
MDLn: A Motion Description Language for Networked Systems

Patrick Martin, Jean-Pierre de la Croix, and Magnus Egerstedt

pmartin@ece.gatech.edu, jdelacroix@gatech.edu, magnus@ece.gatech.edu

Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract— In this paper we extend the definition of a Motion
Description Language (MDL) to networked systems. This new
construction (MDLn) supports inter-agent specification rules as
well as desired network topologies, enabling us to specify high-
level control programs for group interactions. In particular,
MDLn-strings specify multi-modal executions of the system
through a concatenation of modes. Each mode in the MDLn-
string is a triple, specifying a control law, interrupt conditions,
and desired network dependencies. In addition to proposing
MDLn as a specification language for networked systems,
we also give an architecture in which MDLn strings can be
effectively parsed and executed in multi-robot applications.

I. INTRODUCTION

Motion Description Languages (MDL) [1], [2], [3] are

formal languages in which control programs can be specified

for multi-modal systems. Such programs are useful for

encoding the decomposition of complex control tasks into

building-blocks, concatenated together to achieve complex

control objectives, encountered, for example in robotics [4],

[5], [2], manufacturing [6], and sensor networks [7].

In this paper we extend the definition of an MDL to make

it applicable to networked systems in which not only the

control laws, but also the desired network topologies, are

to be specified and changed dynamically. In particular, we

focus on multi-robot systems, in which a collection of mobile

agents are to achieve some coordinated goal.

Previous work in this area of inquiry has mainly been

conducted by Klavins and co-workers, first through the

Communication and Control Language (CCL) [8] and later

through Embedded Graph Grammars [9]. CCL is a high-

level language in which asynchronous, interacting systems

can be modeled and programmed. What is appealing about

CCL is that coordinated control tasks can be programmed in

a manner akin to standard programming languages. However,

it does not provide the structure sought in this paper that ex-

plicitly addresses just what the essential components should

be when solving coordinated, multi-agent control problems.

EGGs, on the other hand, do address this issue, and

they are easy to use when the network consist of large

collections of identical (or nearly identical) agents. In fact,

EGGs have mainly been applied when the desired, combina-

torial interaction topologies are highly complicated but the

agent dynamics are straightforward, as is the case with self

assembly systems [9].

In contrast to this, we focus on systems in which the

networks are heterogeneous (the different agents may take

on different roles) and where the interaction topologies may

very well be specified a priori. An example scenario would

be leader-based formation control.

The outline of this paper is as follows: In Section II, we

recall the basic operation of Motion Description Languages,

followed by their extensions to networks (MDLn), in Section

III. Section IV focuses on the system architecture needed

to support MDLn, while a number of example application

scenarios are given in Section V. Section VI contains the

conclusions.

II. MOTION DESCRIPTION LANGUAGES

MDLs, first defined in [1], are strings of control modes

that define a hybrid control system. Each mode applies an

open or closed loop control law, u, for a given duration to a

system modeled by

ẋ = f(x, u), x ∈ X , u ∈ U
y = h(x), y ∈ Y,

(1)

until some switching condition is satisfied. The original

formulation in [1] focused on the problem of controlling a

manipulator arm in an unstructured environment; however,

this approach to controlling hybrid systems lends itself well

to other robotics applications.

In [2], an extended Motion Description Language, MDLe,

was defined to support sensor driven interrupt functions.

These interrupt functions, defined by the mapping ξi : Y →
{0, 1}, take sensor output from the mobile robot to determine

mode switch conditions. This modification results in the

modes, or atoms, taking the form (κi, ξi, Ti), where the

index, i, indicates which mode in the string is running

and κi represents the control law produced by the mapping

κi : Y → U . This control is applied to the model (1) until

ξi transitions to 1 OR the timer, Ti, fires. In [3] the interrupt

and timer were composed into the same function via a logical

OR, resulting in atoms that were given by pairs, (κi, ξi).
In this paper we are interested in controlling multiple

robots and so we have to augment the current MDL frame-

work to also encompass agent interaction specifications in the

network. It should be mentioned that there has been recent

work on modifying Motion Description Languages to allow

for group atoms [10], which are special atoms that allow

for a global control and interrupt function. These modified

MDLs have been successfully applied to formation control.

Additionally, in [11] MDLe strings are composed into system

behaviors, created by the individual mode sequences of

the agents involved. In this paper we take an alternative

approach by formulating a new mode structure in order

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA17.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 558

to encode the communication relationships necessary for

agent collaboration. Before we can specify this new mode

structure, some preliminary definitions of the system model

and network topology must be presented.

