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Abstract— This paper considers the optimal tracking control
of unknown nonlinear systems. To deal with the uncertainties
in the system, a locally weighted learning observer (LWLO) is
first proposed. Based on the proposed LWLO, analytic optimal
controllers are proposed in the sense of pointwise min-norm.
To show effectiveness of the proposed controllers, numerical
simulations are presented.

I. INTRODUCTION

Optimal control theory was formally developed about fifty

years ago in the seminal works of L. S. Pontryagin [1] in

the former Soviet Union and R. Bellman [2] in the United

States. While Pontryagin introduced the minimum principle,

which gave necessary conditions for the existence of optimal

trajectories, Bellman introduced the concept of dynamic

programming. The development of dynamic programming

led to the notion of the celebrated Hamilton-Jacobi Bellman

(HJB) partial differential equation, which had the value

function as its solution.

For the Linear Quadratic Gaussian (LQG) problem [3],

i.e., the H2 optimal control problem, the HJB partial differen-

tial equation becomes two separate Riccati equations, which

could be solved very efficiently. However, LQG regulators

can have arbitrarily small robustness margins [4]. To improve

the robustness of the closed-loop optimal control, for linear

systems the H∞ control problem was proposed and was

solved at the end of the 1980s [5].

For optimal control of general nonlinear systems, it is hard

to obtain the optimal controllers efficiently. One reason is that

the HJB equation is extremely hard to solve for nonlinear

systems. To solve the optimal control of nonlinear systems,

the receding horizon control method was proposed and is of-

ten used in industry. Receding horizon control is also known

as moving horizon control or model predictive control. In

receding horizon control, a finite horizon open-loop optimal

control problem is solved online with the current state as an

initial state; the optimization yields an optimal sequence and

the first control in this sequence is applied to the plant [6].

Early results on receding horizon control did not consider

the stability of the closed-loop system. To guarantee the

stability, different terminal constraints may be introduced

in solving for the optimal controller, such as the terminal

equality constraint [7], [8], the terminal cost function [9],

[10], the terminal constraint set [11], [12], the terminal cost

and the constraint set [13], [14], [15], [16], and so on. In

the terminal cost and constraint set methods, the stability

of the closed-loop system is guaranteed by first finding a

Wenjie Dong and Jay A. Farrell are with Department of Electrical
Engineering, University of California, Riverside, USA

global control Lyapunov function (CLF) and then solving

the receding horizon control by introducing additional state

constraints that require the derivative of the CLF along the

trajectory of the closed-loop system to be negative [17],

[18], [19]. For the receding horizon control of nonlinear

systems, analytic controllers are generally not available. The

controllers are obtained by numeric approximation [20].

For the optimal control of uncertain nonlinear systems,

one approach is to learn the unknown system model offline

and then design optimal controllers based on the estimated

models. Another way is to apply nonlinear H∞ control

theory and the optimal controllers are obtained based on

the Hamilton-Jacobi-Isaac (HJI) equations [21], [22], which

are hard to solve. neural Network based algorithms were

proposed in [23] to optimize both H2 and H∞ norms of

performances for uncertain nonlinear systems, .

In this paper, we consider the optimal control of the

uncertain nonlinear system shown in (1). To deal with the

uncertain term, we first propose a locally weighted learning

observer (LWLO) to estimate the unknown nonlinear system.

Based on the approximation model, a pointwise min-norm

problem is defined. For the defined optimal problem, ana-

lytic controllers are proposed based on a selected Lyapunov

function. To show the effectiveness of the proposed optimal

controller, a numeric example is presented.

II. PROBLEM STATEMENT

Consider an n-th order nonlinear system

ẋi = xi+1, 1 ≤ i ≤ n − 1

ẋn = f0(x) + f(x) + g0(x)u (1)

where x = [x1 . . . , xn]⊤ ∈ Rn is the state, and u ∈ R is the

input. Functions f0 and g0 are known continuous functions.

Function f(x) is continuous in x and unknown. Furthermore,

function g0(x) satisfies the following assumption.

