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Abstract— In this paper we develop a mathematical model of
the dynamics for an inflatable space reflector, which can be used
to design a controller for the shape of the inflatable structure.
Inflatable structures have very nice properties, suitable for
aerospace applications. We can construct e.g. a huge light
weight reflector for a satellite which consumes very little space
in the rocket because it can be inflated when the satellite is
in the orbit. So with this technology we can build inflatable
reflectors which are about 100 times bigger than solid ones.
But to be useful for telescopes we have to actively control the
surface of the inflatable to achieve the desired surface accuracy.
The starting point of the control design is modeling for control,
in the case port-Hamiltonian (pH) modeling. We will show how
to derive a nonlinear infinite dimensional pH model of a 1-D
Euler-Bernoulli beam with piezo actuation. In the future we
will also focus on 2-D models.

I. INTRODUCTION

Inflatable structures are a very promising technology for

space applications [3]. With this emerging technology we are

able to build bigger space crafts, which are cheaper in terms

of costs but still use the same space in the orbiting device.

As a consequence, the developments may enable us to

build huge solar panels, reflectors, solar panels, or even

human habitats, which, with the state-of-the-art technology,

are not possible to build.

Due to the fact that any inflatable structure is build of a

polymer casing which is folded on earth and then inflated

with a gas in space, it is clear that an inflatable structure

cannot have the same surface accuracy as a rigid body. This

disadvantage is the reason why inflatable structures currently

are not the best option for high accuracy situations, i.e. a

visible light reflector.

However, this problem may be solved by using smart ma-

terials which have the possibility to change their properties

on demand, e.g. piezoelectric polymers [7]. This means that

with smart materials it is actually possible to change the

shape of an element by means of an applied voltage. Since

these materials are made of polymers it is possible to build

extremely thin actuators which can then be bonded to the

casing of the inflatable structure.

In this paper we show how to develop a model for a 1-

D flexible structure with a piezoelectric element as actuator

in the port-Hamiltonian (pH) modeling framework [1]. The

approach we propose differs from [4], [9], because we derive

a model which can represent nonlinear deformations of the

beam. Additionally we derive the equations of motion by the

generalized Hamiltonian’s principle, see [8]. We approach

the problem with the purpose to extend it to the 2-D case in

the future.

The paper is organized as follows. In Section II we

introduce the basic physical relations which we use to

formulate the model. A distributed pH model for a nonlinear

piezoelectric Euler-Bernoulli beam is defined in Section III.

In Section IV we show how the proposed model can be used

to define a model for a piezoelectric composite, which will

be a possible actuator for the shape control of an inflatable

structure. Some simulation results of the final model are

shown in Section V. Finally in Section VI conclusions are

drawn and possible future directions are presented

The proposed model can also be used for modeling other

structure, namely any flexible structure with a piezo actuation

e.g. for vibration control in civil engineering.

II. BACKGROUND ON CONTINUUM DYNAMICS AND THE

PIEZOELECTRIC EFFECT

In this section we briefly introduce the physics we use

in the following sections. In this paper we focus on linear

materials and large deformations [2].

We first introduce the constitutive equations of the model.

If we consider a beam without a piezo actuation we know

from Hooke’s Law that the stress-strain relations can be

described as

σ = CEε,

where we used the common matrix notation instead of the

tensor notation. Here σ is the stress, ε the related strain and

CE a matrix which relates the stress and the strain. In general

σ and ε are second order tensors of dimension 3, e.g. σi j

describes the stress in the i j direction (i, j ∈ {1,2,3}), and

CE is a fourth order tensor. The subscripts correspond to

directions in the coordinate system, 1 corresponds to x, 2 to

y and 3 to the z direction.

For piezoelectric material we have that the piezo effect

induces an additional strain in the material which is caused

by an electrical field (actuation property). Similarly the

deformation of the piezoelectric element also changes the

electrical field in the element (sensing property). So the
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coupled constitutive relations for piezo electric material [6]

can be described as
[

σ
D

]

=

[

CE −eT

e εe

][

ε
E

]

. (1)

Here D is the electrical displacement and E is the electrical

field in the piezo element, εe is the electrical permittivity

and e is the piezoelectric constant of the material.

