
A Mission Planning Approach for UAV Applications

W. A. Kamal and R. Samar

Abstract— In this paper, a 2-D mission planning approach is
developed for UAV applications. The main contribution of the
paper is the development of an extension to the Bellman Ford
algorithm that enables incorporation of constraints directly into
the algorithm during run time. The dynamical constraints of
the vehicle, such as its angle of turn, can therefore be catered
for. Furthermore, a procedure for computing a number of sub-
optimal paths is developed so that a range of options is available
to the user for selection. These sub-optimal paths are generated
in an order of priority (optimality). An objective function
is developed which models different conflicting objectives in
a unified framework; different objectives can be assigned
different weights. The objectives may include minimizing the
length of the path, keeping the path as straight as possible, flying
over areas of interest, etc. The algorithm is integrated into a
software package and tested for complex mission objectives,
and results are discussed.

I. INTRODUCTION

The mission planning problem is about computing an

optimum path between the initial (take-off) and terminal

(landing) points, while satisfying user requirements with-

out violating given constraints. The path must avoid ‘no-

go’ regions or obstacles for operational reasons. It should

however traverse through areas of interest (AOI) where aerial

photography for instance may be required. The optimality of

the path may be dictated by factors such as the length of the

path, its straightness, angle of approach to the final (landing)

point being close to a desired value, etc. These can be defined

as weighted objectives to be minimized in an optimization

framework. Vehicle (robot) constraints such as the turn angle

also need to be incorporated into the optimization algorithm,

thus providing the tracking controllers with feasible reference

trajectories. Trajectories that do not comply with system

dynamics and constraints can place impractical demands on

the controller, and therefore must be avoided. We assume

here that all data and constraint (global) information is

available beforehand for path planning, which is done at the

start of the mission.

A mixed integer linear programming (MILP) formulation

of the route planning problem is proposed in [1], [2], [3], [4].

This strategy formulates the problem using integer variables

and employs a branch-and-bound algorithm to optimize the

route. The branch-and-bound algorithm (see for example [5])

tackles the problem by relaxing the integer restriction on the

variables and iteratively solves for and modifies the solution

space by adding special constraints. The integer variables

however grow fast with problem size and hence this becomes

computationally very expensive for larger problems. Further

Author’s are with National Engineering & Scientific Commission, Islam-
abad, Pakistan. Email: kamal@cesat.gov.pk

nonlinear objective functions and constraints are difficult to

model in this framework.

Other methods entail transforming the route planning

problem into an entirely different problem with more conve-

nient methods of solution. Examples are the potential field

method ([6] and [7]), the mass-spring-damper method ([7])

and the chain-link method [8]. In these formulations, the

solution to the path planning problem is obtained by solving

for the motion of a point mass (or a number of connected

masses) under the influence of an artificial potential field.

The variation in the field reflects the presence of obstacles

and no-go areas; irregular shaped obstacles are however

difficult to model by these methods. Another popular ap-

proach to path planning is graph-based search ([9], [10]);

examples include rectilinear graph, visibility graph ([11],

[12]) and Voronoi graph ([7], [13], [14]). These graphs can be

searched using Dijkstra’s algorithm, Bellman Ford algorithm

([15]) or A∗ algorithm ([16]) to find the lowest cost path.

In the visibility graph approach, the obstacles are usually

treated as polygons, and the set of possible paths includes

straight line segments formed by joining the vertices of these

polygons (provided these segments do not intersect the no-

go areas). In the Voronoi approach the obstacles are taken as

point masses and a graph is constructed such that the edges

of the graph are equidistant from a pair of masses. These

approaches consider obstacle avoidance; however inclusion

of areas of interest into the graph-based framework is not

clear. Furthermore vehicle constraints cannot readily be built

into the problem (both for graph-based and potential-field

methods) and weighting different objectives against one

another is not straightforward.

In this paper, a graph based path planning approach is

presented that addresses the above limitations. Firstly an ob-

jective function is developed that models different conflicting

objectives in a unified framework; different objectives can

be assigned different weights. The objectives may include

minimizing the length of the path, keeping the path as

straight as possible, visiting areas of interest, etc. The main

contribution of the paper is the development of an extension

to the Bellman Ford algorithm that enables incorporation

of constraints directly into the algorithm during run time.

The dynamical constraints of the vehicle are therefore not

violated when searching for the optimal path. Furthermore,

a procedure for computing a number of sub-optimal paths

is developed so that a range of options is available to the

user for selection. The final path plan consists of a number

of waypoints which define the path of the vehicle in terms

of straight line segments.

