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Abstract— This paper presents a necessary and sufficient
condition under which a discrete-time switched affine (SWA)
state space model admits equivalent representations in the class
of SWA input-output models. In particular, it is shown that
observability is not a necessary requirement for input-output
realization of SWA models. When an equivalent input-output
representation exists, a constructive procedure is presented
to derive both its parameters and the switching constraints.
Numerical examples illustrate and motivate the presented
equivalence result.

I. INTRODUCTION

Among models characterized by switches between dif-

ferent linear/affine dynamics, piecewise affine (PWA) and

switched affine (SWA) models represent two classes widely

used in practice. In PWA models, switching between differ-

ent modes is state- and input-dependent, being determined

by a partition of the state-input domain into a finite number

of polyhedral regions [1]. PWA models are suitable to de-

scribe, e.g., hybrid phenomena due to physical limits, dead-

zones and thresholds. In addition, thanks to the universal

approximation properties of PWA maps, PWA models can

also be used to approximate nonlinear systems. In SWA

models, mode switching is determined by an exogenous

signal, that is either deterministic or stochastic (e.g., it is

generated by a finite-state Markov chain). SWA models arise

naturally in multi-modal control systems, systems subject

to component/subsystem failures and possibly to repairs,

motion segmentation in computer vision, problems in com-

munications, signal processing, econometrics and biometrics

(see, e.g., [2] and references therein).

Equivalence results between different classes of switched

and hybrid models are important in order to establish the

capabilities of representation of each class, and possibly

transfer analysis tools between classes. For instance, formal

equivalence between discrete-time PWA state space models

and other classes of hybrid models such as mixed logical

dynamical and linear complementarity models, is addressed

in [3], [4]. State space realization of continuous-time SWA

input-output models is addressed in [5] using the theory of

formal power series. In discrete-time, the realization problem

for autonomous SWA and PWA models is investigated in

[6], while a stochastic realization theory for jump-Markov

linear systems is presented in [7]. Input-output realization of

PWA and SWA state space models is another important issue,
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as it has a number of theoretical and practical implications,

e.g., in hybrid system identification [8], [9]. A necessary and

sufficient condition for input-output realization of PWA state

space models is presented in [10], and it is shown that PWA

systems admitting input-output representations are strictly

contained in the class of all PWA state space systems. Input-

output realization of SWA state space models was firstly

investigated in [11], where it was shown that any observable

SWA state space model admits a representation as a switched

affine autoregressive model with exogenous inputs (SARX).

In the present work, a necessary and sufficient condition

for input-output realization of SWA state space models is

presented. It takes the form of a condition regarding the

span of the observability matrices of all possible switching

sequences of finite length. It turns out that observability (i.e.,

all observability matrices over a sufficiently long finite hori-

zon having full-column rank) is only sufficient to guarantee

the existence of equivalent SWA input-output realizations.

Examples of non-observable SWA state space models satis-

fying the proposed necessary and sufficient condition, and

thus admitting a SWA input-output realization, are given.

SWA models that do not admit an input-output realization

are also presented. This proves that the class of SWA systems

admitting input-output representations is strictly contained in

the class of all SWA state space systems. When an equivalent

SARX model exists, a constructive procedure is presented to

derive not only its parameters, but also the constraints on the

switching and on the initial condition needed to ensure that

the input-output model has no extra input-output behaviors

with respect to the SWA state space model.

The paper is organized as follows. After recalling some

basic notions and posing the considered equivalence problem

in Section II, Section III introduces two motivating examples,

and presents the equivalence result in detail. Additional

numerical examples are reported in Section IV to highlight

the role of the proposed necessary and sufficient condition.

Finally, conclusions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation and definitions

The m-ary Cartesian product of a set X is denoted by

X
m. The sets of real, integer, and positive integer numbers

are denoted by R, Z, and Z
+, respectively. The set of

real matrices with m rows and n columns is denoted by

R
m×n. An m × n matrix with 0 everywhere is denoted by

0m×n. The set of all linear combinations of the row vectors

v1, . . . ,vp is denoted by span(v1, . . . ,vp). For a matrix

A ∈ R
n×m, span(A) denotes the span of the rows of A. The
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vector collecting the values of the n-dimensional discrete-

time signal z(k) from time k1 to time k2 ≥ k1 is denoted

by z
k2

k1
, i.e. z

k2

k1
= [ z(k2)

⊤
z(k2 − 1)⊤ . . . z(k1)

⊤ ]⊤.