The strain ε in the beam is related to the deformation u of

the beam. The electrical field and the electrical displacement

can be described by Maxwell’s equations. So we can state

the kinematic equations as

εi j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

+
3

∑
k=1

∂uk

∂xi

∂uk

∂x j

)

, (2)

Ei = −
∂ϕ

∂xi

, ρe = ∑
i

∂Di

∂xi

, (3)

here ϕ is the electrical potential and ρe is the electrical charge

density. Note: x1 = x, x2 = y and x3 = z.

The equations of motion for the model we derive via the

generalized Hamilton’s principle [8]. This principle states

that for a piezoelectric material it must hold that

δ

∫ t1

t0

(K −P+W )dt = 0,

where K = 1
2

∫

V ρ||u̇||2dV is the kinetic energy of the beam

(ρ being the mass of the beam material), P = 1
2

∫

V σT ε +
DEdV is the potential energy and W =

∫

V fT
V udV +

∮

B fT
BudB

are the external forces caused by body forces fV and surface

tractions fB. Here V stands for the volume of the element and

B for its surface. This expression can then be reformulated

to the following equations of motion in integral form
∫

V
−ρüT δu−σT δε + fT

V δudV +
∮

B
fT
BδudB = 0. (4)

In order to derive the equations of motion in differential form

we will use (4).

III. PORT-HAMILTONIAN MODELING OF AN

PIEZOELECTRIC EULER-BERNOULLI BEAM

In this section we want to introduce a pH model, see [1],

[5], [4], [9], for a flexible piezoelectric beam, described in

the nonlinear Euler-Bernoulli framework. We assume that a

surface force is acting on the beam, e.g. a pressure. We first

derive an infinite dimensional pH model. We start with the

modeling of a simple piezoelectric Euler-Bernoulli beam to

make the steps of the modeling process clear. In the next

section we derive a pH model for a piezoelectric composite

beam.

The derivation of the pH model can be subdivided in four

parts. First we define the strain and the electrical field in the

beam. We also need to define the geometry of the beam. The

second step is then to derive the Hamiltonian of the beam

that describes the energy stored in the structure. Thirdly

we calculate the equations of motion with the generalized

Hamiltonian’s principle. The last step is then to define an

interconnection structure which represents the physics of the

system and gives us the final pH model.

deformed

undeformed

x

z

∂w
∂x

−z ∂w
∂x

w(x)

u0(x)

z

y
A

a

b

g

Fig. 1. Deformation of a beam under external influences (left), Cross
sectional area of the beam (right)

A. Strain and electrical field of the beam

To derive the distributed pH model for the beam, we first

have to define the strain which is caused by its deformation.

For an Euler-Bernoulli beam it is in general assumed that

the displacement takes place in the x and z direction only,

so

u = [u0(x)− zφ(x),0,w(x)]T .

That means we assume we have pure bending. This yields

the following strain in the x direction,

ε11(x,z) = u′0(x)− zφ(x)+
1

2

(

u′0(x)− zφ ′(x)
)2

+
1

2
φ 2(x)

(5)

where u0(x) is the displacement of a material point at the

neutral line of the beam and w(x) describes the deflection of

the beam from the undeformed configuration. φ(x) is defined

to be the slope of the beam, hence φ(x) = ∂w
∂x

, see Figure

1. In the Euler-Bernoulli beam framework it is assumed that

all other strains and shears in the beam are zero, therefore

from now on we neglect the subscripts for the strain. We

also define the prime operator for a coordinate as the spatial

derivative, e.g. u′0 = ∂
∂x

u0.

Before we define the energies stored in the beam due to

bending we have to define the geometry of the beam. The

beam will have the length L (x ∈ [0, . . . ,L]) a height of b−
a (z ∈ [a,b], a < b), and a width which is symmetric (y ∈
[−g,g]). The cross sectional area (in the yz-plane) of the

beam is denoted as A, see Figure 1.

Now we also state some assumptions for the electrical

field E of the piezoelectric beam. To be able to connect

the beam to an electrical power source we assume that the

upper and the lower side of the beam are covered with an

electrode. Due to the applied potential an electrical field will

be created. The width of the electrode ge(x) is depending

on the position along the beam so that we can tune the

electrical field locally. The structure of the electrodes and the

piezoelectric material is similar to a parallel plate capacitor.

So we assume, similar to a plate capacitor, that electrical

displacement in the beam is given as D = Q
AQ

, where Q is
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the total charge of the electrodes and AQ =
∫ L

0 ge(x)dx is the

area of the electrodes.