The paper is organized as follows. The path planning

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB17.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3101

problem is defined in section II. Section III discusses a

particular grid generation scheme. No-go area avoidance is

discussed in section IV, and the cost function is developed in

section V. The optimization algorithm is presented in section

VI along with the procedure for generating multiple paths.

Simulation results are presented in section VII; section VIII

concludes the paper.

II. PROBLEM DEFINITION AND ASSUMPTIONS

The aim is to compute a path between an initial and final

point that minimizes the objective function over a path P:

J(P) =

∫

P

C(ρ)dρ, (1)

where C(ρ) is the cost per unit length, and dρ is the

differential arc length at a point ρ ∈ P . The graph being

searched consists of edges and nodes and hence the path will

be an ordered sequence of line segments. The path integral

therefore becomes a discrete summation of edge costs and

can be written as:

J(P) =
n

∑

j=1

Ej , (2)

where n is the total number of edges and Ej is the cost of

the jth edge. The cost function will be discussed in detail

in the following sections. The minimization of the objective

function (2) will be subject to the following constraints:

1) No-go areas/obstacles must be avoided (hard con-

straints); these are modelled as circles or polygons.

2) Areas of interest should be visited (soft constraints),

these are modelled as circles of given radii. The

objective is to fly straight and level along a diameter of

the circle so that best conditions for aerial photography

(or reconnaissance) are maintained.

3) Vehicle dynamical constraints must not be exceeded,

these include:

• the vehicle’s angle of turn, and

• the total fuel available (or the maximum distance).

The following assumptions are made:

1) The initial and final points between which the path is

to be planned are pre-defined.

2) The environment (no-go areas, areas of interest, vehicle

constraints, etc.) is known and static.

3) The vehicle is equipped with an inertial navigation

unit (INU) (which may be aided by GPS). The INU

error growth rate is fixed and known. The same would

be true for a mobile robot in which the estimate of

position has an error that grows with time.

III. GRID GENERATION

The process of generating a grid provides a graph con-

sisting of nodes and edges that represents all possible paths

connecting the given initial and final points. A grid may be

generated in a number of different ways. The computational

efficiency of the route planning algorithm, and the optimal

path obtained depend on the grid. We will now describe one

particular method of grid generation that we have found to

be particularly useful and efficient.

A. Node generation

We shall first discuss generation of nodes. The process is

explained below.

1) Regular nodes: These nodes are inserted by consider-

ing (imaginary) concentric semi-circles with F as the centre,

and radii R, 2R, 3R, . . . , nR. Where nR is less than or

equal to the distance between initial and final point and

R is the turn radius of vehicle (Figure 1). Each point

on the semi-circle represents a possible node position, but

the computational complexity increases with increase in the

number of nodes in the problem. Here we choose to insert

six node points on each semi-circle, three on either side of

the line joining the initial and final points.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Longitude (deg)
L

a
ti

tu
d

e
 (

d
e
g

)

Initial Point

Final Point

Fig. 1. Regular node generation scheme.

2) Nodes based on expanded no-go areas: No-go areas or

obstacles are modelled as polygons, which are then expanded

to cater for the navigation error build-up in the vehicle with

time. The expansion of these polygons is done as follows.

• First the straight line distance from the initial point I
to the farthest vertex of each polygon (no-go area) is

computed. We call these distances di where i stands

for the ith polygon. The navigation error of the vehicle

depends on the error of the inertial navigation unit

(INU), which builds up with time. The farther a polygon

is from point I , the more will be the navigation error of

the vehicle as it reaches there. Although GPS integration

can correct INU errors, but we will assume here that in

the worst case GPS signals may not be available. The

expansion of each polygon is therefore done in direct

proportion to its distance from the initial point I . This

will ensure that the vehicle does not enter no-go zones

even in the presence of INU sensor drifts.

• The straight-line distances are multiplied by a safety

factor f (1.25 ≤ f ≤ 2.5) to cater for the deviation

of the path from a straight line. The travel time of

the vehicle to the polygons (no-go areas) is computed

by dividing the distances by the average speed of the

vehicle S, i.e., ti = dif/S. The navigation error for the

ith polygon will be proportional to ti.
• Each polygon is now expanded in proportion to its

expected INU error. The expansion is done uniformly

in all directions. This is done by moving all vertices

outward along the bisectors of the vertex angles, by the

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.4

3102

same amount. The polygons may be convex or concave,

and so there is a need to decide on the outward direction

at each vertex. The expansion direction is determined

by taking a test point on the bisector close to a vertex. If

the test point lies inside the polygon, then the expansion

direction is opposite to the direction along which the test

point was taken. The expanded polygons thus obtained

incorporate into them the vehicle’s navigation error, and

therefore these are to be avoided during route planning.

