd(t − 1), σ1(t)yd(t − 1), . . . , σnσ (t)yd(t − 1), . . . ,

σ0(t)yd(t − nρ), σ1(t)yd(t − nρ), . . . , σnσ (t)yd(t − nρ)].
(34)

It is now possible to write the output as:

y(t) = G(σ(t))F (ρ, σ(t))yd(t) + v(t)

= G(σ(t))φT (t)ρ + v(t)

= xT (t)ρ + v(t). (35)

where x(t) = G(σ(t))φ(t).
The tracking error (5) can then be expressed as:

ε(t) = yd(t) − xT (t)ρ − v(t) (36)

or in vector form as:

ε = yd − Xρ − v, (37)

where the vector ε is given by:

ε = [ε(0), ε(1), . . . , ε(N − 1)]T , (38)

yd and v are defined similarly, and the matrix X is:

X = [x(0), x(1), . . . , x(N − 1)]T . (39)

The aim is to find ρ such that the average tracking error is
small, therefore a logical objective is to minimise its mean
squared value i.e. to find the ρ that minimises:

JN (ρ) =
1

2N
E

{

ε(ρ)T ε(ρ)
}

, (40)

where the dependence of ε on ρ has been shown explicitly.
The minimiser of (40) is given by:

ρN
LMS =

[

1

N
XT X

]−1 1

N
XT yd. (41)

In the case that G(σ(t)) were known exactly, X could
be calculated, followed by ρN

LMS . G(σ(t)) is never known
exactly, however, and the model uncertainty leads to a non
optimal ρ.
It is possible to obtain an estimate X̂ of the matrix X

without the use of a model through a series of experiments
on the real system. This can be seen to be the case by noting
that the element Xt,j of the matrix X is the output of the
system G(σ(t)) when the jth element of φ(t) is applied as
an input. Thus for each column of X an experiment can be
carried out on the real system i.e. n experiments in total. In
reality an estimate, rather than the exact value, of X will be
found as each experiment will have its own noise realisation
vj(t). The estimate of X is:

X̂ = X + V, (42)

where V is a matrix whose t, jth element is vj(t). Substi-
tuting X̂ in for X in (41) we have:

ρ̂N
LMS =

[

1

N
(X + V )T (X + V )

]−1 1

N
(X + V )T yd

=

[

1

N
(XT X + V T X + XT V + V T V )

]−1

×
1

N
(X + V )T yd. (43)

Therefore, unfortunately, when X̂ is used in place of X in
(41) the presence of the noise in the experiments performed
to find X̂ will mean that the minimising value ρN

LMS cannot
be calculated i.e. ρ̂N

LMS *= ρN
LMS .

One way of dealing with this problem is to use instru-
mental variables again. This time two estimates of X , X̂1

and X̂2, are used. They are obtained from two sets of the n
experiments previously described. The IV minimiser estimate
is then given by:

ρ̂N
IV =

[

1

N
X̂T

1 X̂2

]−1 1

N
X̂T

1 yd. (44)

Remark: The same G(σ(t), q−1) should be used at each
t for all the experiments i.e. when different signals u(t)
are applied. It is therefore necessary that the scheduling
parameter σ(t) be independent of u(t), which may not be
the case for certain quasi-LPV systems where the schedul-
ing parameter can be an input-dependent, internal variable.
Nonetheless, a number of LPV systems found in practice
do satisfy this requirement, such as x-y positioning tables
where the dynamics of one stage depend on the position of
the other and not their own.
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A. Consistency of estimates

To demonstrate that the IV estimate (44) converges to the
true minimiser of (40) when N → ∞ we first write:

ρ̂N
IV =

[

1

N
(X + V1)

T (X + V2)

]−1 1

N
(X + V1)

T yd

=

[

1

N
(XT X + V T

1 X + XT V2 + V T
1 V2)

]−1

×
1

N
(X + V1)

T yd (45)

where V1 and V2 denote matrices of noise realisations
associated with the first and second set of experiments. For
ρ̂N