B. Hamiltonian of the piezoelectric beam.

So as to derive the Hamiltonian of the system we first

define the energy stored in the system. The Hamiltonian has

the following general form

H(u,ε,E) =
1

2

∫

V
ρ ‖u̇‖2 +σε +DEdV.

Let us now consider the kinetic energy of the beam. If we

define the moment of a specific atom in the beam pa = ρu̇

we can express the kinetic energy in the beam as

K =
1

2

∫ L

0

∫

A

‖pa‖
2

ρ
dAdx.

It is easy to see that the kinetic energy is defined as a volume

integral, but pa depends on x and z. In consequence, we can

express the kinetic energy of the beam as a line integral if

we calculate the moment of a slice of the beam at position

x,
∫

A

‖pa‖
2

ρ
dA =

∫

A
ρ
(

(

u̇0 − zφ̇
)2

+ ẇ2
)

dA

= ρ
(

Au̇2
0 −2I0u̇φ̇ + Iφ̇ 2 +Aẇ2

)

Then we can rewrite the kinetic energy as

K(p) =
1

2

∫ L

0
pT M−1pdx,

where

p := Mũ = ρ





A 0 −I0

0 A 0

−I0 0 I









u̇0

ẇ

φ̇





with I =
∫

A z2dA and I0 =
∫

A zdA. Note that I 6= 0 and I0 = 0

∀x ∈ [0,L], if we choose centroidal coordinates (a = −b).

The potential energy stored in the beam can be described

as

P =
1

2

∫ L

0

∫

A

[

ε
E

]T [
CE e

−e εe

]T [
ε
E

]

dAdx

Similarly, to define the potential energy as a line integral,

we now compute the integral over the cross sectional area

of the potential energy.
If we use the definition of the strain (2) and the definition

of the stress in the beam (1), the potential energy can be
determined as follows,

1

2

∫

V
σεdV =

1

2

∫

V

(

CE ε − eE
)

ε +(eε + εeE)EdV

=
1

2

∫ L

0

∫

A
CE

(

u′0 − zφ ′ +
1

2

(

u′0 − zφ ′
)2

+
1

2
φ 2

)2

+eE2dAdx.

So the Hamiltonian of a 1D piezoelectric beam is given
as

H =
1

2

∫ L

0
pT M−1p+ eAE2 (6)

+
∫

A
CE

(

u′0 − zw′′ +
1

2

(

u′0 − zw′′
)2

+
1

2
w′2

)2

dx (7)

The here defined Hamiltonian will be used in

C. Equations of motion of a piezoelectric beam

Now we derive the equations of motion for the piezo-

electric beam. From Section II we know that the following

equations of motion in integral form must hold
∫

V
−ρüδu−σδεdV +

∮

B
fT
BδudB = 0.

where

δε =
(

1+u′0 − zw′′
)

δu′0 − z
(

1+u′0 − zw′′
)

δw′′ +w′δw′

δu = (δu0 − zδφ ,0,δw) .T

Now we reformulate this expression to achieve the equa-

tions of motion in differential form. We do this part by

part. We start with the kinetic energy. We can rewrite the

expression above in the following form

δK = −ρ

∫ L

0

∫

A

(

ü0 − zẅ′
)

(δu0 − zδw)+ ẅδwdAdx

=
∫ L

0
ṗ1δu0 + ṗ2δw+ ṗ3δw′dx,

Then we check the variation of potential mechanical energy

Pm of the system.

δPm =
∫

V
−σδεdV

=
∫

A
σ
(

1+u′0 − zw′′
)

dA

∣

∣

∣

∣

L

0

δu0

−
∫ L

0

∂

∂x

∫

A
σ
(

1+u′0 − zw′′
)

dAδu0 dx

+
∫

A
−zσ

(

1+u′0 − zw′′
)

dA

∣

∣

∣

∣

L

0

δw′

−
∫ L

0

∂

∂x

∫

A
−zσ

(

1+u′0 − zw′′
)

dAδw′ dx

+

∫

A
σw′dA

∣

∣

∣

∣

L

0

δw−

∫ L

0

∂

∂x

∫

A
σw′dAδwdx

For the external force, we assume a pressure applied at

the lower part, we get
∮

B
fT
BδudB =

∫ L

0

∫ g

−g
fu (δu0 −aδφ)+ fwδwdAdx

= 2g

∫ L

0
fuδu0 −afuδφ + fwδwdx

because these equations must hold for any arbitrary δu0, δw

it follows that the integrand should be zero. Hence, one gets

ṗ1 =
∂

∂x

∫

A
CEε

(

1+u′0 − zw′′
)

dA

−
∂

∂x

((

A+Au′0 − I0w′′
)

eE
)