Assumption 1: Function g0(x) is bounded below, i.e.,

g0(x) > gl(x) > cg > 0

where cg is a positive constant.

Given a desired bounded trajectory xd =
[xd

1, x
d
2, . . . , x

d
n]⊤ which satisfies

ẋd
1 = xd

2 , ẋd
2 = xd

3, · · · , ẋd
n−1 = xd

n. (2)

The problem discussed in this article is to design an optimal

controller u such that the cost function

J∞ =

∫ ∞

0

[(x − xd)⊤Q(x − xd) + u2]dτ (3)
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achieves its minimum, where Q is a positive definite matrix.

If f(x) is known, a standard dynamic programming argu-

ment reduces the above optimal control problem to finding

the value function V ∗ solving the Hamilton-Jacobi-Bellman

partial differential equation (HJB)

V ∗
x fe −

1

4

(

V ∗
x geg

⊤
e V ∗

x
⊤

)

+ (x − xd)⊤Q(x − xd) = 0 (4)

where V ∗
x denotes ∂V ∗

∂x
, fe = [x2, x3, . . . , xn, f0(x) +

f(x)]⊤, and ge = [0, . . . , 0, g0(x)]⊤. If there exists a con-

tinuously differentiable positive definite solution to eqn. (4),

then the optimal controller is

u = −1

2
g⊤e V ∗

x
⊤. (5)

In this article, there are two obstacles which prevent us from

finding the optimal controller. The first one is that f(x) is

unknown. The second one is that it is extremely difficult

to solve the HJB partial differential equation (4) even if

f(x) is known. To overcome the first obstacle, we propose a

locally weighted learning observer (LWLO) to estimate f(x).
To deal with the second obstacle, we modify the optimal

problem to a new one such that analytic controllers can be

proposed.

III. LOCALLY WEIGHTED LEARNING OBSERVER

Let the observer be defined as follows.

˙̂xi = x̂i+1, 1 ≤ i ≤ n − 1
˙̂xn = f0(x) + f̂(x) + g0(x)u + v (6)

where x̂ = [x̂1, . . . , x̂n]⊤ is the estimate of x, v is a

stabilizing observer signal, f̂ is the estimate of f(x) based

on a locally weighted learning (LWL) algorithm [24], [25],

[26], [27], [28].

In LWL, the approximation of f(x) at a point x is formed

from the normalized weighted average of local approximators

f̂k(x) such that

f̂(x) =

∑

k ωk(x)f̂k(x)
∑

k ωk(x)
(7)

where each ωk is nonzero only on a set denoted by Sk

(defined below in eqn. (11)) over which the f̂k will be

adapted to improve their accuracy relative to f .

For z = [z1, . . . , zn]⊤ = x − x̂, we have

żi = zi+1, 1 ≤ i ≤ n − 1

żn = f(x) − f̂(x) − v. (8)

Let

e(t) = L⊤z(t) (9)

where

L = [l1, l2, . . . , ln−1, 1]⊤

= [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]⊤ (10)

λ is a positive constant, and Cm
n = n!

i!(n−i)! . We have the

following lemma.

Lemma 1: ([29]) If limt→∞ |e(t)| ≤ µe where µe is a

positive constant, then limt→∞ |zi| ≤ 2i−1

λn−i µe for 1 ≤ i ≤ n.

Furthermore, if limt→∞ e(t) = 0, then limt→∞ zi = 0 for

1 ≤ i ≤ n.

By Lemma 1, to make the estimate x̂ asymptotically

converge to x, it is sufficient to choose suitable v and f̂k

such that e converges to zero.

A. Weighting Functions

For a given bounded compact operational region Dn ∈
Rn, we define a continuous, non-negative and locally sup-

ported weighting function ωk(x) for the k-th local approxi-

mator. Denote the support of ωk(x) by

Sk =
{

x ∈ Dn | ωk(x) 6= 0
}

. (11)

Let S̄k denote the closure of Sk. Note that S̄k is a compact

set. In this article, we choose ωk as follows.

