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Abstract— In this article we show how dynamic programming
can be applied to the time optimal control of spin systems.
This is done by recasting the system in two ways: (i) As an
adjoint system along the lines of [1], (ii) As an impulsive control
problem. We illustrate the dynamic programming methodology
using numerical examples.

I. INTRODUCTION

In the recent past, there has been a lot of attention to the

problem of obtaining time optimal trajectories for open loop

control of quantum systems [1], [2], [4], [5]. These problems

arise from applications which include NMR spectroscopy

(to produce a time optimal trajectory), and the optimal

construction of quantum circuits [6], [7] (to minimize the

number of logic gates needed to construct a desired unitary

transformation).

Spin systems have the mathematical structure of a bilinear

right invariant system on a manifold. Hence, in [8], the

reachability problem on the spin system SU(2) was solved,

using results from geometric control theory. In [1] a Cartan

decomposition method was described to solve the control

problem on a general spin system and an explicit solution

was found for certain special cases.

In this article we demonstrate the application of Dynamic

Programming to a spin system having the following in-

teresting property: the available controls can take on arbi-

trarily large values (this physically corresponds to certain

radio frequency pulses). Hence such a spin system can

have rapid motion along certain unitaries (elements of the

unitary group). The solution to the problem is obtained after

reformulating it in the following two ways:

1) As an adjoint system [1] with ordinary (non-impulsive)

controls which have an unbounded range.

2) As an impulsive control problem.

The above methods of recasting the problem and the

solutions obtained therefrom, yield insights into the nature

of the optimal system dynamics.

The outline of the article is as follows: in Section II we

describe the original problem and indicate a simple case

where the minimum time function lacks differentiability at

certain points. Thus we motivate the need for the notion

of viscosity solutions on a manifold (which are briefly

introduced in the Appendix). This is followed in Section III

by a representation of the problem in terms of an adjoint

S. Sridharan is with the Department of Engineering, Australian National
University, Canberra, ACT 0200, Australia. srinivas.sridharan@anu.edu.au.
Research supported by the Australian Research Council.

M.R. James is with the Department of Engineering, Australian National
University, Canberra, ACT 0200, Australia. Matthew.James@anu.edu.au.
Research supported by the Australian Research Council.

system (as in [1]) and the use of dynamic programming to

obtain a solution. An example problem on SU(2) is solved

numerically and the results are described. This is followed

by recasting the problem into an impulsive control frame-

work in Section IV. Simulation results and sample optimal

trajectories are obtained to demonstrate the application of

the theory developed to an example problem. The appendix

contains the technical definitions for the preceding sections

and an outline of the major proofs.

II. PROBLEM FORMULATION

In this section we recall the time optimal control problem

for spin systems formulated in [1]. Given the compact Lie

group G = SU(2n) with Lie algebra g = su(2n) and right

invariant vector fields Xd , X1, ....Xm, let the evolution of the

system be given by

U̇ = [Xd +
m

∑
i=1

viXi]U , U ∈ G (1)

with initial condition U(0) = U0, where vi are the piece-

wise continuous real valued control signals. We denote the

Lie subgroup of G generated by the control vector fields

{ X1 , ..., Xm } by K. Assuming that the Lie algebra generated

by the set {Xd , X1 ..., Xm } is g, the system is controllable

[15]. Hence the minimum time to move between any two

points on G is finite. The objective is to obtain a control

strategy to transfer the system from any initial U0 in G to

the identity element I of G in minimum time (actually the

formulation given in [1] starts at the identity and controls are

sought to reach arbitrary elements of the group in minimum

time—a simple time reversal shows that this is equivalent to

our modification of their formulation).

We define this problem precisely as follows. Let M denote

the class of piecewise continuous functions v : [0,∞) → R
m.

For U ∈ G and v ∈ M let

tU (v) = inf{t > 0 : U(0) =U,U(t) = I, dynamics (1)}. (2)

Here U(·) denotes the trajectory of (1) with initial condition

U(0) = U and control v ∈M . The infimium is infinite if the

terminal constraint U(t) = I is not attained. The minimum

time function is defined by

T (U) = inf{tU (v) : v ∈ M }. (3)

This formulation differs from the usual minimum time

problem formulation (see [3], [17]), in that, here the range of

the controls v is unbounded. The availability of unbounded

controls along the directions {X1 , X2 , . . .Xm } leads to an

interesting property: we can synthesize any element of the

subgroup K instantaneously. Hence we have the property
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that for all elements U ∈ G, and k ∈ K, T (kU) = T (U).
This intuitively states the fact that once we reach the point

U it takes no additional time to travel to any point KU i.e

the coset of U , and vice versa. This feature of the problem

formulation is meant to capture the rapid motion caused by

pulses in spin systems.

