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Abstract— In this paper we analyze the performance of two
different routing protocols specifically designed for Wireless
Sensor Networks (WSNs) for real-time estimation, control, and
monitoring. These protocols are designed to compensate for the
lossy nature of the wireless links and the delay from sending
messages over multiple hops from the sensors to the controller.
The routing protocols are designed to reduce packet delay and
packet loss using either retransmissions or multicasting. For
some routing topologies one protocol may be better than the
other at reducing the worst case packet delay but may have a
worse packet loss rate. Here, we apply mathematical tools to
analytically compute the average real-time performance based
on end-to-end packet delay statistics for two recently proposed
routing strategies. We show that the performance is strongly
related to the dynamics of the systems being estimated, and we
construct a computationally efficient estimation strategy based
on the delay statistics. This suggests that routing protocols are
to be designed based on the specific real-time estimation and
control application under consideration.

Index Terms— packet drop, random delay, remote estimation,
wireless sensor networks, routing, multipath

I. INTRODUCTION

Wireless Sensor Networks (WSNs) can be employed for
real-time estimation, control and monitoring applications.
However, they suffer from the usual problems in wire-
less communications, such as time-varying channels and
large packet loss probabilities. Moreover, these problems
are exacerbated by the need to multi-hop messages through
intermediate nodes to communicate with far away nodes.
As a consequence, multi-hopping potentially increases the
end-to-end packet loss rate and induces varying delay due
to retransmission, multiple path routing, and out-of-order
packet arrival. These problems pose two main challenges:
how to design routing protocols which give rise to low end-
to-end packet loss and small delay (latency), and how to
design real-time estimation algorithms which can cope with
random delay and packet loss. In the following, we briefly
review the most relevant literature in these two areas and our
contribution.
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A. WSN Routing for Estimation and Control

WSN routing protocols developed for estimation and control
need to provide good reliability with low latency. As a result,
many protocols like to use a TDMA scheduling scheme,
as opposed to CSMA schemes with randomized contention
schemes to access the network. For instance, both Time
Synchronized Mesh Protocol (TSMP) [1] and RT-Link [2]
schedule link transmissions across the network to bound the
end-to-end latency of a packet. However, RT-Link is less
robust to link failure than TSMP because it is a single-path
routing protocol while TSMP is a mesh routing protocol.

Other WSN protocols designed for industrial control (ex.
SERAN [3], Breath [4], DSF [5]) use cluster-based routing
to get higher reliability. This routing is a form of constrained
flooding, where copies of a packet are passed between groups
of nodes. SERAN and Breath assume the independence of
links, node wake up times, and random attempts to access the
channel so that the Central Limit Theorem can be employed
to get probabilistic guarantees on end-to-end delivery and
reliability. DSF assumes the links are mutually independent
and uses individual link probabilities to compute end-to-end
connectivity as a function of latency.

B. Estimation and control subject to random delay and
packet loss

Recently, there has been a considerable effort in analyzing
and designing estimation and control schemes in networked
control systems (NCS) subject to packet loss and packet
delay, as surveyed in [6] and [7]. Most of the results are
concerned with finding stability conditions for filtering and
control, and in general very few results provide a quantitative
measure of performance based on packet delay and loss
statistics. Among these, in [8] upper and lower bounds are
provided for the optimal mean square estimator in systems
subject to packet loss but not to packet delay. In [9] Nilsson
et al. considered designing an optimal LQG regulator when
packets are subject to random packet delay with known
statistics, but not to packet loss. Recently, in [10] we
proposed different estimation algorithms with quantifiable
performance under known and i.i.d. packet delay statistics.

Another important related area of research addresses the
problem of finding numerically efficient algorithms to com-
pute the optimal mean square estimator subject to delayed
measurements, as in [11] and [12]. These are general al-
gorithms which require little memory and are also valid
for time-varying dynamics and out-of-order packet arrival.
However, they do not provide performance evaluation tools
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based on packet delay statistics, which is of primary concern
in our work.