The vertices of these expanded polygons are stored as

node points.

3) Nodes based on Areas of Interest (AOI): The user can

define areas of interest for the robot to traverse through,

or over which it may be desirable for a UAV to fly for

operational reasons (such as aerial photography or reconnais-

sance). The areas of interest are modelled as circles whose

centres are taken as graph nodes.

4) Manual nodes: Additional nodes can be inserted man-

ually by the user.

5) Removal of unacceptable nodes: During the node gen-

eration process some nodes which violate mission planning

constraints may have been generated, and therefore must be

removed. We remove nodes:

• that lie inside a no-go area,

• whose distance from the initial point I is less than a

certain value (this is done so that no nodes are inserted

in the initial part of the flight, i.e., the take-off phase),

and

• that lie outside the ellipse and satisfy the following

equation

d(I, V) + d(V, F) > Lmax, (3)

where Lmax is the maximum allowed path length

(defined by the vehicle’s maximum range), and V is

any node. The maximum path length constraint is also

checked for once the paths are computed.

B. Edge formation

The computational time for searching for the best path

can be considerably reduced by connecting the nodes in an

intelligent way. Nodes are connected to generate edges as

follows.

• A reference point behind the initial point I on the line

IF is found such that the distance between F and the

reference point is Lmax.

• The distance of each node from the reference point is

computed.

• Nodes are sorted in ascending order with respect to the

distances, initial and final points are then inserted at the

start and end of the list. This generates a vector of nodes

[I,N1, N2, . . . , NN , F].

Each node in this sorted vector is a candidate for connec-

tion to all nodes ahead of it. So for example, the node Ni

is connected to all nodes Ni+1, . . . , NN , F , provided these

edges avoid all expanded obstacles/no-go areas. Checking

for edge intersection with no-go areas is described in the

following section.

IV. NO-GO AREA AVOIDANCE

Obstacles/no-go areas are modelled as polygons lying on

the surface of the earth. Now each candidate edge is to

be individually checked for avoidance from all obstacles.

If for a given edge an intersection with an obstacle is

detected, that edge is declared unfit. The correct way of

doing this is to check for intersection or inclusion of an edge

(which is an oblate arc on the earth’s oblate surface) and

the oblate polygon that models the obstacle. However since

the obstacles and edges are small (of the order of several

hundred meters) with respect to the radius of the earth, the

problem can be simplified to lines and plane polygons instead

of oblate geometrical shapes, without any loss of accuracy.

The procedure involves the following steps:

Step 1 Using the coordinates (latitude, longitude) of

edge and polygon vertices, a plane projection of

the edges and obstacles is obtained on a two-

dimensional cartesian coordinate system. Intersec-

tion of the candidate edge of the graph with each

polygon edge is checked on this plane.

Step 2 In case of no intersection between the graph and

polygon edges, it is checked whether the graph edge

lies completely inside a polygon.

If both these conditions are false, the candidate edge is

considered fit for route planning.

V. COST FUNCTION

Different objectives need to be considered when defining

the edge cost. Often these objectives are conflicting, and

thus there is a need to incorporate them into a single multi-

objective function that satisfies mission requirements. In this

study the objectives considered are:

• minimization of path length,

• maximization of traverse through (or flight over) areas

of interest,

• minimization of en-route turns (waypoints), and

• minimization of deviation from a desired angle of

approach to the final point.

The first objective can be modelled as LE/Lmax, where LE

the edge length is normalized by dividing by the maximum

length Lmax. The second objective of maximizing the vis-

iting of areas of interest (AOI) can be modelled by adding

−D to the edge cost, where 0 ≤ D ≤ 1 is the AOI cost

parameter and is taken at the second (farther) node of the

edge (which is also the centre of the area of interest). For

edges which do not have an AOI as the second node, D is

taken to be 0; a larger value of D depicts an AOI of greater

importance. The objective is to select the edge which has an

AOI at its farther end. The third objective of minimization

of turns can be transformed into an equivalent objective of

minimizing the number of waypoints. This can be modelled

by inclusion of the term c/Nmax in the edge cost, where c
is a constant, usually taken to be 1 (the same for all edges),

and Nmax is the maximum number of waypoints used for

normalization of the cost. The fourth objective is to approach

the final point (which could be a landing strip, for example)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.4