Let X ,Y ⊆ R
n. The set X is dense in the set Y if the

closure of X is Y , while it is nowhere dense if the interior

of the closure of X is empty. The set X is affine if it can

be expressed as X = {x = x0 + v : v ∈ L}, where

x0 ∈ R
n and L ⊆ R

n is a linear subspace. The dimension

of an affine set X is the dimension of the corresponding

linear subspace L. The closed ball with center x ∈ R
n and

radius ε > 0 in the Euclidean norm is denoted by B(x, ε).

B. SWA state space models

A discrete-time SWA model in state space form is de-

scribed by the equations

x(k + 1) = Aσ(k) x(k) + Bσ(k) u(k) + fσ(k)

y(k) = Cσ(k) x(k) + Dσ(k) u(k) + gσ(k),
(1)

where x(k) ∈ R
n, u(k) ∈ R

p and y(k) ∈ R
q are,

respectively, the state, the input and the output of the system

at time k ∈ Z. The discrete-valued signal σ(k), specifying

which affine dynamics of the system is active at time k, takes

values in the finite set S = {1, . . . , s
}

, where s ∈ Z
+ is the

number of different modes. The real matrices/vectors Ai,

Bi, fi, Ci, Di and gi, i ∈ S, having appropriate dimensions,

describe each affine dynamics.

In this paper, the switching sequence {σ(k)}∞k=0 is as-

sumed to be an arbitrary external signal that does not depend

on x(k) and u(k). Moreover, the initial state x(0) and the

input sequence {u(k)}∞k=0 are assumed to be unconstrained.

The output trajectory of model (1) given the initial state

x(0) = x0, the input sequence {u(k)}∞k=0, and the switch-

ing sequence {σ(k)}∞k=0 is denoted by y(· ;x0,u(·), σ(·)).
Matrices and vectors useful to describe the input, state and

output trajectories of model (1) are introduced in Table I,

where m ∈ Z
+, and (j1, . . . , jm) ∈ S

m. In analogy with

the linear case, the matrix Oj1,...,jm
is called the observ-

ability matrix of the mode sequence (j1, . . . , jm) [12]. The

following lemma (see [10]) provides useful expressions for

the state and output trajectories of model (1).

Lemma 1: Let the initial state x(0) = x0, the input

sequence {u(k)}∞k=0, and the switching sequence {σ(k)}∞k=0

be given for model (1). For fixed n̄ ∈ Z
+ and k ≥ n̄, let

ih = σ(k−h), h = 0, 1, . . . , n̄. Then, for h = 0, 1, . . . , n̄−1,

the state and output trajectories of model (1) satisfy

x(k − h) = Aih+1,...,in̄
x(k − n̄)

+ Bih+1,...,in̄
u

k−h−1
k−n̄ + fih+1,...,in̄

(2)

y(k − h) = Cih
Aih+1,...,in̄

x(k − n̄)

+ [ Dih
Cih

Bih+1,...,in̄
]uk−h

k−n̄

+
(

gih
+ Cih

fih+1,...,in̄

)

.

(3)

By exploiting (3) and

y(k − n̄) = Cin̄
x(k − n̄) + Din̄

u(k − n̄) + gin̄
, (4)

the output sequence y
k−1
k−n̄ can be expressed as

y
k−1
k−n̄ = Oi1,...,in̄

x(k− n̄)+Di1,...,in̄
u

k
k−n̄ +Gi1,...,in̄

, (5)

TABLE I

Aj1,...,jm
= Aj1Aj2 . . . Ajm

Bj1,...,jm
=

[

Bj1 Aj1Bj2 Aj1,j2Bj3 . . . Aj1,...,jm−1Bjm

]

fj1,...,jm
= fj1 + Aj1fj2 + Aj1,j2fj3 + . . . + Aj1,...,jm−1fjm

Oj1,...,jm
=















Cj1Aj2,...,jm

Cj2Aj3,...,jm

...
Cjm−1Ajm

Cjm















Dj1,...,jm
=















0 Dj1 Cj1Bj2,...,jm

0q×2 Dj2 Cj2Bj3,...,jm

...
0q×(m−1) Djm−1 Cjm−1Bjm

0q×m Djm















Gj1,...,jm
=















gj1 + Cj1fj2,...,jm

gj2 + Cj2fj3,...,jm

...
gjm−1 + Cjm−1fjm

gjm















Γj1,...,jm
=

[

Oj1,...,jm
Dj1,...,jm

0p(m+1)×n Ip(m+1)

]

γj1,...,jm
=

[

Gj1,...,jm

0p(m+1)×1

]

νj1,...,jm
= [ Cj1Aj2,...,jm

Dj1 Cj1Bj2,...,jm
]

where Oi1,...,in̄
, Di1,...,in̄

and Gi1,...,in̄
are defined in Table I.