+2gfu (8)

ṗ2 =
∂

∂x

∫

A
CEεw′dA+−

∂

∂x

(

w′eAE
)

+2gfw

ṗ3 =
∂

∂x

∫

A
−zCEε

(

1+u′0 − zw′′
)

dA (9)

+
∂

∂x

((

I0 + I0u′0 − Iw′′
)

eE
)

−2gafu (10)
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The boundary conditions are fulfilled by the assumptions

that the beam is clamped

w =
∂w

∂x
= 0, u0 =

∂u0

∂x
= 0, for x = 0 or x = L

These equations of motion only hold for the mechanical

part, but we also need a equation of motion for the electrical

field E. To achieve this equation we use the constitutive

equations (1),

D = eε + εeE ⇒ E =
1

εe
D−

e

εe
ε.

This equation must hold for every point in the piezoelectric

beam ∀(x,y,z) ∈ V . But we are treating a beam where we

only want a spatial dependency of x. So we integrate this

equation over the cross-sectional area to lose the dependency

on y and z.

AE =
A

εe
D−

eA

εe

(

u′0 +
1

2

(

u′0
)2

+
1

2
w′2

)

−
eI0

εe

(

w′′ +u′0w′′
)

+
1

2

eI

εe
w′′2

If we now use the fact that the electrical displacement in a

plate capacitor can be described as D = Q
AQ

we get,

E =
1

εeAq

Q−
e

εe

(

u′0 +
1

2

(

u′0
)2

+
1

2
w′2

)

+
eI0

εeA

(

w′′ +u′0w′′
)

+
1

2

eI

εeA
w′′2

It is obvious that this equation is a constraint to the system.

But if we choose the right initial values for the states such

that this equation is fulfilled for t = 0. We can reformulate

the static constraint to a dynamical equation,

Ė =
1

εe

Ie

Aq

−
e

εeA
(A+Au′0 − I0w′′)u̇′0 (11)

−
e

εe
w′ẇ′ +

e

εeA

(

I0 + I0u′0 − Iw′′
)

ẇ′′
, (12)

where Ie is the current applied to the electrodes.

The equations of motion derived in this section are used

in the next section to define the final pH model of a

piezoelectric beam.

D. Interconnection structure and final pH model

Now we use the results of the last subsections to derive

a interconnection structure which is able to represent the

equations of motion of the system in pH form.

The state variables of the pH system are (p, ε̃,E)T . The

gradient of the Hamiltonian (6) with respect to these state

variables is

∇H =





















∇p1
H

∇p2
H

∇p3
H

∇u′0
H

∇φ H

∇φ ′H

∇EH





















=





















u̇

ẇ

ẇ′
∫

A CEε (1+u′0 − zw′′)dA
∫

A CEεw′dA
∫

A CEε
(

−z− zu′0 + z2w′′
)

dA

εeAE





















.

So using the state variables and the gradient of the

Hamiltonian we can write (9) and (11) as

ṗ1 =
∂

∂x
∇u′H +g1 (∇EH)+2gfu

ṗ2 =
∂

∂x
∇φ H +g2 (∇EH)+2gfw

ṗ3 =
∂

∂x
∇φ ′H +g3 (∇EH)−2gafu

Ė =
1

εe

Ie

Aq

−g∗1(∇p1
H)−g∗2(∇p2

H)−g∗3(∇p3
H),

where

g1(◦) = −
e

εeA

∂

∂x

((

A+Au′0 − I0w′′
)

· ◦
)

g2(◦) = −
e

εe

∂

∂x

(

w′ · ◦
)

g3(◦) =
e

εeA

∂

∂x

((

I0 + I0u′0 − Iw′′
)

· ◦
)