3103

from a pre-specified direction, and to minimize the deviation

in the approach angle from the desired heading; this is only

included for edges connected to the final point F . The cost

for this objective is modelled as −k
(

1 − |ψ−ψdes|
∆ψmax

)

, where

ψ and ψdes are the actual and desired heading angles for the

edge, k is a flag which is one for edges connecting node

F and zero otherwise, and ∆ψmax is the maximum allowed

heading angle deviation and is used to normalize the heading

angle cost component. The edge cost can now be written as:

Ecost =
WLC1 + WDC2 + WNC3 + WHC4

WL + WD + WH + WN

, (4)

where

C1 = LE/Lmax, C2 = −D

C3 = c/Nmax, C4 = −k

(

1 −
|ψ − ψdes|

∆ψmax

)

.

Here Ecost is the edge cost and WL, WD, WN and WH are

user defined weights for the four objectives.

VI. ROUTE PLANNING

A. Route optimization

The edge cost components discussed above can be neg-

ative, the choice of the optimization algorithm therefore

needs to be done accordingly. These negative weights arise

naturally in our problem formulation. The Bellman-Ford

algorithm computes the shortest path between two given

nodes in a weighted digraph where some of the edges

may have a negative cost ([15]). Dijkstra’s algorithm solves

the same problem with a lower computational burden, but

requires the weights to be non-negative.

Our goal is to select an algorithm that solves the minimum

cost problem given in (4) above; furthermore we would like

to work out a number of sub-optimal paths also, so that a

range of options are available for selection. The Bellman-

Ford algorithm in the process of finding the optimal path

between the source and destination nodes, also finds lowest

cost paths from the source node to all other nodes. This

feature of the algorithm is exploited in the computation of a

number of sub-optimal paths as discussed below.

We will modify the Bellman-Ford algorithm to our specific

requirement and incorporate the turn angle constraint into the

algorithm directly during run time. The optimization starts

by assigning labels to every node and every edge. Each node

label consists of two fields: the first field is the cost in going

from the initial node I to that node, and the second field

contains the name of the edge that connects this node to node

I on the shortest route found so far. We also give labels to

edges so that the turn angle constraint can be incorporated

into the optimization process for all nodes of candidate paths.

The edges are given labels similar to nodes: the first field

is the cost from node I to the end node of the edge on the

shortest path through that edge (found so far), and the second

field is the name of the previous edge. The algorithm can be

divided into four parts:

• initialization,

• forward computation,

• reverse computation, and

• multiple path computation.

For single path computation between two nodes, the algo-

rithm is stopped after the forward computation step, but for

multiple path computation the complete algorithm is run. Be-

fore describing the algorithm we first define the terminology

used. The graph under consideration is a directed graph with

an edge j starting from node b(j) and ending at node e(j)
with cost Ej . Let (Rj

I ,P
j
I) be the label for the jth edge,

where Rj
I is the cost of the shortest path (found so far) from

node I to e(j) via the jth edge, and Pj
I is the edge previous

to j on that path. Let the label for the ith node be (Ri
I , P

i
I)

where Ri
I is the cost from node I to i for the shortest path

(found so far), and P i
I is the edge connecting node i on

that path. N and n denote the total number of nodes and

edges respectively, and α is the maximum angle by which

the vehicle can turn. ‘Treated’ is a flag used to avoid un-

necessary computation in the algorithm logic. Now we give

a complete description of each part of the algorithm.

Initialization: Assign a label (0, 0) to the initial node I ,

and the labels (∞, 0) to all other nodes. Also assign labels

(∞, 0) to all edges. A zero in the second field indicates that

either no preceding edge assignment has been made, or the

edge originates from node I .
Forward computation: Pseudo-code for this part of the

algorithm is given below.