Moreover, by introducing the matrix Γi1,...,in̄
and the vector

γi1,...,in̄
in Table I, the following relation holds:

[

y
k−1

k−n̄

u
k

k−n̄

]

= Γi1,...,in̄

[

x(k−n̄)

u
k

k−n̄

]

+ γi1,...,in̄
. (6)

C. SARX models

For fixed orders na and nb, an SARX model is defined

by introducing the regression vector

r(k) = [ y(k − 1)⊤ . . . y(k − na)⊤

u(k)⊤ u(k − 1)⊤ . . . u(k − nb)
⊤ ]⊤,

(7)

and then by expressing the output y(k) as

y(k) = Θℓ(k)

[

r(k)
1

]

, (8)

where ℓ(k) specifies the ARX dynamics active at time k,

and takes values in the finite set S̄ = {1, . . . , s̄
}

, with s̄ ∈
Z

+ being the number of different ARX dynamics. The real

matrices Θj , j ∈ S̄, having appropriate dimensions, describe

each ARX submodel. In the following, max{na, nb} will be

referred to as the order of the SARX model.

Let n̄ = max{na, nb}. Constraints on the initial regression

vector r(n̄) and the switching signal {ℓ(k)}∞k=n̄ can be

included in the definition of the SARX model. In particular,

an affine set Rj ⊆ R
na+nb+1 and a set Γ(j) ⊆ S̄ are

associated to each mode j of the SARX model, and it is
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required that r(n̄) and {ℓ(k)}∞k=n̄ satisfy:

r(n̄) ∈ Rℓ(n̄) (9)

ℓ(k + 1) ∈ Γ(ℓ(k)), k ≥ n̄. (10)

According to (9), the initial regression vector r(n̄) cannot

be arbitrarily chosen. Rather, it must belong to an affine

set that is consistent with mode ℓ(n̄). Note that it is not

required that two sets Rj and Rj′ , with j 6= j′, must be

disjoint. The constraints in (10) imply that the switching

sequence {ℓ(k)}∞k=n̄ cannot be arbitrarily chosen either. If

the mode at time k is ℓ(k), the mode at next time k + 1
must be chosen from the set Γ(ℓ(k)). A switching sequence

{ℓ(k)}∞k=n̄ satisfying (10) is said to be valid.

D. Input-output equivalence of switched affine models

The definitions of input-output trajectory for models (1)

and (8)-(10) are now introduced.

Definition 2.1: The pair {u(k),y(k)}∞k=0 is an input-

output trajectory of model (1) if there exist an initial state

x(0) ∈ R
n and a switching sequence {σ(k)}∞k=0 such that

equations (1) are satisfied for all k ≥ 0.

Definition 2.2: The pair {u(k),y(k)}∞k=0 is an input-

output trajectory of model (8)-(10) if there exists a switching

sequence {ℓ(k)}∞k=n̄ such that (8), (9) and (10) are satisfied

for all k ≥ n̄, with n̄ = max{na, nb}.

Based on the above definitions, the following notion of

equivalence for models (1) and (8)-(10) will be considered.

Definition 2.3 (Input-output equivalence): Models (1) and

(8)-(10) are said to be (input-output) equivalent if the sets

of input-output trajectories of (1) and (8)-(10) coincide.

III. MAIN RESULT

The equivalence problem posed in Section II-D is ad-

dressed in this section. First, two motivating examples are

presented. Then, a necessary and sufficient condition is given

for the SWA state space model (1) to admit equivalent SARX

representations (8)-(10).

A. Motivating examples

In [11] an observability-based sufficient condition for

input-output equivalence of SWA models is proposed. It

is stated that, if there exists n̄ ∈ Z
+ such that the ob-

servability matrices Oi1,...,in̄
have full-column rank for all

(i1, . . . , in̄) ∈ S
n̄, then model (1) admits equivalent SARX

representations. One may wonder what happens when such

an observability condition is not satisfied.

Example 3.1: Consider a 2-mode SWA model (1) with

A1 = [ 1 1
0 0 ], C1 = [ 1 1 ], A2 =

[

0 1
1
2

1
2

]

and C2 = [ 1 0 ]. All

other model parameters are zero for the sake of simplicity.

The model thus defined is not observable, since in particular

the pair (C1, A1) is not observable. Hence, the sufficient

condition in [11] is violated, and it cannot be established

whether equivalent SARX representations of the given SWA

state space model exist. Nevertheless, it can be observed what

follows.