Under the controllability condition mentioned above, we

have 0 ≤ T (U) < +∞. The following example shows that T

need not be differentiable everywhere.

Example 2.1: Consider the following system defined on

G = SU(2):

U̇ = [Iz + vIx]U (4)

U(0) = U0.

We now demonstrate that the minimum time function T :

SU(2) → R defined above is not differentiable at the points

±I.c

Any point P in SU(2) can be represented as: k1 exp(α Iz)k2

where k1 , k2 are elements of the Lie subgroup generated by

exp(Ix) and α ∈ [0 , π]. From [1], the minimum time function

for any such point is given by: T (P) := α . For this compact,

connected Lie Group the exponential mapping (denoted by

φ ) is a diffeomorphism from an open set around the origin

in the Lie algebra su(2) to an open set around I in SU(2).
Let e1 correspond to the Iz axis in su(2).

From the above, if the function T is differentiable at the

identity element then the function T̃ := T ◦ φ : su(2) → R

must be differentiable at the origin in su(2). Hence there

must must exist a linear function λ s.t

lim
‖ε‖→0

{

T̃ (x+ ε)− T̃ (x)−λ (ε)

‖ε‖

}

= 0 , x = I (5)

Now, consider a line through the origin in su(2) along Iz

i.e e1. Let ε be either +δ e1 or −δ e1 (with δ > 0). At the

identity element, the value of T̃ (x) is 0 and T̃ (x + ε) is the

same positive value (δ ), despite the change in sign of ε . If λ
is linear then λ (δ e1) should change signs with changes in

the sign of ε . Thus, there is no linear function which would

give the desired limit. Hence the function is not differentiable

at I. Similar arguments hold for the element −I of SU(2).
�

In view of this example, care is needed when consider-

ing dynamic programming equations since derivatives are

involved. We will employ the concept of viscosity solutions

[17], suitably extended to the manifold setting. Rather than

work with the problem directly as formulated in this section,

we apply dynamic programming methods to two related

formulations, one involving an adjoint system description

in Section III, and another involving an impulsive system

(Section IV).

III. DYNAMIC PROGRAMMING FOR AN EQUIVALENT

PROBLEM USING AN ADJOINT SYSTEM

A. Minimum Time Control of an Adjoint System

In [1] the time optimal control problem was solved for a

class of spin systems using an equivalent problem formulated

in terms of an adjoint system. To motivate this, note that the

system described by (1), can be rewritten as:

Q̇ = [
m

∑
i=1

viXi]Q (6)

Ṗ = (Q−1 Xd Q)P, (7)

with initial conditions Q(0) = I, P(0) = U0.

It can be verified that Q(t) ∈ K and U(t) = Q(t)P(t) for

all t ≥ 0. Further, we note that Q−1 Xd Q ∈ AdK(Xd), where

AdK(Xd) = {k−1 Xd k |k ∈ K},

called the adjoint orbit of Xd , is a compact set (since K is

compact).

The system in (7) can be generalized to yield the following

adjoint system [1]:

Ṗ = X P , P ∈ G, (8)

where X is an AdK(Xd)-valued control signal. The minimum

time function for this adjoint system is defined as follows.

Let X denote the class of piecewise continuous functions

X : [0,∞) → AdK(Xd). For P ∈ G and X ∈ X let

ta
P(X) = inf{t > 0 : P(0) = P,P(t) = I, dynamics (8)}. (9)

Then the minimum time function for the adjoint system is

defined by

T a(P) = inf{ta
P(X) : X ∈ X }. (10)

It is shown in [1] that the minimum times for the systems

(1) and (8) are equivalent. In particular, the adjoint system

provides a description of the dynamics on the coset space

G/K. This alternative formulation is technically simpler,

because the control value space is compact; importantly, the

Riemannian-symmetric structure of the coset space in certain

cases was exploited in [1] to obtain explicit expressions for

the optimal controls and trajectories. In the next subsection

we apply dynamic programming to this equivalent problem.

It is a non-standard application of dynamic programming in

that the state space is a manifold, rather than flat Euclidean

space usually considered in the literature.

B. Dynamic Programming

The dynamic programming principle for the adjoint min-

imum time problem can be established: for any t > 0,

T a(P) = inf
X∈X

{t ∧ ta
P(X)+T a(P(t ∧ ta

P(X))} (11)

using the dynamics (8). The corresponding Hamilton-Jacobi-

Bellman (HJB) equation is

H(P,DT a(P)) = 0, P ∈ G/K

T a(P) = 0, P ∈ [K]

T a(P) > 0 P ∈ (G/K)\[K], (12)

where

H(P,λ ) := sup
X ∈AdK

{−λ [X P]−1} .
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Here, P∈G and λ ∈ T ∗
P (G), the cotangent space; thus λ [X P]

is a number.