C. Contribution

In this paper, we study the performance (in the sense of
estimation error covariance) of real-time filtering running
over two of the most promising routing protocols: Directed
Staged Flooding (DSF) and Unicast Path Diversity (UPD),
which is a specific implementation of a protocol based on
TSMP [5]. In particular, we show how to derive the end-to-
end packet loss latency and connectivity statistics in terms of
λabh , which is the probability that a packet sent from sensor a
is delivered to sensor b with a delay τ not greater than h (i.e.
λabh =P[τ≤h]). These statistics are used off-line to compute
the performance of a Kalman-like estimator with a buffer of
dimension N storing the various measurements. These types
of filters have been proposed in [10], and here we extend
them to consider a shifted buffer, i.e. only measurements
with a delay between M and M+N , where M is the buffer
shift. Through numerical simulations, we show that there is
a trade off between performance, computational complexity
and system dynamics, which might lead to regimes where
one routing protocol is better than the other and regimes
where the opposite occurs. This implies that protocols must
be chosen with the specific application in mind.

II. NETWORKING PROTOCOLS FOR WSN: UPD AND DSF

This section provides brief descriptions and Markov Chain
models of two mesh routing protocols designed to provide
high reliability for industrial control applications. For more
details and examples, see [5].

A. Unicast Path Diversity

Dust Networks, Inc. proposed Unicast Path Diversity (UPD)
over Time Synchronized Mesh Protocol (TSMP) [1], which
exploits frequency, time, and space diversity for reliable
networking in sensor networks. UPD is a many-to-one, multi-
path routing protocol where each node in the network has
multiple parents and the routing graph has no cycles. The
links selected for routing are bidirectional, hence every link
transmission can be acknowledged. If a packet transmis-
sion is not acknowledged, it is queued in the node for
retransmission. To schedule the network, time is divided
into time slots, and grouped into superframes. At each
time slot, pairs of nodes are scheduled for transmitting a
packet on different frequencies. The superframe containing
the schedule of transmissions is repeated over time. Our
model uses frequency hopping to justify the assumption that
links are independent over retransmissions.

In order to calculate λabh , we construct a general Mesh
TDMA Markov Chain (MTMC) model for UPD that assumes
knowledge of the routing topology, schedule, and all the link
probabilities. MTMC models single packet transmission in
the network without the effects of queuing.
Mesh TDMA Markov Chain Model: let us represent the
routing topology as a graph G = (V, E), and denote a node in
the network as i ∈ V = 1, . . . , N , and a link in the network

as l ∈ E ⊂ {(i, j) | i, j ∈ V}, where l = (i, j) is a link for
transmitting packets from node i to node j. Time h will be
measured in units of time slots, and let H denote the number
of time slots in a superframe. The link success probability
for link l = (i, j) at time slot h is denoted p

(h)
l , or p(h)

ij .
We set p(h)

l = 0 when link l is not scheduled to transmit at
time h. It is possible to construct the following time-varying,
discrete-time Markov Chain:

Definition 1 (MTMC Model): Let the set of states in the
Markov Chain be the nodes in the network, V . The transition
probability from state i to state j at time h is simply p

(h)
ij ,

with p(h)
ii = 1−

∑
j 6=i p

(h)
ij . Let P(h) = [p(h)

ij ]T ∈ [0, 1]N×N

be the column stochastic transition probability matrix for a
time slot and P(H) := P(H)P(H−1) . . .P(1) be the transition
probability matrix for a repeating superframe. Let a packet
originated at node a be represented by p(0) := e[a], where
e[a] is an elementary vector with the a-th element equal to 1
and all other elements equal to 0. The probability distribution
of the state at time h given the initial condition e[a] is
given by p(h) =

(∏h
t=1 P(t)

)
p(0). With this definition the

probability that a packet is delivered from a to b with a delay
not greater than h is λabh = p(h)

b (the b-th element of p(h)).