The formal adjoints of this operators are given

g∗1(◦) =
e

εeA

(

A+Au′0 − I0w′′
) ∂

∂x
◦

g∗2(◦) =
e

εe
w′ ∂

∂x
◦

g∗3(◦) = −
e

εeA

(

I0 + I0u′0 − Iw′′
) ∂

∂x
◦

Because we need equations of motion for all state variables

we also have to define ∂
∂ t

[u′0,φ ,φ ′]T . These equations can be

stated as

∂

∂ t
u′0 =

∂

∂x
∇p1

H,
∂

∂ t
φ =

∂

∂x
∇p2

H

∂

∂ t
φ ′ =

∂

∂x
∇p3

H

Hence, we can state the following pH model





ṗ
˙̃ε
Ė



 = J∇H +





















2g 0 0

0 2g 0

−2ga 0 0

0 0 0

0 0 0

0 0 0

0 0 1
εeAq

























fu

fw

Ie



(13)

y =





















2g 0 0

0 2g 0

−2ga 0 0

0 0 0

0 0 0

0 0 0

0 0 1
εeAq





















T

∇H,
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where

J =























0 0 0 ∂
∂x

0 0 g1

0 0 0 0 ∂
∂x

0 g2

0 0 0 0 0 ∂
∂x

g3
∂
∂x

0 0 0 0 0 0

0 ∂
∂x

0 0 0 0 0

0 0 ∂
∂x

0 0 0 0

−g∗1 −g∗2 −g∗3 0 0 0 0























Remark 1: The pH model of a beam without a piezoelec-

tric property can be easily derived from this model if we set

D and E to zero. So we get

[

ṗ
˙̃ε

]

= J∇H +

















2g 0

0 2g

−2ga 0

0 0

0 0

0 0

















[

fu

fw

]

y =

















2g 0

0 2g

−2ga 0

0 0

0 0

0 0

















T

∇H,

where

J =



















0 0 0 ∂
∂x

0 0

0 0 0 0 ∂
∂x

0

0 0 0 0 0 ∂
∂x

∂
∂x

0 0 0 0 0

0 ∂
∂x

0 0 0 0

0 0 ∂
∂x

0 0 0



















.

With the Hamiltonian defined as

H(p, ε̃) =
1

2

∫ L

0
pT M−1p

+
∫

A
CE

(

u′0 − zw′′ +
1

2

(

u′0 − zw′′
)2

+
1

2
w′2

)2

dAdx.

This model is similar as in used continuum mechanics

except that we have defined it in the pH framework and we

have not neglected any terms.

IV. MODELING OF A SYMMETRIC PIEZOELECTRIC

COMPOSITE

In this section we define a system that describes the dy-

namics of a piezoelectric composite. The composite consists

of a base layer to which a piezoelectric layer is bonded.

To define the dynamics, we follow here an approach where

we first consider the bonding of the composite and then

model the composite material as one beam. The result will

be one pH model of a beam which represents the physics

of the composite. Another way is to first define a pH

model for every layer and then do the interconnection of

the layers to achieve a pH model of the composite, see [4].

This approach has the disadvantage that the interconnection

induces constraints to the system which cause unnecessary

y

y

d

hp

hb

g

Fig. 2. Cross sectional area of the composite

difficulties when we want to spatially discretize the system,

see [11].

Therefore, we first define the connection between the two

layers. Since in the final system the piezo-electric layer is

bonded to the base layer, the strains in all layers have to be

the same. These constraints assure the perfect bonding so

εb = εp

In the sequel we will use the subscript b to identify the base

layer, p the piezo-electric layer. From the continuity of strain

it also automatically follows that the ub = up ⇒ u̇b = u̇p.

Before we try to express the total stored energy as a line

integral we have to define the geometry of the system, see

Figure 2. We assume that the base layer has a constant

thickness (2g) and a constant height 2hb while the length is L.

We also define that the origin of the yz-plane is in the center

of mass of the base layer. So the cross sectional area of the

base layer Ab is [−g,g]× [−hb,hb]. With this it follows that

Ib,0 =
∫

Ab
zdAb = 0. On top of the base layer the piezo-electric

layer is bonded. The height of the layer is hp and the width

is given as 2d. We also assume that the width is symmetric

with the x-axis, hence the cross sectional area of the piezo

layer is Ap is [−d,d]× [hb,hb +hp]. To simplify notation in

the following paragraphs we define Atot = Ab +Ap.