III. MDL FOR MULTI-AGENT SYSTEMS

In order to extend MDLs for their use in networked

systems we let each agent’s dynamics be given by,

ẋi = fi(xi, ui)

yi = hi(xi)

si = gi(xi, yi)

(2)

where xi ∈ Xi ⊆ R
n, yi ∈ Yi ⊆ R

p, and si ∈ Si ⊆
R

m (m 6 p + n). The way these entities should be

understood is as follows: the current state of agent-i, xi,

determines the local information produced by its sensors,

yi. Additionally, agent-i transmits its shareable information,

si, by mapping its state and sensor output into a vector

via the function gi : Xi × Yi → Si. Note that although

this product of state and output spaces may not be needed,

the inclusion of Yi makes the environmental dependence of

shared information more explicit. This information may then

be transmitted through the network to a desired neighbor.

For example, say agent-i, which we denote as ai, is

a mobile robot with state xi = [xi,1 xi,2 xi,3]
T , where

(xi,1, xi,2) is the Cartesian coordinate of the robot and xi,3

its orientation. Additionally, let ai have a four sensor sonar-

array, where each sonar produces two data points for each

reading, i.e. pi,j ∈ R
2. Then the output vector of ai is

yi = [pi,1 pi,2 pi,3 pi,4]
T ∈ R

8. If ai plans to share its

heading, xi,3, and the forward sensor outputs, pi,1 and pi,2,

then the following shareable information vector is produced

by the mapping si:

si =





xi,3

pi,1

pi,2



 .

This function facilitates the sharing of only the information

that ai wishes to reveal to members of its network. However,

agents do not share arbitrarily, since passing the data to

anyone in a network would cause unnecessary traffic.

A. Agent Buddies

What is missing from the MDL formulation when it

comes to networked systems is the notion of agent-to-agent

interactions. In particular, we need to be able to specify

what neighboring agents (within communication range) the

individual agents should interact with. We formalize this

concept in MDLn by letting agents define their preferred

neighbors, or buddies. Agents in a network select their

desired neighbors (that may or may not be available in

the network) as “static” buddies, denoted βi
s ⊆ 2N , where

N = {1, · · · , N} and N ∈ N is the total number of agents

in the network. Additionally, the specification may call for

“dynamic” buddies (denoted βi
d) to be added to this buddy

list.

We require a clear formulation of the agent network in

order to properly define the notion of buddies. We define

the egocentric network for agent-i as any set of agents,

Wi, which we encode with the mapping wi : Yi → 2N .

Therefore, agent-i’s network is determined by examining its

sensor data to measure if any agents are within physical com-

munication range. Robotic platforms may use their network

devices, where low level signaling automatically determines

communication range, or some combination of sensors, like

RFID or vision, to determine their network members.

Then the dynamic buddies are a subset of all members

of the network, βi
d, resulting from the mapping bi : Wi ×

Yi → 2Wi . This definition of βi
d states that the set of agent-

i’s dynamic buddies is a function of the members of agent-

i’s network and agent-i’s sensor readings of these members.

Consequently, the total set of agent-i’s available buddies is

dependent on the current static and dynamic buddies:

βi = (βi
s ∩Wi) ∪ βi

d ⊆ 2N . (3)

a1

a2
a3

a4

d3 d2

(a)

a1

a2

a3

a4d3

d2

(b)

Fig. 1. An example of the network relationships for robot a1. 1(a) shows
that a2 is the closest neighbor; however, in 1(b) a3 has passed a2 and is
now a1’s new dynamic buddy.

This encoding of ai’s buddies is made more concrete

by examining a small network of robots. Fig. 1 shows an

example of a particular network view centered around robot

a1. All three of a1’s neighbors are in communication range,

illustrated by the dotted lines. We choose arbitrarily that a4

should be a static buddy, i.e. β1
s = {a4}. Additionally, we

create a dynamic buddy relationship such that a1 also prefers

the closest agent within communication range. This choice

for the dynamic buddy is also arbitrary, since we could easily

define some other metric to decide which agent could be a

dynamic buddy.

Fig. 1(a) shows the initial positions of the four agents.

In this case a1 measures the distance between itself and a2

as d2 and the distance to a3 as d3. Since d2 < d3, a2 is

chosen as the current dynamic buddy: β1
d = {a2}. Applying

the buddy relationship of (3), the buddy list of a1 is

β1 = ({a4} ∩ {a2, a3, a4}) ∪ {a2} = {a2, a4},

and is visualized by the solid lines between a1 and a2, a4.