IV to converge to ρN
LMS we require V T

1 X +XT V2 +V T
1 V2

and V T
1 yd to converge to zero asN → ∞. This can be shown

to be the case by noting that the i, jth element of the matrix
V T

1 X is given by:

[V T
1 X ]i,j =

N−1
∑

t=0

v1i(t)Xt,j

=
N−1
∑

t=0

[H(σ(t), q−1)e1i(t)][G(σ(t), q−1)φj(t)],

(46)

where v1i(t) corresponds to the t, i element of V1, and
v1i(t) = H(σ(t), q−1)e1i(t). Theorem 2B.1 is applicable
to this time sum and can be used to show that:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[v1i(t)Xt,j − E{v1i(t)Xt,j}]

∥

∥

∥

∥

∥

→ 0

w.p. 1, as N → ∞,

and since E{v1t,iXt,j} = 0 we have

lim
N→∞

1

N

N−1
∑

t=0

v1t,iXt,j = 0 w.p. 1

This result can be applied to each element of V T
1 X , and

similar results hold for XT V2, V T
1 V2 and V T

1 yd. Therefore,
ρ̂N

IV → ρN
LMS as N → ∞ almost surely.

V. CONCLUSIONS
Direct data-driven tuning methods of precompensators for

LPV systems are developed in this paper. Two techniques are
proposed. The first one, applicable when the precompensator
and the system commute, only requires two experiments
in order to obtain consistent estimates of the parameters
leading to perfect mean tracking. The second one, which
has no restriction on the precompensator parameterisation,
requires a number of experiments equal to twice the number
of precompensator parameters. It is demonstrated that the
computed parameters converge to those minimising the mean
squared tracking error in the presence of noise.

REFERENCES
[1] S. Devasia, “Should model-based inverse inputs be used as feed-

forward under plant uncertainty?” IEEE Transactions on Automatic
Control, vol. 47, no. 11, pp. 1865–1871, 2002.

[2] A. Karimi, M. Butcher, and R. Longchamp, “Model-free precompen-
sator tuning based on the correlation approach,” IEEE Transactions on
Control Systems Technology, vol. 16, no. 5, pp. 1013–1020, September
2008.

[3] G. Ferreres and C. Roos, “Efficient convex design of robust feedfor-
ward controllers,” in 44th IEEE Conference on Decision and Control,
Seville, Spain, December 2005, pp. 6460–6465.

[4] E. Prempain and I. Postlethwaite, “Feedforward control: a full infor-
mation approach,” Automatica, vol. 37, pp. 17–28, 2001.

[5] L. Lee and K. Poolla, “Identification of linear parameter-varying
systems using nonlinear programming,” Journal of Dynamic Systems,
Measurement and Control, vol. 121, pp. 71–78, 1999.

[6] V. Verdult and M. Verhaegen, “Subspace identification of multivariable
linear parameter-varying systems,” Automatica, vol. 38, pp. 805–814,
2002.

[7] M. Sznaier and M. Mazzaro, “An LMI approach to control-orientated
identification and model (in)validation of LPV systems,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 9, pp. 1619–1624, Septem-
ber 2003.
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[9] B. Bamieh and L. Giarré, “Identification of linear parameter varying
models,” International Journal of Robust and Nonlinear Control,
vol. 12, pp. 841–853, 2002.

[10] M. Butcher, A. Karimi, and R. Longchamp, “On the consistency of
certain identification methods for linear parameter varying systems,”
in 17th IFAC World Congress, Seoul, Korea, July 2008.

[11] E. Kamen, “The poles and zeros of a linear time varying system,”
Linear Algebra and its Applications, vol. 88, pp. 263–289, 1988.

[12] L. Ljung, System Identification - Theory for the User, 2nd ed. NJ,
USA: Prentice Hall, 1999.

[13] X. Wei and L. D. Re, “On persistent excitation for parameter estima-
tion of quasi-LPV systems and its application in modeling of diesel
engine torque,” in Proceedings of the 14th IFAC Symposium on System
Identification, Newcastle, Australia, March 2006, pp. 517–522.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA03.2

3859