Consider the mode sequence σ(k) = i2−k, k = 0, 1, 2,

where (i0, i1, i2) = (1, 2, 1). The observability matrix

O2,1 =
[

C2A1

C1

]

= [ 1 1
1 1 ] has not full-column rank. By

applying (3), it turns out that

y(0) = C1x0, y(1) = C2A1x0, y(2) = C1A2A1x0, (11)

where x(0) = x0 is an arbitrary initial state. The question

whether it is possible to find coefficients θ1, θ2 and θ3 such

that y(0), y(1) and y(2) given by (11) satisfy an affine

relation of the type

y(2) = θ1 y(1) + θ2 y(0) + θ3 (12)

for all x0 ∈ R
n, has a positive answer in this case. Indeed,

by substituting the relations (11) into (12), one obtains:

(C1A2A1 − θ1C2A1 − θ2C1) x0 = θ3. (13)

Since C1A2A1 = [ 1
2

1
2 ] ∈ span(O2,1) = span([ 1 1 ]),

(13) holds for all x0 ∈ R
n if, e.g., θ1 = 1

2 , θ2 = θ3 = 0.

Since Ci0Ai1Ai2 ∈ span(Oi1,i2) for all the s̄ = 8 triples

(i0, i1, i2) ∈ {1, 2}3, one can repeat the same reasoning and

conclude that, even though the SWA model is not observable,

there exists a set of coefficients {(θj,1, θj,2, θj,3)}
s̄
j=1 such

that, at any time k ≥ 2,

y(k) = θj,1 y(k − 1) + θj,2 y(k − 2) + θj,3 (14)

for some j ∈ {1, . . . , 8}.

Example 3.2: Consider a 2-mode SWA model (1) with

A1 = [ 0 0
0 1 ], C1 = [ 1 0 ], C2 = [ 0 1 ]. The state matrix A2

is unspecified, while all other model parameters are zero for

the sake of simplicity. For fixed n̄ ∈ Z
+, choose the mode

sequence as σ(k) = 1 for k = 0, 1, . . . , n̄− 1 and σ(n̄) = 2.

It is easy to verify that

y(0) = C1x0 = x0,1

y(k) = C1A
k
1x0 = 0, k = 1, . . . , n̄ − 1

y(n̄) = C2A
n̄
1x(0) = x0,2,

(15)

where x(0) = x0 = [ x0,1 x0,2 ]⊤ is the initial state. Assume

that the model defined above admits an equivalent switched

autoregressive representation (8)-(10) of order na = n̄. Since

the switched autoregressive model is equivalent to the SWA

model, for any x0 ∈ R
2 there exists j ∈ S̄ such that

y(n̄) = Θj

[

r(n̄)
1

]

=

n̄
∑

h=1

θj,h y(n̄ − h) + θj,n̄+1, (16)

and substituting the relation in (15):

x0,2 = θj,n̄ x0,1 + θj,n̄+1. (17)

Note that, for each j ∈ S̄, (17) defines a line, i.e. a 1-

dimensional affine subspace, in R
2. This clearly leads to a

contradiction, because the union of a finite number of lines

cannot cover the whole 2-dimensional space where x0 can

vary. Given the arbitrariness of n̄ ∈ Z
+, the above reasoning

shows that the considered SWA state space model does not

admit equivalent switched affine autoregressive representa-

tions of any order. This definitely depends on the fact that,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB10.1

937



for any n̄ ∈ Z
+ and for the mode sequence (i0, i1, . . . , in̄) =

(2, 1, . . . , 1), it holds that Ci0Ai1,...,in̄
= C2A

n̄
1 = [ 0 1 ] /∈

span(Oi1,...,in̄
) = span(C1) = span([ 1 0 ]).

B. General equivalence result

Motivated by the examples in Section III-A, the following

condition is now introduced.

Condition C1: Let n̄ ∈ Z
+. For every (n̄ + 1)-tuple

(i0, i1, . . . , in̄) ∈ S
n̄+1 there exists Ξ ∈ R

q×n̄q such that

ΞOi1,...,in̄
= Ci0Ai1,...,in̄

. (18)

It is straightforward to see that, if the observability con-

dition holds for n̄ ∈ Z
+, then Condition C1 also holds. The

main result of the paper can now be stated.

Theorem 1: The SWA state space model (1) admits an

equivalent SARX representation (8)-(10) if and only if there

exists n̄ ∈ Z
+ such that Condition C1 is satisfied.