Note that if a2 wanders further away and a3 approaches a1

(Fig. 1(b)), the measured distances change and consequently

a3 becomes the new dynamic buddy.

B. Agent Roles

Although the buddy definition introduced in III-A properly

describes who an agent prefers to communicate with, there

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.4

559

a1 a2

s1

s2

m

Role Set

a3
n

a4p

s3s1

s2

Fig. 2. An example of applying roles to the agents from section III-A.

is no specification of restrictions in a hierarchical network.

Multi-agent systems may be composed of heterogeneous

entities with various roles. Subsequently, these roles further

specify communication relationships among agents in the

network.

We define agent-i’s role as a static value resulting from

the mapping r : N → R, where R ⊂ N and is finite. This

value determines the communication relationships among all

other agents in the network via the following rules: for any

agents ai and aj , i 6= j:

R1: if r(i) > r(j) then ai may receive shared information

from aj .

R2: if r(i) = r(j) then ai and aj have no constraints on

sharing information.

R3: if r(i) > r(j) and aj ∈ βi then ai and aj have no

constraints on sharing information.

We specify the role of each agent in advance and then the

role comparison rules are applied at runtime. For example,

using the setup described in III-A, we let r(a1) = r(a2) =
m, r(a3) = n, and r(a4) = p with m > n > p. A

visualization of the hierarchy is shown in Fig. 2. Each

arrow in the diagram shows the direction of information

flow according to each agent’s buddy list and their role set.

Let the agents in this example have the following buddy list

assignments:

β1 = {a2, a3}

β2 = {a1}

β3 = {a1}

β4 = {a2}.

The diagram shows that a1 may pull information from a2

since they share the same role class and from a3 since it

“outranks” the agent. Additionally, a2 may get shareable

information from a1 and a3 is allowed access to a1’s

information since it resides in a1’s buddy list. The only agent

that is left out is a4. This agent is in the lowest role class and

is not allowed to get a2’s shareable information (shown by

the dotted line); however, if a4 ∈ β2 access to a2’s shared

information would be granted.

C. MDLn Specification

As established by the model (2), each agent shares its data

based on the value of si = gi(xi, yi). Consequently, if agent-

i has k buddies, then the total shared information of agent-i’s

buddies is defined as

Ŝi = Sβi(1) × · · · × Sβi(k),

where βi(·) indexes agent-i’s buddy list. The object Ŝi

can be thought of as a vector of shared information, i.e.

Ŝi ∈ R
km, held locally at agent-i. Agent-i can now use the

shared information of these agents when making control and

interrupt decisions.

Using all of the above definitions, the control and interrupt

functions may be modified as follows. The control depends

on the state and sensor feedback of agent-i in addition to the

information from all buddies of agent-i,

κi : Xi × Yi × Ŝi × R
+ → R

m.

Additionally, the interrupt function uses the same local and

shared information as

ξi : Xi × Yi × Ŝi × R
+ → {0, 1}.

We thus define a MDLn language as a set of strings (con-

catenations) made up from triples, (κ, ξ, β), where κ is a

control law, ξ is an interrupt function, and β is a buddy list.

D. Parser

In this section we discuss a centralized MDLn parser that

uses a grammar [12] to generate the valid MDLn strings from

a script file. In addition to generating control modes based

on the definition in section III-C, the parser must assign

roles and buddies, as well as check them for relationship

consistency. For example, in the same way that traditional

programming language compilers check for variable decla-

rations, the MDLn parser ensures that any buddy used by a

control mode exists. Also, it verifies that buddies referenced

in modes satisfy the role requirement for that particular

agent.

Generating our MDLn programs requires a grammar so

that roles and modes may be parsed to allow for consistency

checks and MDLn string distribution. We define the grammar

for MDLn programs as

G = ({P, R, S, I, M}, {r, k, x, b}, P̂ , P)

with the following productions P̂ ,

P → R⋆ S+

R → I r

S → I M+

M → k x b.

The nonterminal P is the start symbol for an MDLn program

and is produced by the nonterminals R and S which stand

for the roles and MDLn strings, respectively. Therefore, an

MDLn program must have a list of roles followed by a list

of strings.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.4

560

Note that this formulation does not require roles in every

MDLn program since the symbol R uses the (⋆) operator;

however the (+) operator does require at least one MDLn

string to be a valid program. The roles are produced by the

nonterminal representing an identifier, I , which is similar to a

variable name in standard programming languages, followed

by the role map terminal, r.