ωk(x) =







(

1 −
(

||x−ck||
µ

)2
)2

, if ||x − ck|| < µ

0, otherwise.

(12)

where ck is the center location of the k-th weighting function

and µ is a constant which represents the radius of the region

of support. The region of support is

Sk =
{

x ∈ Dn | ‖x − ck‖ < µ
}

.

We choose ck such that ‖ci − cj‖ = 3
2µ and ci 6∈ S̄j for any

i 6= j. Since Dn is compact, there are finite local regions Sk

(1 ≤ k ≤ N). The centers cj are selected such that

Dn =
⋃

1≤k≤N

Sk.

When x(t) ∈ Dn, there exists at least one k such that

ωk(x) 6= 0. For x(t) ∈ Dn the normalized weighting

functions are defined as

ω̄k(x) =
ωk(x)

∑N
k=1 ωk(x)

.

The set of non-negative functions {ω̄k(x)}N
k=1 forms a

partition of unity on Dn:

N
∑

k=1

ω̄k(x) = 1, for all x ∈ Dn.

Note that the support of ωk(x) is exactly the same as the

support of ω̄k(x).
When x(t) /∈ Dn, all ωk(x) for 1 ≤ k ≤ N(t) are zero.

Therefore, to complete the approximator definition of eqn.

(7) to be valid for any x ∈ ℜn:

f̂(x) =

{

∑N
k=1 ω̄k(x)f̂k(x) if x ∈ Dn

0 if x ∈ ℜn −Dn.
(13)

In the reminder of this section, we will only consider the

case when x(t) ∈ Dn to give all definitions for the LWL

algorithm. Approaches that ensure Dn is attractive and

invariant are discussed in [?].
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B. Local Approximators

We define

fk(x) = x̄T
k θ∗fk

(14)

where

x̄k =

[

1
x − ck

]

are the basis functions. For the function f(x) in (1), the

vectors θ∗fk
denote the unknown optimal parameter estimates

for x ∈ S̄k:

θ∗fk
= argmin

θfk

(
∫

S̄k

ωk(x)
∣

∣

∣
f(x) − f̂k(x)

∣

∣

∣
dx

)

(15)

where

f̂k(x) = x̄T
k θfk

(16)

Note that θ∗fk
are well defined for each k because f and fk

are smooth on compact S̄k. Therefore, fk will be referred to

as the optimal local approximator to f on S̄k.

Let the approximation error on S̄k be denoted as ǫfk
:

ǫfk
(x) = f(x) − fk(x). (17)

In order for ǫfk
to be defined everywhere, let

ǫfk
(x) =

{

f(x) − fk(x), x ∈ S̄k,
0, otherwise.

Since fk(x) is an approximation of f(x) on Sk, the ap-

proximation error between f(x) and fk(x) outside S̄k is in

fact not defined. Because fk are multiplied by ω̄k or ωk in

all expressions and ωk = ω̄k = 0 for x 6∈ Sk, the value

of ǫfk
and fk for x 6∈ Sk is irrelevant. For simplicity, we

choose the value of ǫfk
to be zero for x 6∈ S̄k. The controller

will use a known design constant ǫf > 0. We choose µ
sufficiently small such that |ǫfk

(x)| ≤ ǭf for x ∈ S̄k for

some (unknown) positive constant ǭf < ǫf . The existence of

such µ is guaranteed by the continuity of the function f(x).
Note that the boundedness of maxx∈S̄k

(|ǫfk
(x)|) comes

from the fact that |ǫfk
| are continuous on compact S̄k.

For any x ∈ Dn, f(x) can be represented as the weighted

sum of the local approximators:

f(x) =
∑

k

ω̄k(x)fk(x) + δf (x). (18)

This expression defines the approximation error δf (x) on

Dn which satisfy |δf (x)| ≤ ǭf [29]. Therefore, if each local

model fk(x) has accuracy ǭf on S̄k, then the global accuracy

of
∑

k ω̄k(x)fk(x) on Dn also achieves at least accuracy ǭf

due to {ω̄k}N
k=1 forming a partition of unity on Dn. The δf

term in (18) is the inherent approximation error of f̂(x) for

f(x).