In the HJB equation (12), DT a(P)[XP] is the value of a

directional derivative, if the derivative were to exist (recall

Example 2.1). An appropriate viscosity definition is given in

the Appendix. The Appendix also discusses the continuity of

the function T a and the uniqueness of continuous viscosity

solutions of the HJB equation (12).

Assuming regularity conditions, the optimal control policy

is generated by the synthesis equations given below [17,

Section 1.5]. X∗ is optimal for an initial state P0 if and only

if

X∗(t) = L(P(t)) for a.e t > 0 (13)

L(P) ∈ argmax
X ∈AdK(Xd)

{−DS(P)[XP]−1} (14)

Now, in the systems considered, the viscosity solution is

continuous but not necessarily differentiable everywhere. We

numerically synthesize the optimal controls using techniques

such as in [16, Chapter 3] where the solutions to the dis-

cretized version tend to the viscosity solution of the original

continuous description.

C. Example

In order to verify the dynamic programming approach

using a example system, we proceed in this subsection

to compute the optimal controls, minimum time functions,

and corresponding trajectories by numerically solving the

dynamic programming equation (18). The example system

is one considered in [1], viz.

U̇ = (Iz + vIx)U , U ∈ SU(2) (15)

U(0) = U0 , U0 ∈ SU(2) (16)

where

Ix =
1

2
j

(

0 1

1 0

)

Iz =
1

2
j

(

1 0

0 −1

)

Instead of using the value function T a (as defined in the

last section) directly, it is advantageous to use the monotone

transformation (Kruskov transform)

S(P) = 1− e−T a(P), (17)

which leads to the HJB equation

S(P)+H(P,DS(P)) = 0, P ∈ G/K

S(P) = 0, P ∈ [K]

1 ≥ S(P) > 0 (G/K)\[K]. (18)

The function S can be interpreted as a discounted minimum

time function for the adjoint system (8):

S(P) = inf
X ∈X











t∧ta
P(X)

∫

0

e−sds+ e−(t∧ta
P(X))S(P(t ∧ ta

P(X)))











(19)

This normalization (discounting) is useful for better nu-

merical convergence and is also used in the uniqueness

proofs of the dynamic programming equations (Appendix).

To obtain a numerical solution to the dynamic pro-

gramming problem, we parameterize points in SU(2) by

a subset of the Euclidian space using a mapping of the

form exp(k1 Ix) exp(aIz) exp(k2 Iz). Note that for the range

of k1 , k2 , a which we use, the parametrization is not unique

i.e multiple points in the subset of R
3 map to the same point

in SU(2).
The minimum time plots are presented as gray-scale

images in a three dimensional grid. The axes correspond to

the three parameters used for the representation of SU(2) as

described above. A lighter shading indicates a larger value of

the minimum time function at a point, while a darker shading

implies a smaller time to reach the identity element when

starting from that point. Note that minimum time function

takes on the same value for elements belonging to the same

coset (i.e points which have the same values of the parameter

a). In other words moving alone the impulsive directions

k1,k2 does not change the minimum time function.

In Figure 1, we compare the normalized (ranging from 0 to

1) minimum time function obtained by solving the dynamic

programming equation, using the Cartan decomposition tech-

nique in [1]. The optimal times determined by the dynamic

programming technique and by the Cartan decomposition are

seen to be numerically identical (to within the round off

error).

Time optimal trajectories for these two methods are shown

in Figure 2. Due to the way the adjoint system description

of the system is set up, the dynamic programming approach

drives the state of the system to a point in K and not

necessarily to the identity itself. However, from this point

in K a single pulse can move the state to the identity. Note

that the non-uniqueness of the representation leads to the

non-over lap of trajectories between the two methods (when

represented in flat space).

The discretization of this system for obtaining numerical

solution to the HJB equation (18) is carried out using the

procedure in [16]. The dynamics of the system can be recast

in the form

ẋ = f (x,v), (20)

where x is an element of an n dimensional Euclidian space

(whose basis vectors are denoted by ei) and v is the control

signal. For a discretization of this space with a grid spacing

h, the value iteration equation (i.e the iteration of the cost

function, say Sh) is given by:

Sh(x) = inf
u















h

h+‖ f‖1

+

n

∑
i=1

Shi

±(x) f i
±(x,u)

h+‖ f‖1















where

Shi

± := Sh(x±hei)

f i
+(x,u) := max

{

f i(x+hei,u),0
}

f i
−(x,u) := −min

{

f i(x−hei,u),0
}

‖ f (x)‖1 :=
n

∑
i=1

∥

∥ f i(x)
∥

∥ (21)
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f i are the i th components of the vector valued function f .