B. Directed Staged Flooding

Directed Staged Flooding (DSF) uses simple constrained
flooding for one-to-many or one-to-one routing. Unlike UPD,
DSF provides increased end-to-end connectivity with less
latency by multicasting packets instead of using acknowl-
edgments and retransmissions. Like UPD, DSF assumes that
the nodes follow a TDMA routing schedule. During a trans-
mission each node transmits to a subset of its neighboring
nodes. Furthermore, we group the nodes along the end-to-
end transmission path such that a packet is modeled as being
passed between groups of nodes, and we call each group of
nodes a stage. For instance, looking at the node topology for
one time slot on the right of Fig. 1, each column of nodes
is a stage. For simplicity, here we assume the nodes are not
shared between stages, although this is not required (see [5]).

We use a Directed Staged Flooding Markov Chain
(DSFMC) model to calculate λabh , assuming the routing
schedule, the stage grouping, and all the link probabilities
are known. The model requires the sets of link transmissions
between distinct pairs of stages to be independent. Like UPD,
DSF uses frequency hopping over time to help justify this as-
sumption. However, the model allows the link transmissions
between the same pair of stages to be correlated.
Directed Staged Flooding Markov Chain Model: The nota-
tion for the routing topology is the same as in the MTMC
model. Note that here the link success probability for link
l = (i, j) is treated as being time-invariant and is denoted pl
(or pij), since each link is used only once when transmitting
a single packet.

It is possible to construct a time-invariant, discrete-time
Markov Chain where the state at a stage represents the set
of nodes that successfully received a copy of the packet. The
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Fig. 1. (left) UPD and (right) DSF schedules for routing on a grid of width
3, used in the calculations for the graph in Fig. 2.
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Fig. 2. Calculated end-to-end connectivity λabh as a function of latency
h using the routing schedules described in Fig. 1, where all the links have
probability pl = 0.6, a = 0 and b = 8.

transition probabilities between the states depend on the joint
probability of successful link transmissions between stages.
When the links are all independent, the model is:

Definition 2 (DSFMC Model): Let’s assume we have a
routing topology with K + 1 stages 0, . . . ,K. Each stage k
has Nk nodes, and the set of 2Nk possible states in stage k is
represented by the set of numbers S(k) = {0, . . . , 2Nk − 1}.
Let K(k) be the set of nodes in stage k and for each state
σ(k) ∈ S(k), let R(k)

σ ⊂ K(k) be the set of nodes that have
received a copy of the packet and U (k)

σ = K(k)\R(k)
σ be the

set of nodes that have not received a copy of the packet (see
Fig. 3). Let ω(k) denote the state where no nodes received a
copy of the packet in stage k. The conditional probability that
the next state X(k+1) equals σ(k+1) given that the current
state X(k) equals ω(k) is 0 if σ(k+1) 6= ω(k), and 1 if
σ(k+1) = ω(k). If σ(k) 6= ω(k):

P[X(k+1) = σ(k+1)|X(k) = σ(k)] =∏
u∈U(k+1)

σ

i∈R(k)
σ

(1− piu)

∏
r∈R(k+1)

σ

(
1−

∏
i∈R(k)

σ
(1− pir)

)
The transition probability matrices between stage k and
k+1 are P(k+1) ∈ [0, 1]Nk+1×Nk , where the entry in position
(σ(k+1), σ(k)) of the matrix is P[X(k+1) = σ(k+1)|X(k) =
σ(k)]. The initial state X(0) is the state σ(0) corresponding
to R(0)

σ = {a}, where a is the node sending the initial
packet. Then, the probability distribution p(k) ∈ [0, 1]Nk of
the state at stage k is p(k) =

(∏k
t=1 P(t)

)
p(0). Assume the

transmissions of nodes within a stage must be scheduled in
separate time slots so they do not interfere with each other,
so time h is related to stage k by h =

∑k−1
j=0 Nj . Then,

λabh =
∑
{σ(k)|b∈R(k)

σ } P[X(k) = σ(k)], a summation over
the corresponding elements in the vector p(k).

stage s
time k1 s1 s2 s3 s4 s5

U (k1)
σR(k1)

σ

s1 s2 s3 s4 s5stage s
time k2

U (k2)
σR(k2)

σ = ∅

Fig. 3. Mapping of states to nodes that received a packet in the DSFMC
model. A state σ(k) of a stage is in correspondence with the set of nodes
R(k)
σ that correctly received the packet (greyed circles).