C. Update Laws

Since we assume that f is unknown, the parameter vector

θ∗fk
is unknown for each k. We update θfk

using the

following adaptive laws

θ̇fk
= Γfk

ω̄kex̄k (19)

where Γfk
are positive constant matrices.

D. Stabilizing Observer Signal

To make the state of the locally weighted learning observer

(6) asymptotically converge to the state x, the stabilizing

observer signal is chosen as

v = l1z2 + · · · + ln−1zn + Ke +
ǫfe

√

e2 + exp(−t)
(20)

where L is defined in (10), K is a positive constant, ǫf is a

constant, and ǫf > |ǫfk
|.

Lemma 2: For system (6), with the stabilizing observer

signal v defined in (20), locally weighted learning (13) and

(16), update algorithm (19), then (x − x̂) converges to zero

and θfk
are bounded.

Proof: By eqn. (9), we have

ė = l1z2 + · · · + ln−1zn + f(x) − f̂(x) − v

= l1z2 + · · · + ln−1zn +
∑

k

ω̄k(x)(fk(x) − f̂k(x))

+δf (x) − v

= l1z2 + · · · + ln−1zn +
∑

k

ω̄k(x)x̄T
k (θ∗fk

− θfk
)

+δf (x) − v

= l1z2 + · · · + ln−1zn +
∑

k

ω̄k(x)x̄T
k θ̃fk

+δf (x) − v (21)

where θ̃fk
= θ∗fk

−θfk
. Define the positive Lyapunov function

V1 =
1

2
e2 +

∑

k

θ̃⊤fk
Γ−1

fk
θ̃fk

.

Differentiating it along the solution of (21), we have

V̇1 = −Ke2 + eδf − ǫfe2

√

e2 + exp(−t)

≤ −Ke2 + ǫf exp(−t/2).

Therefore, V1 is bounded by integrating both sides, which

means that θfk
and e are bounded. By integrating both sides,

it can be shown that e2 is integrable. Therefore, e converges

to zero. By Lemma 1, we can prove that (x − x̂) converges

to zero.

Remark 1: In the observer, we apply the locally weighted

learning idea. The advantages of the locally weighted learn-

ing are two fold. First of all, the approximation errors are

functions of local approximators. Secondly, the burden of the

computation for learning is relieved.

Remark 2: In the observer, µ in (12) is a control pa-

rameter. It affects the number of local regions (N ) and the

magnitude of v through ǫf . If µ is large, in general N will

be small but the magnitude of the last term in v may be

large. Alternatively, as N is increased, the magnitude of the

last term in v will decrease. So, the choice of µ involves

a trade-off between the control magnitude and computation

burden.

With the aid of Lemma 2, we can design optimal con-

trollers for system (6), i.e., we can design an optimal
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controller u such that

J̄∞ =

∫ ∞

0

(x̂ − xd)⊤Q(x̂ − xd) + u2)dτ (22)

achieves its minimum. Since x̂ is close to x as time converges

to infinity, x will converge to a small neighborhood of xd if

x̂ converges to a small neighborhood of xd.

IV. POINTWISE MIN-NORM CONTROLLER

With the aid of the locally weighted learning observer,

it may seem that the optimal control problem of (22) can

be solved by using the dynamic programming technique.

In fact, the optimal control problem (22) is not generally

solvable because the dynamics of x̂ is nonlinear. To obtain an

analytical control law, we consider the pointwise min-norm

problem proposed in [30], [16] instead. Before defining the

problem, we need some preparation. Let q = [q1, . . . , qn]⊤

and

qi = x̂i − xd
i , 1 ≤ i ≤ n,

then

q̇i = qi+1, 1 ≤ i ≤ n − 1

q̇n = f0(x) + f̂(x) + g0(x)u + v − ẋd
n. (23)

A control Lyapunov function (CLF) of system (23) is a

continuously differentiable, positive definite function V (q):
Rn → R+ such that

inf
u

[Vq f̄ + Vq ḡu] < 0 (24)

for all q 6= 0 [31], [32], where

f̄ = [q2, . . . , qn, f0(x) + f̂(x) + v − ẋd
n]⊤

ḡ = [0, . . . , 0, g0(x)]⊤.