Finally, the MDLn string productions consist of an iden-

tifier, indicating which agent is using the MDLn string, and

a list of at least one MDLn mode, M . This nonterminal M

is made by concatenating the terminals k, x, and b which

stand for the triple (κ, ξ, β) seen in section III-C.

These productions specify the syntax of how a valid MDLn

script file, or program, should be structured. The parser can

then use these rules to run through a given program validating

necessary references (i.e. controls, interrupts, and buddies)

and determining role inconsistencies. These static checks

enforce the rules proposed in III-B at compile time, and the

parser can reject the MDLn program, remove any illegal role

usages, or attempt to correct the error. For example, say the

parser is given a program:

agent1 2

agent2 0

agent1 (k1 x1 {agent2})

agent2 (k2 x1 {agent1})

We see that the first two lines make up the production rule R,

where the nonterminals, I , are agent1 and agent2 and the

role assignments of the robots, r, are 2 and 0, respectively.

The bottom two lines make up two S productions, where

each one has the identifier I and one mode nonterminal, M .

These mode nonterminals are made up of the three MDLn

terminal symbols, k, x, and b. Note that this example has the

additional symbols (,), {, and }, which are used to make

the script easier to read.

The parser stores the identifier of the first S production,

agent1, checks the availability of the k1 and x1 functions

for that particular agent and finally stores the reference to

agent2. The next production creates a mode string for

agent2, which uses a different control function, k2, and

also references agent1. When the parser reaches the end

of this program, it then checks the buddy consistency, which

in this case is valid since both agents have been identified

and exist in the program. Additionally, the static role consis-

tency check passes since agent2 references agent1, and

agent2 is in agent1’s buddy list .

IV. SYSTEM ARCHITECTURE

In [2], a system architecture was prescribed for using

MDLs on single robots. Our architecture incorporates this;

however, we have designed additional components that fa-

cilitate the new features of MDLn. An illustration of the

architecture in seen in Fig. 3.

The MDLn architecture of agent-i is made up of several

primary components. At the highest level is the MDLn

Driver, which manages the state of the agent and enables

Device

Manager

Network

Manager

MDLn Driver - ai

xi

String Manager

t

Shareable

Map

si

κ
i
p, ξ

i
p, β

i
p

up = κ
i
p

yi

ŝi

β
i
p

Agent Model

Fig. 3. The architecture for a particular MDLn enabled agent, ai. This
agent is currently executing the pth mode, (κi

p, ξi
p, βi

p) of ai’s mode string.

the interpretation of MDLn strings. This component drives

the agent by choosing the proper mode to run and creating

the shareable information vector of the agent. The next layer

down is called the hardware abstraction layer, or HAL. The

HAL provides the connection between the high level control

and low level implementation details. It manages sensors,

actuators, and communications devices. Finally, the HAL

communicates with the lowest level, the Agent Model, which

contains any system information about devices, simulated or

real.

Internally, the MDLn Driver has a String Manager, which

handles the interpretation of “compiled” MDLn strings. It

runs off of the system clock, which allows for the timer

interrupt capabilities seen in previous MDL architectures.

Additionally, it receives all necessary information for apply-

ing agent-i’s current control mode, (κi
p, ξ

i
p, β

i
p), where the

index p is some arbitrary index into agent-i’s mode string.

The String Manager then outputs the current control signal

and the current set of buddies in that particular control mode;

additionally, it computes the interrupt function to determine

if the next mode in the string should be executed.

The control signal is received by the Device Manager

and the buddy list is received by the Network Manager.

The MDLn Driver uses the Shareable Information module

to generate information for agent-i’s network buddies. The

Device Manager takes the control input, κi
p, and calls the

appropriate actuator methods of the agent model. At the

same time, the Device Manager serves the String Manager

the current sensor data, yi.

The Network Manager in the HAL uses the buddy list,

βi
p, to enforce any communication requirements specified by

the MDLn program. It also sends the shareable information

of agent-i, si, as messages to all agents in agent-i’s role

set. Finally, the Network Manager must serve the shareable

information vector of agent-i’s current buddies, ŝi, to the

String Manager so that control laws and interrupt functions

may use the data in their execution.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.4

561

Although this design choice for the architecture is clearly

not unique, it is well suited for the goals of the MDLn

framework. Our architecture is designed so that the low level

may be either a robotic platform or a simulation model.