C. UPD and DSF Comparison
UPD can deliver packets from a to b in a shorter time than
DSF, but with a larger variance. Also limh→∞ λabh = 1 for
UPD, while λabh ≤ 1 for DSF after the last stage transmits
(assuming pl 6= 1). This imply that UPD can always provide
better end-to-end connectivity at high latencies h. DSF tends
to perform better when there are a few very poor links
scattered throughout the network. Fig. 2 compares λabh for
various h for UPD and DSF under the schedules in Fig. 1,
assuming pl = 0.6 ∀l ∈ V .

D. Usage of UPD and DSF for estimation
Both protocols can be used for estimation purposes. Assume
that nodes a = 0 and b = 8 in Fig.2 are respectively
a sensor and an estimator; a collects data and then sends
packets towards b through the UPD or DSF network. How
should b handle packet loss and delay to have some kind of
optimal estimate? Which protocol behaves better and under
what conditions? In the next sections we will formally state
the problem assuming that a measures the following discrete
time linear stochastic plant:

xt+1 = Axt + wt yt = Cxt + vt (1)

where t ∈ N, x,w ∈ Rn, A ∈ Rn×n, y, v ∈ Rm, C ∈
Rm×n, (x0, wt, vt) are Gaussian, uncorrelated, white, with
mean (x̄0, 0, 0) and covariance (P0, Q,R) respectively (note
P 6= P from Defs. 1 and 2). We also assume that the pair
(A,C) is observable, (A,Q1/2) is reachable, and R > 0.

Note that measurements are time-stamped, encapsulated
into packets, and then transmitted through the digital com-
munication network. Time-stamping of measurements is nec-
essary to reorder packets at the receiver side since they can
arrive out of order.

III. MINIMUM VARIANCE ESTIMATORS SUBJECT TO
PACKET LOSS AND DELAY

The packet arrival process can be modeled via the random
variable γtk, defined as follows (k is transmit time):

γtk =
{

1 if yk is received at or before time t, t ≥ k
0 otherwise

We also define the packet delay τk ∈ {N,∞} for observation
yk as follows:

τk =
{
∞ if γtk = 0,∀t ≥ k
tk− k otherwise (tk := min{t|γtk = 1}) (2)
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where tk is the arrival time of observation yk at the estimator.
If the delay of the arriving packets is bounded, i.e. if
there exists N̄ such that γtk = γt+1

k for t − k + 1 ≥
N̄ , then it has been shown in [10] that the minimum
variance estimator x̂tt|t = E[xt | arrived measurements] =
E[xt | γt1, .., γtt , ỹt1, .., ỹtt ] (where ỹtk = γtkyk) and its corre-
sponding prediction error covariance P tt+1|t = E[(xt+1 −
Ax̂tt|t)(xt+1−Ax̂tt|t)

T | γt1, . . . , γtt ] is given by a time-varying
Kalman Filter with a buffer of size N̄ whose equations are:

x̂tt−N̄|t−N̄ = x̂t−1
t−N̄|t−N̄ , P tt−N̄+1|t−N̄ = P t−1

t−N̄+1|t−N̄

x̂tk|k = Ax̂tk−1|k−1+γtkK
t
k(ỹtk − CAx̂tk−1|k−1)

Kt
k = P tk|k−1C

T (CP tk|k−1C
T +R)−1

P tk+1|k = AP tk|k−1A
T +Q− γtkAKt

kCP
t
k|k−1A

T

where k = t − N̄ + 1, . . . , t, and x̂th|h = x̄0, P
t
h|h−1 = P0

for h ≤ 0. Because the error covariance P tt+1|t depends on
the packet arrival sequence γtk, it is time-varying and does
not converge to a steady state, unlike the standard Kalman
Filter with no packet loss. Moreover, it requires the inversion
of up to N̄ matrices at every time step t and might be
too expensive for on-line implementation. Also, the buffer
size N̄ needed for the optimal estimator might be too large.
Although in theory even very old measurements help reduce
the estimation error, in practice their contribution is marginal.
In Sec. IV we propose a new strategy requiring no matrix
inversion and whose buffer size can be reduced to trade off
performance with computational complexity.