Proof. (Sufficiency) Let s̄ = sn̄+1, and define a bijective

mapping φ that associates a positive integer j ∈ S̄ to each

(n̄ + 1)-tuple (i0, i1, . . . , in̄) ∈ S
n̄+1. A SARX model (8)-

(10) with s̄ modes and model orders na = nb = n̄ is

constructed as follows. For the jth mode of the SARX model,

j ∈ S̄, associated to the mode sequence (i0, i1, . . . , in̄)

through φ, let Ξ
(1)
j be a solution of (18) by virtue of

Condition C1. Then, define

Ξ
(2)
j = [ Di0 Ci0Bi1,...,in̄

] − Ξ
(1)
j Di1,...,in̄

(19)

ξj = gi0 + Ci0fi1,...,in̄
− Ξ

(1)
j Gi1,...,in̄

, (20)

and let the ARX parameters Θj be given by

Θj = [ Ξ
(1)
j Ξ

(2)
j ξj ]. (21)

The affine set Rj of initial regression vectors consistent with

mode j is defined as the range of the affine transformation

[ y

u ] = Γi1,...,in̄
[ x

u ] + γi1,...,in̄
(22)

for all possible x ∈ R
n and u ∈ R

(n̄+1)p. The set Γ(j) of

feasible transitions from mode j is defined as

Γ(j) =
{

j′ ∈ S̄ : j′ = φ(i, i0, . . . , in̄−1), i ∈ S
}

. (23)

Let {y(k)}∞k=0 be the output sequence of model (1) with

initial state x(0) = x0, input sequence {u(k)}∞k=0 and

switching sequence {σ(k)}∞k=0. Moreover, for fixed k ≥ n̄,

let ih = σ(k−h), h = 0, 1, . . . , n̄, and j = φ(i0, i1, . . . , in̄).

By defining r(k) =

[

y
k−1

k−n̄

u
k

k−n̄

]

, the following fundamental

relationship can be derived through simple substitutions:

Θj

[

r(k)
1

]

= Ξ
(1)
j y

k−1
k−n̄ + Ξ

(2)
j u

k
k−n̄ + ξj

= Ci0x(k) + Di0u(k) + gi0 = y(k).
(24)

Next, it is proven that every input-output trajectory of

model (1) is an input-output trajectory of the constructed

SARX model, and vice versa.

Let {u(k),y(k)}∞k=0 be any input-output trajectory of

model (1). An input-output trajectory {u(k), ỹ(k)}∞k=0 of the

constructed SARX model is obtained by letting ỹ(k) = y(k)

for k = 0, 1, . . . , n̄, and ℓ(k) = φ(σ(k), σ(k−1), . . . , σ(k−
n̄)) for all k ≥ n̄. Thanks to (22)-(23), the input-output

trajectory thus generated satisfies (9) and (10) as required.

Indeed, since the initial regression vector r(n̄) =
[

y
n̄−1

0

u
n̄

0

]

satisfies (6) with k = n̄ and ih = σ(n̄− h), h = 0, 1, . . . , n̄,

it turns out that r(n̄) ∈ Rℓ(n̄). Moreover, the switching

sequence {ℓ(k)}∞k=n̄ is valid for the constructed SARX

model since ℓ(k + 1) ∈ Γ(ℓ(k)) for k ≥ n̄ by construction.

In order to show that ỹ(k) = y(k) for k ≥ n̄ (i.e., the

two input-output trajectories coincide), it is just pointed out

that ỹ(k) = Θℓ(k)

[

r(k)
1

]

= y(k), where the latter equality

follows from (24), provided that the regression vector r(k)

of the SARX model equals

[

y
k−1

k−n̄

u
k

k−n̄

]

. This holds for k = n̄

by definition, and follows by induction for k > n̄. Given the

arbitrariness of {u(k),y(k)}∞k=0, it can be concluded that

any input-output trajectory of model (1) is also an input-

output trajectory of the constructed SARX model.

Vice versa, let {u(k), ỹ(k)}∞k=0 be any input-output tra-

jectory of the constructed SARX model with valid switching

sequence {ℓ(k)}∞k=n̄. A switching sequence {σ(k)}∞k=0 for

model (1) is reconstructed from the relations

(σ(k), σ(k−1), . . . , σ(k−n̄)) = φ−1(ℓ(k)), k ≥ n̄. (25)

Note that this is always possible by virtue of (10) and (23).