The energy stored in the composite will be the sum of the

energies stored in the different layers,

Htot = Hb +Hp.

In Section III we already defined the model for a flexible

and piezo-electric beam as a line integral. And thus we can

now combine these models to derive a model which describes

the dynamics of the piezoelectric composite.

First we find a global expression for the total kinetic

energy as a line integral. The total kinetic energy is given as

Ktot =
1

2

∫ L

0
pT

b M−1
b pb +pT

p M−1
p ppdx.

Now we can combine the kinetic energy in the following

way

Ktot =
1

2

∫ L

0
pT

totM
−1
tot ptotdx,

with

ptot = Mtot u̇, Mtot = Mb +Mp.
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Next we do the same for the mechanical potential energy.

It is the sum of the mechanical potential energies of the

layers, so

Ptot = Pb +Pp.

From Section III we already have an expression as a line
integral for each potential energy. So we have to combine
these expression to get the total potential energy. So

Ptot =
∫ L

0

∫

Atot

CE
tot

(

u′0 − zw′′ +
1

2

(

u′0 − zw′′
)2

+
1

2
w′2

)2

dAtot

+ eApE2dx,

where

CE
tot(z) =

{

CE
b for all z ∈ [−hb,hb]

CE
p for all z ∈ (hb,hb +hp]

.

With this definition we are able to rewrite the energy
function as

Htot =
1

2

∫ L

0
pT

totM
−1
tot ptot + eApE2

+
∫

Atot

CE
tot

(

u′0 − zw′′ +
1

2

(

u′0 − zw′′
)2

+
1

2
w′2

)2

dAtotdx.

The equations of motion for the system can be calculated

in the same way as in Section III. For the state variables of

the pH system we choose (p, ε̃,E)T . So the gradient of the

Hamiltonian with respect to this state variables is




















∇p1
H

∇p2
H

∇p3
H

∇u′0
H

∇φ H

∇φ ′H

∇EH





















=





















u̇

ẇ

ẇ′
∫

Atot
CE

totε (1+u′0 − zw′′)dAtot
∫

Atot
CE

totεw′dAtot
∫

Atot
CE

totε
(

−z− zu′0 + z2w′′
)

dAtot

εeApE





















Due to the fact that the only difference between a model

for a piezo composite and a single piezo layer is the stored

energy and not the interconnection structure, the equation

of motions in pH form are the same as (13) except that we

use the Hamiltonian derived in this section. Of course we can

also extend this process to derive models with more then one

piezo layers to increase the actuation force or to use some

layers as sensors while the others are used as actuators.

V. NUMERICAL RESULTS

In this section we show the simulation results of an Euler-

Bernoulli beam consisting of an piezo electric composite.

The lumped model was derived by using a finite element

method which is adapted to the distributed port-Hamiltonian

modeling framework [10]. As material for the base layer we

have chosen Kapton, and as piezo electric material we choose

PVDF. The base layer has a length of 1m the thickness and

width of the beam are 2cm. The piezo electric material covers

the whole beam and has a thickness of 0.25cm. For the first

simulation we apply a pressure of 10 · t N
m2 until we reach a

pressure of 5 N
m2 , see Figure 3. The second simulation shows

the response of the beam if we apply a Voltage of 0.1 · t V ,

see Figure 3. For both simulations we show Snapshots at

time t ∈ {0.1,0.25,0.5}.

0 0.2 0.4 0.6 0.8 1
0

1

2

4
x 10

−4
Euler−Bernouli beam with a pressure of 10⋅t N/m

2
 pressure

x [m]

y
 [
m

]

 

 

t=0.5s

t=0.25s

t=0.1s

0 0.2 0.4 0.6 0.8 1
−5

0

5
x 10

−8 Euler−Bernouli beam with an applied Voltage of 0.1⋅t V

x [m]

y
 [
m

]

 

 

t=0.5s

t=0.25s

t=0.1s

Fig. 3. Simulation of a piezo electric beam

VI. CONCLUDING REMARKS

In this paper we have determined a model for an inflatable

structure in a pH framework. The modeling was done in a pH

formulation in such a way that it can be used for an energy

based control method. The achieved model is a nonlinear

distributed pH model which can easily be used to represent

the dynamics of a piezo electric composite beam with large

deformations.

For the future we want to derive a 2D-model.
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