If there is a CLF such that eqn. (24) is satisfied, the control

input u obtained at each point from eqn. (24) can make the

state of system (23) converge to zero. This can be seen when

we choose V as a Lyapunov function under those control

actions. For a general nonlinear system, it may be difficult

to find a CLF or even to determine whether one exists.

However, for system (23) there exists a CLF. In fact, the

function

V = q⊤Pq (25)

is one of CLFs of system (23), where P is a positive definite

matrix satisfying

PΛ + Λ⊤P = −Q (26)

where Q is a positive definite matrix,

Λ =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αn















and the constants αi (1 ≤ i ≤ n) are chosen such that matrix

Λ is Hurwitz.

Given a control Lyapunov function V (q) for system (23),

the pointwise min-norm problem is defined as follows.

Pointwise Min-norm Problem:

minu u2 (27)

such that

Vq(f̄ + ḡu) ≤ −σ(q) (28)

where σ is a positive definite function of q which is chosen

by the designer.

Remark 3: In the pointwise min-norm problem, V can

be any CLF of system (23). With different CLF V and σ,

different optimal control u can be obtained. The function σ
is a design parameter to be chosen according to the trade-off

between the magnitude of the control effort and the closed-

loop system performance.

For the pointwise min-norm problem, we have the follow-

ing closed form solution.

Lemma 3: For the pointwise min-norm problem (27)-(28),

the optimal control is

u =







−Vq f̄ + σ

Vq ḡ
, Vq ḡ 6= 0

0, Vq ḡ = 0
(29)

Proof: If Vq ḡ = 0, the constraint (28) holds automatically

by (24). So u = 0 is the optimal control. If Vq ḡ 6= 0,

the constraint (28) is active. We solve the optimal problem:

minu u2 such that Vq(f̄ + ḡu) + σ = 0. By the Lagrange

multiplier method, we obtain u = −Vq f̄+σ

Vq ḡ
. ♦

From Lemma 3, we can see that the optimal controller

u depends on V and σ. An example min-norm optimal

controller is given by Sontag’s formula [32] as follows.

Lemma 4: For the pointwise min-norm problem (27)-(28),

if

σ =
√

(Vq f̄)2 + q⊤Qq(Vq ḡḡ⊤V ⊤
q ) (30)

then the optimal control law is

u =







−
[

Vq f̄+
√

(Vq f̄)2+q⊤Qq(Vq ḡḡ⊤V ⊤
q )

Vq ḡḡ⊤V ⊤
q

]

ḡ⊤V ⊤
q , Vq ḡ 6= 0

0, Vq ḡ = 0
(31)

Proof: Substitute σ into the optimal controller in Lemma

3, the lemma can be proved. ♦
It should be noted that if the control Lyapunov function V

is the value function of the HJB equation corresponding to

the cost function (22) when σ is chosen as (30). The optimal

control (31) would be the solution to the optimal control

problem (22). This fact leads us to choose σ as in (30). In

[30], it was shown that every CLF is the value function of

some meaningful cost function which means that it solves

the HJB equation associated with a meaningful cost. This is

referred to as “inverse optimal”.

Combining the results in this subsection and the last

subsection, we have the following result.
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Theorem 1: For system (1) with the locally weighted

learning observer defined in (6) with update laws (19) and

stabilizing observer signal (20), the optimal control (31)

solves the pointwise min-norm problem (27)-(28) with a

given CLF V (q) and make (x − xd) converges to zero.