Consequently, the architecture allows for mixed networks of

MDLn enabled hardware and software agents.

V. APPLICATION OF MDLN

To show that multi-agent behaviors may be modeled and

implemented within the MDLn framework, we present two

examples of agents executing MDLn programs. The first,

consensus, is a standard multi-agent control algorithm for

collecting a set of agents at their centroid. The second

example is a more complicated program which takes full

advantage of the new features of MDLn.

A. MDLn Consensus

In the consensus problem, each agent has access to relative

information about its neighbors within some distance ∆. In

other words, the network is a time varying set N(t). In the

standard formulation the agents have dynamics

ẋi = −
∑

j∈N(t)

(xi − xj),

which result in the agents converging to the centroid of their

positions as long as the network stays connected. We can

take these dynamics and encapsulate them within an MDLn

mode via the control function

κi
c = −

∑

j∈βi

(xi − xj). (4)

To make matters more precise, let there be three agents

(a1, a2, a3) with individual control actions taking the form

of the dynamics in (4). Let each robot be equipped with sen-

sors that can detect distances to obstacles. The information

generated by these sensors can be used to define an interrupt

function, ξobs,

ξobs =

{

1, hi(xi) < D

0, otherwise
,

where D is some constant threshold value.

Letting each agent have one single consensus mode results

in the sample MDLn program:

a1 : (κc, ξobs, {a2, a3})

a2 : (κc, ξobs, {a1, a3})

a3 : (κc, ξobs, {a1, a2})

where the third term of each triple denotes the set of static

buddies of that particular agent. This program generates a

single-mode MDLn string for each of the three agents, where

each agent performs consensus until it detects an obstacle.

Consequently, when the obstacle detection interrupt, ξobs,

fires, an agent will cease operation since there are no more

modes in the MDLn string to execute.

In this example we let the roles of all agents be equal, i.e.

r(a1) = r(a2) = r(a3). Therefore, the MDLn parser would

accept this program since its syntax structure is valid and the

usage of the agent references are consistent with the role sets.

Moreover, at runtime the program is dynamically consistent

since all agents are in the same role class, satisfying R1 in

section III-B.

B. A Complex Program

The MDLn formulation of consensus showed a simple

example of the usage of MDLn. In contrast to that example,

we now consider an example which uses all of the features

of MDLn to prescribe a more complex behavior of a multi-

agent system.

Again, let there be three robots (a1, a2, a3) with the

following role assignments:

r(a1) = 2

r(a2) = r(a3) = 1.

Each robot has their own set of motion primitives, made

up of the following functions, Ki = {κf , κa, κgtg}. The

function κf defines a controller that follows a moving point

in the Cartesian plane at some constant following distance.

Additionally, the function κa defines a control primitive that

avoids an obstacle, which can be implemented with a basic

potential field algorithm. A robot can use the controller, κgtg ,

to move towards a static goal, also in the Cartesian plane.

Additionally, the robots have a set of interrupt functions,

Ξi = {ξobs, ξclr} which are the obstacle detected interrupt

defined in section V-A and a new interrupt, ξclr,

ξclr =

{

1, hi(xi) > D

0, otherwise
,

respectively. Using these control and interrupt functions, we

create the following MDLn program:

a1 : (κgtg , ξobs, {a3})(κa, ξclr, {a3})

a2 : (κf , ξobs, {a1})(κa, ξclr, {a1})

a3 : (κf , ξobs, {a1, χ})(κa, ξclr, {a1}),

where we use the symbol χ for representing the “closest

neighbor.”

This program can be interpreted in the following way.

We see that a1 has a “leadership” role since its role value

is larger than that of a2 and a3. This agent will start off

moving towards the goal point until an obstacle is detected

by itself or a3, which is shown by the buddy dependence in

the first mode, (κgtg, ξobs, {a3}). Then, a1 will switch into

an obstacle avoidance behavior, and will stop when itself or

a3 is clear of obstacles. Note that the buddy dependence on

a3 in this mode operates on the assumption that the network

will support this action in its implementation.

Additionally, for both static and dynamic buddy depen-

dence, the controllers and interrupts must be well defined

when the shareable information vector is missing certain

buddy information. In this case, the ξobs function should be

able to execute at least on a1’s local information, y1.