IV. ESTIMATION WITH SHIFTED BUFFER AND CONSTANT
GAINS

In this section we propose a suboptimal estimator design
strategy which does not require any matrix inversion and
has a buffer with length smaller than the WSN maximum
packet delay N̄ . Since we want to quantify the performance
of the estimator, we need to specify the statistics of the packet
arrival process from sensor a to estimator b. We assume
it to be stationary and i.i.d. with probability function (in
the following we will omit the superscripts): λh := λabh =
P[τt ≤ h], where t ≥ 0, 0 ≤ λh ≤ 1 is non-decreasing in
h = 0, 1, . . . , N̄ , and τt was defined in Eqn. (2). Although
arrivals might not be i.i.d. because of correlation in packet
delays, the i.i.d. assumption allows us to explicitly compute
the performance of the proposed estimators and to find the
optimal gains within this class.

Starting from the buffer of the optimal filter described in
Sec. III, we consider the subset of the measurements with
time delays in M, . . . ,M + N (the subset will be called a
shifted buffer), where M = 0, . . . , N̄ is the starting point of
the shifted buffer, and N = 1, . . . , N̄ −M is its length (an
example is shown in Fig. 4). The estimation scheme has the
following structure:

x̃tt−M−N |t−M−N = x̂t−1
t−M−N |t−M−N

x̂tk|k = Ax̂tk−1|k−1+γtkK̃t−k(ỹtk − CAx̃tk−1|k−1),

x̃tt|t = AM x̃tt−M |t−M (3)

where k = t−M−N+1, . . . , t−M , which mimics the time-
varying estimator with the buffer in the previous section, but
with gains {K̃h}M+N−1

h=M not depending on the packet arrival
sequence γtk, unlike the gains {Kt

k} of the optimal filter of
Sec. III.

The performance of this new estimator is measured in
terms of its prediction error covariance P̃t+1|t = E[(xt+1 −
Ax̃tt|t)(xt+1 − Ax̃tt|t)

T | γt1, ..., γtt ]. Obviously it must be
P tt+1|t ≤ P̃ tt+1|t for every sequence γtk since the filter in
the previous section is the minimum variance linear filter.
Just like P tt+1|t, the prediction error covariance P̃ tt+1|t is a
random variable since it depends on the specific realization
of the arrival process γtk. Therefore, we are interested in
computing the expected prediction error covariance with
respect to all possible realizations of γtk, i.e. P

t

t+1|t =
Eγ [P̃ tt+1|t] = P

t

t+1|t(K̃,N,M), where we made explicit
the dependence on the gains K̃ = (K̃M , . . . , K̃M+N−1),
the length of the buffer N , and its initial position M .
The following theorem provides stability conditions for the
proposed filter.

Theorem 1: Consider the following modified A.R.E.:

P = Φλ(P ) = APAT+Q−λAPCT (CPCT+R)−1CPAT (4)

and the gain KP = g(P ) = PCT (CPCT + R)−1. If A
is unstable, then there exists a unique positive semidefinite
solution if and only if λ > λc where:
• λc depends only on the pair (A,C);
• λc satisfies the following inequalities (where the
σui (A)’s are the unstable eigenvalues of A):

pmin =
1∏

i |σui (A)|2
≤ 1− λc ≤

1
maxi |σui (A)|2

= pmax

• pmin = 1− λc if C is rank one;
• pmax = 1− λc if C is invertible.

If A is strictly stable, then there always exists a
unique positive semidefinite solution. Consider also the
class of filters defined by Eqn. (3), and suppose the
packet arrival process is i.i.d.. If λM+N−1 < λc then
limt→∞ supt P

t

t+1|t(K̃,N,M) = ∞ for any choice of the
gains K̃. If λM+N−1 > λc, then consider the following
positive semidefinite matrices:

VM+N−1 = ΦλM+N−1(VM+N−1)
Vk = Φλk+1(Vk+1), k = M +N − 2, . . . ,M
Vk = AVk+1A

T +Q = Φ0(Vk+1), k = M − 1, . . . , 0
(5)

and the gains K̃∗k = g(Vk), k = M +N − 1, . . . ,M . Then:

limt→∞ P
t

t+1|t(K̃
∗, N,M) = V0(N,M)

limt→∞ P
t

t+1|t(K̃,N,M) ≥ V0(N,M), ∀K̃ .