For i ← 1 to N

Treated ← False

For j ← 1 to n

If b(j) = I

If E
j

< R
e(j)
I

R
e(j)
I ← E

j

P
e(j)
I ← j

R
j

I ← E
j

Treated ← True

EndIf

ElseIf P
b(j)
I 6= 0

β ← 6 b

(

P
b(j)
I

)

b(j)e(j)

If β > 180 − α

If R
b(j)
I + E

j
< R

e(j)
I

R
e(j)
I ← R

b(j)
I + E

j

P
e(j)
I ← j

R
j

I ← R
b(j)
I + E

j

P
j

I ← P
b(j)
I

Treated ← True

ElseIf R
b(j)
I + E

j
< R

j

I

R
j

I ← R
b(j)
I + E

j

P
j

I ← P
b(j)
I

Treated ← True

EndIf

EndIf

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.4

3104

EndIf

EndFor

If Treated is False

break

EndIf

EndFor

Two ‘for’ loops are run in the forward computation part

of the algorithm. The outer loop is run N times (N being

the total number of nodes), and the inner loop runs from 1
to n (the number of edges in the problem). In the start of

the program we check to see if the start node of an edge is

the initial node I , in which case the cost of the end node

of the edge is compared with the cost of the edge itself. If

the cost of the edge is smaller, the label of the end node is

updated accordingly. If an edge does not originate from the

initial node I , we check if a preceding edge assignment for

the edge start node exists. If true, the angle (of turn) β at

the edge start node is computed assuming the route includes

the edge, and this is compared to the maximum allowed turn

angle α. In case the turn angle constraint is not exceeded,

the previously stored cost at the end node of the edge is

compared to that accrued by going through this edge. In

case of a lower cost, the end node label and the edge label

are both updated; whenever there is an end node assignment,

there is also an edge assignment (the reverse is not true). If

however the cost at the end node while going through the

edge is not lower, then this cost is compared with the cost

stored in the edge label. In case of a lower cost, only the

edge label is updated; this implies that this new path from

I to e(j) via the jth edge results in a lower cost, and hence

the label of the jth edge now contains this cost.
Now for each edge j, the shortest path vector j2I from

e(j) to the initial node I can be traced out by linking each
node to its preceding node as follows:

j2I =

[

e(j), b(j), b
(

P
j

I

)

, b

(

P
P

j

I

I

)

, b

(

P
P
P

j

I
I

I

)

, . . . , I

]

.

The shortest path vector I2j from I to e(j) can be obtained

by reversing this; the corresponding cost is Rj
I .

Reverse computation: The graph under consideration is

a directed graph with an edge j starting from node b(j)
and ending at node e(j). Reverse computation is done for

computing multiple routes as discussed below. In this case

we interchange the role of the nodes b(j) and e(j) and also

of the nodes I and F . This gives optimal paths from the final

point F to all edges of the graph.

Multiple route computation: Now the procedure of

finding multiple (suboptimal) routes is described. The routes

are generated in an order of priority (ordered according to

cost); if one route does not meet user satisfaction for some

reason, the next route can be considered, and so on.

• Find a vector of costs considering all edges, i.e., the vec-

tor
[

Rj
I − Ej + RF

j

]

. The edge cost Ej is subtracted

because it is included in both Rj
I and RF

j .

• Also find the corresponding list of route vectors, viz

[I2j ∪ j2F] where j2F is the shortest route vector

from edge j to the final node F but without nodes b(j)
and e(j) (these nodes are already included in the vector

I2j).

• Sort the cost vector in ascending order of cost, and

arrange the list of routes accordingly. Check all routes

for total length and delete those that do not meet the

maximum length constraint. The k best routes in order

of priority correspond to the first k elements of the final

sorted vector.

VII. SIMULATION RESULTS

The above algorithm is coded into a software application

for finding trajectories from given initial to final points.

Obstacles/no-go areas (in the form of circles or polygons)

can be inserted through click and drag operations. Mission-

related parameters, constraints and mission areas can also be

specified.

The mission area chosen for testing the algorithm is 3

degrees by 3 degrees in latitude and longitude, respectively.

Figure 2 shows a scenario created by placing 8 obstacles and

20 areas of interest at different locations in the mission area.

The initial (I) and final (F) points are shown as green and

red stars respectively. Green circles indicate areas of interest,

whereas red polygons indicate obstacles/no-go areas. Regular

grid points are shown as blue dots, while expanded polygon

nodes are shown as cyan dots. The reference ellipse shown

as black dots is the boundary of the mission area, drawn

using the maximum range constraint. The maximum turn

angle constraint is set as 60 degrees.

I F

Fig. 2. Scenario created by placing 8 obstacles and 20 areas of interest.