The second agent, a2, starts off following a1 and will do

so until itself or a1 detects an obstacle (similarly to a1’s first

mode). It will also avoid the obstacle until it is clear or a1 is

clear. Finally, a3’s mode string makes the robot follow a1 or

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.4

562

its closest buddy, which is determined from its set of dynamic

buddies, β3
d . This robot following mode will continue until

an obstacle is detected locally or by either a1 or χ. It will

then avoid the obstacle until itself or a1 is clear of obstacles.

This particular program brings up the importance of role

consistency in MDLn. At parse time this program will have

inconsistent role usage due to a2 referencing a1, which

violates R1 in section III-B. Consequently, a2 will not

operate on its MDLn string; however, it may be possible

to place a2 in β1, but that choice is left to the designer of

the motion program. Note, also, that a3 depends on a1 and

and its closest buddy in the first mode. This dependency

works in this program since a3 satisfies all role set rules,

i.e. r(a2) = r(a3) and a3 ∈ β1. The enforcement of this

rule occurs within each agent’s Network Manager, which is

fed MDLn buddy dependencies when modes are executed,

as described in section IV.

(a)

(b)

Fig. 4. A visualization of the software system that manages the low level
architecture of MDLn.

C. Software Implementation

Our low level architecture has been implemented using

Java and Player [13]. This software manages each robot’s

current network (Wi) as well as dynamic buddies. Screen-

shots of the software are seen in Fig. 4. These images show a

similar example to the one discussed in section III-A, where

the buddies of a1 change when a3 moves closer within range

than a2. Fig. 4(a) shows the visualization of a1’s network

(dotted lines) and dynamic buddies (solid lines). At the start,

a2 is the closest network member, and so a1 lists a2 as

a buddy. However, in Fig. 4(b), a3 has approached more

closely to a1 and a2 has wandered too far away. Note that

a4 is not a buddy in this simulation since the MDLn Driver,

which pushes static buddies to the Network Manager, has

not been implemented yet.

VI. CONCLUSIONS

In this paper we extend Motion Description Languages

to incorporate networked control aspects. In particular, we

define MDLn as a concatenation of triples (κ, ξ, β), where

the novel aspect is β, which encodes the buddies on which

the control law operates. We show how to apply MDLn

in a number of example scenarios, as well as discuss the

architectural and simulation issues.

Acknowledgements

This work was supported in part by the U.S. Army

Research Office Grant 99838 and in part under a contract

with the National Aeronautics and Space Administration.

REFERENCES

[1] R.W. Brockett. On the Computer Control of Movement. In Proceed-

ings of of the 1988 Conf. of Robotics and Automation, pages 534-540,
April 1988.

[2] V. Manikonda, P.S. Krishnaprasad, J. Hendler. Languages, behaviors,
hybrid architectures and motion control. In J.C. Willems J. Baillieul,
editor, Mathematical Control Theory, pages 199-226. Springer 1998.

[3] D. Hristu-Varsakelis, M. Egerstedt, and P.S. Krishnaprasad. On the
structural complexity of the motion description language MDLe. In
42nd IEEE Conference on Decision and Control. 2003, pages 3360-
3365.

[4] R. Arkin. Behavior-Based Robotics, MIT Press, 1998.
[5] M. Egerstedt. Behavior Based Robotics Using Hybrid Automata.

Lecture Notes in Computer Science: Hybrid Systems III: Computation
and Control, pp. 103-116, Pittsburgh, PA, Springer-Verlag, March
2000.

[6] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Norwell, MA, 1999.

[7] M. Zavlanos and G. Pappas. Distributed connectivity control of mobile
networks. In 46th IEEE Conference on Decision and Control. 2007,
pages 3591-3596.

[8] E. Klavins. A Language for Modeling and Programming Cooperative
Control Systems, Proceedings of the International Conference on

Robotics and Automation, May 2004, pp. 3403-3410.
[9] J.M. McNew and E. Klavins. Locally Interacting Hybrid Systems with

Embedded Graph Grammars. In 45th IEEE Conference on Decision

and Control. 2006, pages 6080-6087.
[10] F. Zhang, M. Goldgeier, P.S. Krishnaprasad. Control of Small Forma-

tions Using Shape Cooridinates. In Proceedings of the International

Conference on Robotics and Automation, September 2003, pp. 2510-
2515.

[11] W. Zhang and H. Tanner. Composition of Motion Description Lan-
guages. In Hybrid Systems: Computation and Control, M. Egerstedt
and B. Mishra (eds), Springer 2008 (to appear).

[12] J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 2001.

[13] http://playerstage.sourceforge.net

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA17.4

563