Since r(n̄) =
[

ỹ
n̄−1

0

u
n̄

0

]

∈ Rℓ(n̄), there exists x0 ∈ R
n

such that (22) is satisfied with y = ỹ
n̄−1
0 , u = u

n̄
0 ,

x = x0, and (i0, i1, . . . , in̄) = φ(ℓ(n̄)). If the output y(·) =
y(·;x0,u(·), σ(·)) of model (1) is now considered, it follows

from (6) and the choice of x0 made above, that y(k) = ỹ(k)
for k = 0, 1, . . . , n̄−1. Identity of y(k) and ỹ(k) for k ≥ n̄
is proven by showing that y(k) = ỹ(k) if y(t) = ỹ(t) for

t < k. This follows by recalling that ỹ(k) = Θℓ(k)

[

r(k)
1

]

with r(k) =

[

ỹ
k−1

k−n̄

u
k

k−n̄

]

. Since y
k−1
k−n̄ = ỹ

k−1
k−n̄ by assumption,

(24) implies that Θℓ(k)

[

r(k)
1

]

= y(k), and hence y(k) =
ỹ(k). Given the arbitrariness of {u(k), ỹ(k)}∞k=0, it can be

concluded that any input-output trajectory of the constructed

SARX model is also an input-output trajectory of model (1).

(Necessity) Let n̄ = max{na, nb}. Without loss of gen-

erality, it can be assumed that the SWA state space model

(1) admits an equivalent SARX representation (8)-(10) with

model orders na = nb = n̄. If either na < n̄ or nb < n̄,

it suffices to pad with zeros the parameter matrices Θj

in appropriate positions, and to lift the affine sets Rj to

a higher dimensional space. Consider the (n̄ + 1)-tuple

(i0, i1, . . . , in̄) ∈ S
n̄+1, and for all j ∈ S̄ define the set

Ωj formed by all pairs [ x

u ], x ∈ R
n and u ∈ R

(n̄+1)p, such

that the pair [ y

u ] obtained from (22) satisfies [ y

u ] ∈ Rj and

Θj

[

y

u

1

]

= Ci0Ai1,...,in̄
x

+ [ Di0 Ci0Bi1,...,in̄
]u

+
(

gi0 + Ci1fii1
,...,in̄

)

.

(26)

The reason for such a definition is that, if model (1) evolves

with x(0) = x, u
n̄
0 = u, and σ(k) = in̄−k, k = 0, 1, . . . , n̄,
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then y = y
n̄−1
0 , while the right-hand side of (26) equals

y(n̄). Since the SARX model is equivalent to model (1), it

holds that
⋃s̄

j=1 Ωj = R
n+(n̄+1)p. Then, according to Baire’s

Theorem [13], there must exist an index j such that the

corresponding set Ωj is not a nowhere dense set. This in

turn implies that there exist [ x̄

ū
] ∈ Ωj and ε > 0 such that

B([ x̄

ū
] , ε)

⋂

Ωj is dense in B([ x̄

ū
] , ε). If Θj is decomposed

as in (21) with Ξ
(1)
j ∈ R

q×n̄q, Ξ
(2)
j ∈ R

q×(n̄+1)p, ξj ∈ R
q,

and (22) is substituted into the left-hand side of (26) with

[ x

u ] ∈ Ωj , one obtains

Θj

[

y

u

1

]

= Ξ
(1)
j Oi1,...,in̄

x

+
(

Ξ
(1)
j Di1,...,in̄

+ Ξ
(2)
j

)

u

+
(

Ξ
(1)
j Gi1,...,in̄

+ ξj

)

.

(27)

Equality of the right-hand sides of (26) and (27) leads to the

set of q linear equations:

(

Ci0Ai1,...,in̄
− Ξ

(1)
j Oi1,...,in̄

)

x

+
(

[ Di0 Ci0Bi1,...,in̄
] − Ξ

(1)
j Di1,...,in̄

− Ξ
(2)
j

)

u

+
(

gi0 + Ci1fii1
,...,in̄

− Ξ
(1)
j Gi1,...,in̄

− ξj

)

= 0q×1,

(28)

that is satisfied by all points [ x

u ] ∈ B([ x̄

ū
] , ε)

⋂

Ωj . Since

these points are dense in the full-dimensional set B([ x̄

ū
] , ε),

the only possibility is that all coefficients in (28) are zero.

This implies in particular Ξ
(1)
j Oi1,...,in̄

= Ci0Ai1,...,in̄
,

and hence (18) holds for the (n̄ + 1)-tuple (i0, i1, . . . , in̄).
Given the arbitrariness of (i0, i1, . . . , in̄), this means that

Condition C1 holds. �

The sufficient part of the proof of Theorem 1 is con-

structive. It provides a systematic procedure to compute an

equivalent SARX representation (8)-(10) of a given SWA

state space model (1) satisfying Condition C1 for a certain

n̄ ∈ Z
+. As in [11], the idea behind the proof establishes

a one-to-one correspondence between the mode sequences

of length n̄ + 1 of the original SWA state space model

and the modes of the constructed equivalent SARX model.

Hence, following the proposed construction, the equivalent

SARX model has s̄ = sn̄+1 modes, though this number

can be possibly reduced (see Example 4.1 in Section IV).