Finally V0(N,M) ≥ V0(N + 1,M).
Proof: The proof is a straightforward application of the

results presented in [10] and is therefore omitted.
Thm. 1 states that if the packet arrival probability for the

last slot in the buffer λM+N−1 is sufficiently high, then
there exists a stable estimator within the class of filters
here proposed. Thm. 1 also shows how to find the best
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estimator in terms of minimum variance within this class.
The best expected prediction error covariance V0(N,M) is
a function of the buffer length N and initial position M . The
memory and computational complexity for such estimators
do not depend on M . Therefore, we would like to find
the best M which minimizes V0(N,M). Unfortunately it
is not possible to guarantee that there exits M∗ such that
V0(N,M∗) ≤ V0(N,M), and indeed this is actually false in
general. To overcome this limitation, we will consider a cost
function which is linear and positive in V ≥ 0, i.e. a function
f : Rn×n → R+. Some examples are f(V ) = trace(V ) and
f(V ) = zTV z, where z ∈ Rn. Using this cost function we
will compute the optimal shifted buffer M for any fixed N
as:

M∗(N) = arg min
M

f (V0(N,M))

and the corresponding minimum cost v∗(N) =
minM f(V0(N,M)). Since M is an integer, it is not
possible to find the minimum in closed form. Therefore,
we need to explicitly compute f(V0(N,M)) for all M .
However, this can be done off-line and then used for on-line
estimation.

1 4 7

h

λh
1

whole buffer
shifted buffer

Fig. 4. Example of shifted buffer with M=3 and N=4; the elements of
the buffer and the λh’s used in Eqn. (4) are plotted with a continuous line.
The dashed λh refers to the trivial buffer with M=0 and N=N̄ .

V. ESTIMATION PERFORMANCE UNDER UPD AND DSF
ROUTING PROTOCOLS

In this section we apply the results of Sec. III to the situation
proposed in Sec. II-D to evaluate performances for the 2D
target tracking application. A popular model for the dynamics
of a moving target is given by a double integrator subject to
white noise, i.e. ξ̈x(t) = wx(t) where ξx is the position of the
moving target along the x-axis and wx(t) is continuous time
white noise with zero-mean and variance q. We also assume
that the position measure is noisy, i.e. yx(t) = ξx(t) + v(t),
where v(t) is zero mean white noise with variance I . The
dynamics along the y-axis are modeled similarly and the
noises are assumed to be uncorrelated along the two axes.
The state space dynamics, discretized with period T, are
written as:

xt+1 =
[
G 0
0 G

]
xt + wt, yt =

[
H 0
0 H

]
xt + vt

G =
[

1 T
0 1

]
, H =

[
1 0

]
, S =

[
T 3

3
T 2

2
T 2

2 T

]
where xT = [ξx ξ̇x ξy ξ̇y], wt and vt are white Gaussian noise

with covariance Q = q

[
S 0
0 S

]
and R = rI respectively,
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Fig. 5. Estimation error cost v∗(N̄) for the full length buffer as a function
of the ratio q/r with q = 1 for the UPD and DSF protocols.

and I is the identity matrix. In this case (A,Q1/2) is reach-
able, (A,C) is observable and the critical packet arrival prob-
ability introduced in Thm. 1 is λc = 0 (all the eigenvalues
are one). Since the behavior of the filter is regulated by the
ratio q/r, we fix w.l.o.g. q = 1 and evaluate the performance
as a function of r, in terms of the mean square prediction
error v∗(N) = f(V0(N,M∗(N)) = zTV0(N,M∗(N))z on
the position of the moving target, where zT = [1 0 1 0] and
V0(N,M) is the expected prediction error covariance of
the estimator with a shifted buffer with size N and initial
position M defined in Sec. IV.