Optimal paths (satisfying all constraints) are computed

using the above algorithm; the effect of varying the weights

is studied here. The objective of visiting maximum areas of

interest can be given top priority by setting the weights as

WL = 0, WD = 1, WN = 0 and WH = 0. The three best

paths in an order of priority are shown in Figure 3 with red,

blue and black colours, respectively. Each path selected four

areas of interest with the first area being common for all

paths.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.4

3105

I F

Fig. 3. Three best paths using weights WL = 0, WD = 1, WN = 0 and
WH = 0.

We now incorporate the approach angle constraint with

the desired approach angle having an azimuth of 120 deg,

and set its weight as WH = 10, with other weights kept

unchanged. All three paths approach the final point with the

specified angle, the optimal path (red) passing through three

areas of interest whereas the other two paths go through four

AOIs each (Figure 4).

I F

Fig. 4. Three best paths with 120 deg approach azimuth, and weights
WL = 0, WD = 1, WN = 0 and WH = 10.

The number of turnings (waypoints) and the path length

can be reduced by giving non-negative values to weights WN

and WL respectively. The algorithm is run again with weights

set as WL = 1, WD = 1, WN = 20 and WH = 0. The

approach angle weight is made zero, whereas the waypoint

and path length weightings are increased. This weight setting

reduces the number of waypoints as shown in Figure 5. The

optimal path has one turning, and passes through one area

of interest.

VIII. CONCLUSION

A 2-D path planning algorithm is developed for UAV

applivations. The algorithm can absorb different dynamical

constraints (like maximum turn angle) into the computation

process. Furthermore it provides multiple feasible paths that

avoid obstacles and traverse through areas of interest by min-

imizing a multi-objective cost function. Weightings can be

specified for important mission objectives, such as the length

of the mission, the straightness of the path, desired approach

to final point, and flight directly over areas of interest. The

I F

Fig. 5. Three best paths with weights WL = 1, WD = 1, WN = 20 and
WH = 0.

algorithm is tested for complex mission objectives on a UAV

path planning example, and results discussed.

REFERENCES

[1] T. Schouwenaars, B. DeMoor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Proceedings of the

European Control Conference, Portugal, September 2001, pp. 2603–
2608.

[2] A. Richards, J. How, T. Schouwenaars, and E. Feron, “Plume avoid-
ance maneuver planning using mixed integer linear programming,” in
Proceedings of the AIAA Guidance, Navigation, and Control Confer-

ence, August 2001.
[3] A. Richards and J. How, “Aircraft trajectory planning with collision

avoidance using mixed integer linear programming,” in Proceedings

of the American Control Conference, May 2002.
[4] W. A. Kamal, D. W. Gu, and I. Postlethwaite, “Real time trajectory

planning for UAVs using MILP,” in Proceedings of the CDC-ECC

Conference, Seville, Spain, December 2005.
[5] H. A. Taha, Operations Research: An Introduction, 6th ed. Prentice-

Hall, Inc., 1997.
[6] M. B. McFarland, R. A. Zachery, and B. K. Taylor, “Motion plan-

ning for reduced observability of autonomous aerial vehicles,” in
Proceedings of the 1999 IEEE International Conference on Control

Applications, 1999, pp. 231–235.
[7] S. Bortoff, “Path planning for UAVs,” in Proceedings of the American

Control Conference, June 2000, pp. 364–368.
[8] T. W. McLain and R. W. Beard, “Trajectory planning for coordinated

rendezvous of unmanned air vehicles,” in Proceedings of the AIAA

Guidance, Navigation, and Control Conference, 2000.
[9] R. R. Murphy, Introduction to AI Robotics. MIT Press,, 2000.

[10] A. Sipahioglu, A. Yazici, O. Parlaktuna, and U. Gurel, “Real-time tour
construction for a mobile robot in a dynamic environment,” Journal of

Robotics and Autonomous Systems, vol. 56, no. 4, pp. 289–384, April
2008.

[11] M. Neus and S. Maouche, “Motion planning using the modified
visibility graph,” in Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics, vol. 4, October 1999, pp. 12–15.
[12] H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path

planning,” in Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendai, Japan, 2004.
[13] O. Takahashi and R. J. Schilling, “Motion planning in a plane using

generalized Voronoi diagrams,” IEEE Transactions on Robotics and

Automation, vol. 5, no. 2, pp. 143–150, April 1989.
[14] P. Bhattacharya and M. L. Gavrilova, “Voronoi diagram in optimal path

planning,” The 4th International Symposium on Voronoi Diagrams in

Science and Engineering, pp. 38–47, July 2007.
[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms. MIT Press, 1990.
[16] N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA:

Tioga Publisher Company, 1980.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.4

3106