Proof: By Lemma 4, the optimal control (31) solves the

pointwise min-norm problem (27)-(28). Choose V in (28) as

a Lyapunov function, (x̂ − xd) converges to zero since eqn.

(28) holds for every point x̂. By Lemma 2, (x−xd) converges

to zero.

In Theorem 1, there are several control parameters. Con-

stant µ determines the number of the local regions and the

magnitude of the control input (see Remark 2). The control

Lyapunov function V is an important control parameter.

By suitably choosing V the performance of the closed-

loop system with the controller (31) will be close to the

performance of the closed-loop system with the optimal

controller of the optimal control problem (22). There is no

general approach for choosing CLF V . In practice, we can

choose Lyapunov function V as in (25) by choice of Q,

which also specifies J∞ of (22).

V. NUMERICAL EXAMPLE

We consider for illustrative purpose a second order system

given by

ẋ1 = x2

ẋ2 = sin(0.4(x1 + x2)) +
(

2 + sin(0.4(x1 + x2))
)

u.

For the example, x ∈ ℜ2, u ∈ ℜ and we assume that there

is only partial priori knowledge of the system nonlinearities.

The known ‘design model’ has f0(x1, x2) = 0.4(x1 + x2)
and g0(x1, x2) = 2 + sin(0.4(x1 + x2); therefore, the

unknown design model error is

f(x) = sin(0.4(x1 + x2)) − 0.4(x1 + x2).

Given a desired trajectory xd, we want to design an

optimal control in the sense of pointwise min-norm such

that (x − xd) converges to zero.

The locally weighted learning observer is

˙̂x1 = x̂2

˙̂x2 = f0(x) + f̂ + g(x)u + v

where f̂ is an online approximation to f with locally

weighted learning algorithm (19) and v is defined in (20). In

the locally weighted learning observer, we choose µ = 0.5,

λ = 1. The function approximation accuracies are specified

as ǫf = 0.03.

The weighting function is the biquadratic kernel of the

form as

ωk(x) =

{
(

1 − R2
)2

, if R < 1
0, otherwise.

(32)

where

R =

∥

∥

∥

∥

|x1 − ck,1|
µ

,
|x2 − ck,2|

µ

∥

∥

∥

∥

2

.

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

time (sec)

Fig. 1. Response of x̂1 and x1 w/o learning (x1 with learning: solid,
x̂1 with learning: dashed, x1 without learning: dotted, x̂1 without learning:
dashdot)

0 2 4 6 8 10 12 14 16 18 20
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−2

−1

0

1

2

3

4

5

time (sec)

Fig. 2. Response of x̂2 and x2 w/o learning (x2 with learning: solid,
x̂2 with learning: dashed, x2 without learning: dotted, x̂2 without learning:
dashdot)

The local basis function is

x̄k =





1
x1 − ck,1

x2 − ck,2





with ck being the center of the S̄k. Therefore, fk is the

optimal local affine approximation to f on S̄k. We select

ck,1 = ck,2 = kµ
2 for −20 ≤ k ≤ 20. For simplicity, we

choose the initial conditions of θfk
(0) = 0 The adaptation

rate matrices are set to Γfk
= diag([1, 1, 1]) where diag(v)

is the square diagonal matrix with diagonal component equal

to the vector v.

For xd = [sin t, cos t]⊤, Fig. 1 and Fig. 2 show the

responses of x̂ and x with/without learning. Fig. 3 shows

the tracking errors x − xd with and without learning.

VI. CONCLUSION

This paper considers the optimal control of uncertain

nonlinear systems. By applying locally weighted learning

algorithms, asymptotical observer of the uncertain nonlinear

system is proposed. Optimal controllers are proposed for the

observer in the sense of poitwise min-norm. The advantage

of the proposed method is that analytic optimal controllers

are proposed and the stability of the closed-loop system is
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guaranteed. Furthermore, if the control Lyapunov function

V is the value function of the HJB equation corresponding

to the cost function (22) when σ is chosen as (30). The

optimal control (31) would be the solution to the optimal

control problem (22).
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