First we compute the best achievable performance of filters
with constant gains as a function of r for UPD and DSF
protocols with end-to-end packet delay statistics shown in
Fig. 2. Noting that λUPD

h = 0 for h < 10 and λUPD
h ≈ 1 for

h > 40 we can set N̄UPD = 40, i.e. almost all packets arrive
with a delay between 10 and 40 time steps. On the other
hand λDSF

h = 0 for h < 22 and λDSF
h = λDSF

h+1 = 0.81 for
h ≥ 24, which implies that N̄DSF = 24 and that packet loss
probability is pDSF

loss = 1− 0.81 = 0.19.
Fig. 5 compares the best achievable performance in terms

of v∗(N̄) and shows that UPD always performs better than
DSF for the topology and link probabilities of Fig. 1. This
is to be expected for the two extreme regimes, i.e. for
large q/r and for small q/r. In fact, for large q/r, old
measurements cannot reduce the estimation error since xt
changes too rapidly. Since UPD delivers some packets with
much smaller delay than DSF, it should perform better. For
small q/r, xt changes very slowly, so old measurements
reduce the estimation error. Therefore, a relevant parameter is
the packet loss probability, which is bigger for DSF. Note that
UPD performs better for all the q/r ratios for this particular
topology and link probabilities. It can be shown that in other
cases the situation can be inverted.

When using a buffer of size N < N̄ there are tradeoffs
between estimation and computational complexity. Fig. 6
shows the performance of the filters as a function of N
for three different noise ratios q/r (buffer shift M being
chosen optimally ∀N ). As expected, the performance for
DSF becomes constant for N > 3 since all packets arrives
with delay h∈{22, 23, 24}. Instead the performance of UPD
improves until N = 30 (range of delay of the packets),
and after becomes constant; anyway the improvements after
N>20 are so small that it is not useful to use longer buffers.
Note that, if both q/r and the buffer are very small, DSF
performs better than UPD. Therefore, it is not possible to
claim that UPD is always superior to DSF.
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Finally, Fig. 7 shows the optimal buffer shift M∗(N) as
a function of the buffer length. As expected, M∗DSF(N) is
around the minimum delay of the measurements (i.e. 22).
For N > 3, the performance becomes constant, and the
optimal M∗DSF(N) is not unique, since any buffer includ-
ing delays h ∈ {22, 23, 24} performs optimally. Therefore
M∗DSF(N) s.t. N > 3 can be chosen such that MD∗

min(N) ≤
M∗DSF(N) ≤MD∗

max(N). The UPD case depends more on the
q/r ratio. When N is small we will use a few recent mea-
surements, while when N is large we will include more older
measurements. In the case of Fig. 7, M∗UPD initially decreases
as N increases, indicating that the buffer adds packets with
smaller delays. Then for h<10 the buffer adds the packets
with bigger delays (a further decrease in M does not help).
When N > 30, the addition of packets with smaller delay
also provides negligible improvements in performance so
each M∗UPD(N) can be chosen s.t. MU∗

min(N) ≤M∗UPD(N) ≤
MU∗
max(N).

VI. CONCLUSIONS

In this paper we evaluate the performance of filters when
measurements are subject to packet loss and random de-
lay [10] while using two different WSN communication
protocols designed for real-time monitoring and tracking [5].
We also propose a new set of estimators with constant gains

and a shifted buffer, which allows the design to trade off
computational complexity and performance. In particular, we
show that unless all the packet delay probabilities λαh of
a communication protocol α are greater than the relative
λβh’s of another protocol β, it is not possible to claim that
one protocol is better in absolute terms. The performance
of a communication protocol depends on the ratio between
process and measurement noises q/r, the dynamics of the
system A, and the buffer length N . Nonetheless, the tools
developed in this paper can be readily used by a control
engineer to compare protocols for a specific application.

There are still several research avenues which deserve to
be explored. First, the performance was evaluated in terms
of estimation error covariances averaged over all possible
packet delay realizations, but it would also be important to
know the spread of these covariances along a typical realiza-
tion. This spread is directly related to the jitter experienced
by the estimation error, which is known to give rise to poor
control performance. Second, this work can be extended
to handle non-i.i.d. packet arrival processes, i.e. extended
to communication protocols with correlated delays between
consecutive packets.
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