These equations are used to obtain the simulation results.

As can be seen from the resulting figure, at points in SU(2)
which have the same value of the a parameter, the minimum

time function has the same value. This is due to the fact

that it takes arbitrarily small time to flow along each of the

cosets.
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(b) Minimum time function using the Cartan Decomposition
technique

Fig. 1. Optimal times using the dynamic programming and Cartan
Decomposition methods on the adjoint system representation

IV. DYNAMIC PROGRAMMING FOR AN ALTERNATIVE

FORMULATION USING IMPULSIVE CONTROLS

A. Minimum Time Control of an Impulsive System

The formulation discussed in Section II featured un-

bounded controls. An important implication of this for the

minimum time problem is that optimal trajectories move

rapidly along K-cosets. In practice, this corresponds to a

very fast laser or RF pulse. In this section we describe an

alternative formulation using impulsive controls.

We replace the system (1) (which employs standard con-

trols) with the following impulsive system:

U̇(t) = Xd U(t) , t ∈ (τ i,τ i+1) , i = 0 ,1 . . . (22)

U(τ i
+) = ki U(τ i

−) , ki ∈ K

−6
−4

−2
0

2
4
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−2

0
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6
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0
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a

k1

k
2

point 1 Dynamic Programming Adjoint

point 1 Cartan Decomposition

point 2 Dynamic Programming Adjoint

point 2 Cartan Decomposition

point 3 Dynamic Programming Adjoint

point 3 Cartan Decomposition

Fig. 2. Optimal trajectories obtained by the dynamic programming and
Cartan decomposition methods on the adjoint system representation

with initial condition U(0) = U , where

U(τ i
−) = U(τ i−1

+ )+

τ i
∫

τ i−1

Xd U(t)dt

τ i ∈ [0,∞)∀ i

τ i > τ j , ∀ i > j

The control of this system involves choosing times τ i at

which an impulse ki ∈ K is applied. The system evolves by

drifting between impulses, and rapid impulsive motion along

cosets at specified times.

An impulsive control is a sequence

β = {(τ0,k0),(τ1,k1), . . .}.

Let B denote the set of all such impulsive controls. For

U ∈ G define

tb
U (β ) = inf{t > 0 : U(0) = U,U(t) = I, dynamics(22)}.

(23)

The minimum time function for the impulsive system is

defined by

T b(U) = inf{tb
U (β ) : β ∈ B}. (24)

It can be checked that the minimum time for the impulsive

system agrees with that for the original system: T b(U) is

equal to T (U) for all U ∈ G.

B. Dynamic Programming

The Hamilton-Jacobi-Bellman (HJB) equation for the im-
pulsive minimum time problem is

max{Hb(U,DT b(U)),T b(U)−M[T b](U)} = 0, U ∈ G/K

T b(U) = 0, U ∈ [K] (25)

T b(U) > 0 U ∈ (G/K)\[K],
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where

Hb(U,λ ) = −λ [Xd ]−1,

M[T ](U) = inf
k∈K

{T (kU)}.

This variational inequality will also need to be interpreted

in the viscosity sense. This will be investigated in future

work. Assuming regularity conditions, the optimal control

policy is generated by the synthesis equations given below.

K∗ is optimal for an initial state U0 if and only if

K∗(t) = L(U(t)) for a.e t > 0 (26)

L(U) ∈ argmax
k∈K

{

Hb(U,DT b(U)),T b(U)−M[T b](U)
}

(27)

where the argument is taken depending on which of Hb or

T b −M is larger. If the former, then no impulse is applied

and the system is allowed to evolve along the drift vector

fields.

The optimal controls for the discretized version of the

problem are synthesized by methods similar to the one in

[16, Chapter 8].

C. Example

We revisit the example described in Subsection III-C and

view it in terms of an impulsive control problem.

U̇ = IzU , (28)

U(0) = U0 , U0 ∈ SU(2) (29)

U̇(t) = Iz U(t) , t ∈ (τ i,τ i+1) , i = 0 ,1 . . . (30)

U(τ i
+) = ki U(τ i

−) , U ∈ SU(2) (31)

where ki an element of the form exp(Ix α) s.t α ∈ R.