It is stressed that including the constraints (9)-(10) in the

definition of the SARX model is paramount to obtain from

the constructed SARX model only the same input-output be-

haviors as the SWA state space model (see again Example 4.1

in Section IV). The following corollary is a straightforward

consequence of Theorem 1.

Corollary 1: Let n̄ ∈ Z
+. The SWA state space model (1)

admits an equivalent SARX representation (8)-(10) of order

max{na, nb} ≤ n̄ if and only if Condition C1 is satisfied

for such n̄.

Corollary 1 requires to check Condition C1 only for the

candidate model order n̄. Note that, if Condition C1 is satis-

fied for a certain positive integer n̄, then it is satisfied for all

positive integers ¯̄n > n̄. Thus, equivalent SARX models of

arbitrary order ¯̄n greater than n̄ can be obtained by applying

the construction described in the proof of Theorem 1. This

motivates the following definition.

Definition 3.1: Let the SWA state space model (1) admit

equivalent SARX representations (8)-(10). An equivalent

SARX model is said to have minimum order if it has the

smallest order among all equivalent SARX models.

Theorem 1 suggests the following remarks.

i) If s > 1, a given SWA state space model may not satisfy

Condition C1 for any n̄ ∈ Z
+ (see, e.g., Example 3.2

in Section III-A). Since any SARX model admits a

realization in state space form, it can be concluded that

the class of SARX systems is strictly contained in the

class of SWA systems.

ii) If s > 1, a given SWA state space model of order n may

admit a minimum-order equivalent input-output repre-

sentation of order n̄ greater than n (see Example 4.2 in

Section IV).

iii) If s = 1, Condition C1 is satisfied for n̄ = n in view

of the Cayley-Hamilton theorem. This is in agreement

with the well-known result that every linear state space

model of order n admits a minimum-order equivalent

ARX representation of order at most n.

IV. ILLUSTRATIVE EXAMPLES

In this section, two examples are presented to illustrate the

equivalence result of Section III.

Example 4.1: Consider a SWA model (1) with s = 2 and

mode #1

{

A1 =
[

− 1
4

1
8

1
2

− 1
4

]

, B1 = [ 0
1 ] , f1 =

[

1
2

0

]

C1 = [ 2 −1 ] , D1 = 0, g1 = 1
5
,

mode #2

{

A2 =
[

0 1
1
8

1
4

]

, B2 =
[

5
2

−1

]

, f2 = [ 0
0 ]

C2 = [ 1 0 ] , D2 = −1, g2 = 0.

(29)

The model is not observable, since in particular the pair

(C1, A1) is not observable. Nevertheless, Condition C1 is

satisfied for n̄ = 2, and an equivalent SARX representation

(8)-(10) with s̄ = sn̄+1 = 8 modes and orders na = nb = n̄
is obtained by applying the constructive method described in

the sufficient part of the proof of Theorem 1. The parameters

Θj , the sets of feasible transitions Γ(j), and the sets of initial

regression vectors Rj , j ∈ {1, . . . , 8}, of the equivalent

SARX model are reported in Table II, where

R(1,1) =
{

[ y

u ] : y∈R
2,u∈R

3, [ 2 1 0 0 2 ] [ y

u ] = 13
5

}

R(2,1) =
{

[ y

u ] : y∈R
2,u∈R

3, [ 1 1
8

0 1 0 ] [ y

u ] = 21
40

}

.
(30)

TABLE II

Θ1 = Θ(1,1,1) = [− 1
2

0 0 −1 0 13
10 ] , Γ(1) = {1, 5}, R1 = R(1,1)

Θ2 = Θ(1,1,2) = [− 1
2

0 0 −1 0 13
10 ] , Γ(2) = {1, 5}, R2 = R

5

Θ3 = Θ(1,2,1) = [− 29
8

0 0 19
8

7
4

39
20 ] , Γ(3) = {2, 6}, R3 = R(2,1)

Θ4 = Θ(1,2,2) = [ 5
16

7
32

0 101
16

− 21
8

1
5 ] , Γ(4) = {2, 6}, R4 = R

5

Θ5 = Θ(2,1,1) = [− 1
8

0 −1 0 0 21
40 ] , Γ(5) = {3, 7}, R5 = R(1,1)

Θ6 = Θ(2,1,2) = [− 1
8

0 −1 0 0 21
40 ] , Γ(6) = {3, 7}, R6 = R

5

Θ7 = Θ(2,2,1) = [−2 0 −1 1
2

1 1 ] , Γ(7) = {4, 8}, R7 = R(2,1)