Figure 3(b) indicates the results obtained using the dy-

namic programming method for the impulsive system. This

simulation result may be compared numerically with the

result on the same system obtained by the Cartan decom-

position technique (Figure 1(b)). Time optimal trajectories

are shown for these two methods in Figure 3(a). The

parametrization of points in SU(2) is again taken to be of

the form exp(k1 Ix) exp(aIz) exp(k2 Iz), and is not unique;

which leads to the non-over lap of the path taken by the two

methods. Note that the paths indicated here were obtained

using the same starting points as in the example for dynamic

programming applied to the adjoint system representation.

The initial jump to another quadrant, which occurs in some

of the the paths, still allows the path to be optimal since the

jump costs no additional time. The optimal time is consistent

with the Cartan decomposition in [1], to within the roundoff

error.

To obtain numerical solutions to the system in (25), the

discretization of this system is carried out in a manner

similar to the earlier case of the dynamic programming for

the Adjoint system description. As can be seen from the

figure, the fact that the impulsive cost is zero leads to points

which have the same value of the a parameter having the

same value of the minimum time function. Note that the

optimal control is not unique at the coset corresponding to

the identity element, since it is possible to jump within that

coset as many times as desired before ultimately reaching

the identity (however all these controls would belong to the

same equivalence class consisting of signals that move the

state to the identity in the same time starting from the same

initial point).

In an n dimensional Euclidian space with a grid spacing h,

zero cost of impulse, and basis vectors ei, the value iteration

equation (i.e the iteration of the cost function, say T h) for

the QVI is given by:

T h(x) =min















inf
u















h

h+‖ f‖1

+

n

∑
i=1

T hi

±(x) f i
±(x,u)

h+‖ f‖1















,

inf
k∈K

[T h(k x)]

}

(32)

where the notations are similar to the ones used in (21).

V. DISCUSSION AND CONCLUSIONS

In this article we have described the use of the Dynamic

programming method to solve the minimum time control

problem on a spin system and have demonstrated a proof of

principle of this technique by obtaining a complete solution

to an example problem on SU(2).
The numerical procedures outlined herein generalize to

higher dimensional cases with the crucial limiting factor

being the time taken and storage requirements for these com-

putations (which increases dramatically with the dimension

of the system). Owing to the curse of dimensionality, further

work is required to develop computational methods of greater

efficiency in order to use the Dynamic Programming tech-

nique to investigate larger problems of practical interest. An

application of the proposed dynamic programming approach

to the problem of optimal quantum gate synthesis has been

dealt with in [18].

The simulations in this work are based on theoretical

results which are quite involved. A rigorous and complete de-

velopment of the mathematical proofs of the foundations of

this article including the convergence of numerical schemes

to the solution will be deferred to a future publication.

APPENDIX

Motivated by [17, Definition 1.1 Chapter 2], we define the

notion of a continuous viscosity solution on a manifold as

follows:

Definition 1.1: Continuous Viscosity solution

Given a manifold M. A function V ∈ C(M) is a viscosity

sub(super) solution of the following PDE in M






F(x,DV (x)) = 0 , x ∈ M

V (y) = 0 , y ∈ ∂Ω(boundarycondition)

if ∀φ ∈ C1(M)

F(x0,V (x0),Dφ(x0)) ≤ (≥)0
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(a) Optimal trajectory comparisons for the impulsive control system using
dynamic programming and Cartan Decomposition
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(b) Optimal time for the dynamic programming with impulsive
control

Fig. 3. Path comparison for the dynamic programming method on the
impulsive control system and the optimal time using this method

at every point x0 ∈ M where V − φ has a relative maxima

(minima) and such that V satisfies : V (y) = 0 , ∀y ∈ ∂Ω.

A function is a viscosity solution if and only if it is both a

super and sub viscosity solution.

The uniqueness of the viscosity solutions to the HJB

equation in the adjoint case arises out of the uniqueness

of the viscosity solution to the HJB formed by applying

the Kruskov transform to the original HJB equations for the

adjoint system. The proof, which requires continuity of the

value function, proceeds along the lines of [17, Theorem 2.6

Chapter 4] with appropriate modifications for the manifold

setting.

Now, the continuity of the value function required in the

uniqueness proof, can be ensured by a small time controlla-

bility condition around the target (similar to the one outlined

in [17, Theorem 1.23 Chapter 4]). The intuition is that if there

is a small region about the boundary of the target in which all

points can be reached using the available control signals, then

the minimum time function is continuous about the target.

Hence using regularity conditions on the dynamics, it follows

that the minimum time function is continuous on the open

set consisting of the manifold with the target set removed.
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