Θ8 = Θ(2,2,2) = [ 1
4

1
8

−1 11
4

− 3
2

0 ] , Γ(7) = {4, 8}, R8 = R
5
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Note that the notation Θj = Θ(i0,i1,i2) in Table II implicitly

defines the bijective mapping φ between the mode sequences

(i0, i1, i2) of the SWA state space model and the modes j of

the constructed equivalent SARX model. According to the

proposed construction, each region Rj is the range of the

affine transformation (22) with n̄ = 2 and (i1, i2) given by

(i0, i1, i2) = φ−1(j). Since the observability matrices Oi1,i2

have full rank for (i1, i2) = (1, 2), (2, 2), the range of the

affine transformation (22) is the whole space R
5 for such

(i1, i2), and hence R2 = R4 = R6 = R8 = R
5. Conversely,

rank(Oi1,i2) = 1 for (i1, i2) = (1, 1), (2, 1), and explicit

expressions (30) for the 4-dimensional affine sets R1, R3,

R5 and R7 are obtained by eliminating x in (22).

It is now shown that, if the constraints (9)-(10) are vio-

lated, the SARX model has extra input-output behaviors with

respect to the SWA model. Let the input be zero, and choose

initial output values y(0) = y(1) = 0. The initial regression

vector r(2) = [ y(1) y(0) u(2) u(1) u(0) ]
⊤

= 0 belongs neither

to R(1,1) nor to R(2,1), and to satisfy (9) one should choose

ℓ(2) ∈ {2, 4, 6, 8}, according to Table II. If the incorrect

choice ℓ(2) = 3 is made, the next output of the SARX model

is y(2) = Θ3 r(2) = 39
20 . Then, in view of (5), if one tries to

solve the system of linear equations

[ y(2) y(1) y(0) ]
⊤

= Oi1,i2,i3x0 + Gi1,i2,i3 (31)

with x0 the unknown initial state of the SWA model, it turns

out that (31) is infeasible for any (i1, i2, i3) ∈ {1, 2}3, and

hence the input-output trajectory of the SARX model thus

generated is not an input-output trajectory of the SWA model.

Similarly, choose y(0) = 13
5 and y(1) = 0, and let the next

output be y(2) = Θ1 r(2) = 13
10 . This choice is consistent,

since r(2) ∈ R1. Then, let y(3) = Θ7 r(3) = − 8
5 , with

r(3) = [ y(2) y(1) u(3) u(2) u(1) ]
⊤

. Since 7 /∈ Γ(1), (10) is

violated and it turns out that the system of linear equations

[ y(3) y(2) y(1) y(0) ]
⊤

= Oi1,i2,i3,i4x0 + Gi1,i2,i3,i4 (32)

is infeasible for any (i1, i2, i3, i4) ∈ {1, 2}4. Hence, also the

input-output trajectory of the SARX model thus generated is

not an input-output trajectory of the SWA model.

Finally, it is observed that in this example the modes 1

and 2 can be merged because Θ1 = Θ2, R1 ⊆ R2 and

Γ(1) = Γ(2). The same holds for the modes 5 and 6, so that

the number of modes of the equivalent SARX model can be

reduced from 8 to 6.

Example 4.2: This example shows that the minimum n̄
for which Condition C1 is satisfied, can be greater than

n. Consider a 2-mode SWA model (1) with A1 = [ 1 1
0 1 ],

C1 = [ 1 0 ], A2 =
[

1
2

0
0 1

]

, C2 = [ 1 −1 ]. For n̄ = n = 2,

Condition C1 is not satisfied by (i0, i1, i2) = (1, 2, 1) and

(2, 2, 1). On the contrary, Condition C1 is satisfied for n̄ = 3,

since in particular all the observability matrices Oi1,i2,i3

have full-column rank. It can be concluded that the SWA

state space model admits a minimum-order equivalent SARX

representation of order n̄ = 3.

V. CONCLUSIONS

A necessary and sufficient condition for the conversion of

SWA models from state space to input-output form has been

derived in this paper. It has been shown that observability is

not a necessary requirement for input-output realization of

SWA models. Moreover, it has been observed that the class

of SARX systems is strictly contained in the class of SWA

systems, and that the number of modes (and thus the number

of parameters) may grow considerably when a SWA state

space model is converted into a minimum-order equivalent

SARX representation.

Future work will investigate the existence of an index

n̄max(s, n) such that, if a given SWA state space model

of order n with s modes does not satisfy Condition C1

for n̄ = n̄max(s, n), then it is certified that the model

cannot be converted into an equivalent SARX representation.

Moreover, it would be interesting to figure out to what extent

the results presented in this paper and in [10] for discrete-

time SWA and PWA models can be extended or adapted to

continuous-time models.
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