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Abstract— In this paper a new approach to decentralized
overlapping control of complex systems has been proposed in
the form of multi-agent network were the agents are using
dynamic consensus strategy in order to reach the agreement
upon the control actions. Several structures and algorithms
have been proposed which differ, on one hand, on the choice
of the variables upon which the agreement among the agents
is made (control or estimation variables), and, on the other
hand, on the local controller structures derived from the
decentralized control laws. Properties and performance of the
proposed algorithms have been discussed and illustrated by
several examples.

I. INTRODUCTION

Control of complex systems can be achieved via hierarchi-

cal multilayered agent-based structures benefiting from their

inherent properties such as modularity, scalability, adapt-

ability, flexibility and robustness. The agent-based structures

consist of a number of simpler subsystems (or “agents”),

each of which addresses in a coordinated manner a specific

sub-objective or sub-task so as to attain the overall design

objectives. The complexity of the behavior of such systems

arises as a result of interactions between the multiple agents

and the environment in which they operate. More specifically,

multi-agent control systems are fundamental components in

a wide range of safety-critical engineering systems, and

are commonly found in aerospace, traffic control, chemical

processes, power generation and distribution, flexible manu-

facturing, robotic system design and self-assembly structures.

A multi-agent system can be considered as a loosely coupled

network of problem-solver entities that work together to

find answers to problems that are beyond the individual

capabilities or knowledge of each entity, where local control

law has to satisfy decentralized information structure con-

straints (see e.g. [1]), and where no global system control

is desired. Different aspects of multi-agent control systems

are covered by a vast literature within the frameworks of

computer science, artificial intelligence, network and system

theory; for some aspects of multi-agent control systems and

sensor networks see e.g. [2], [3], [4], [5].

Considering methodologies for achieving agreement be-

tween the agents upon some decisions, important results

were obtained in relation to distributed iterations in parallel

computation and distributed optimization as early as in the
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1980s, e.g. [6], [7], [8], [9], [10]. A very intensive research

has been carried out recently in this direction, including

numerous applications (see, e.g. [11], [12], [13], [14], [15],

[16], [2], [3]). The majority of the cited references share a

common general methodology: they all use some kind of

dynamic consensus strategy.

In this paper an attempt is made to approach the problem

of overlapping decentralized control of complex systems by

using a multi-agent strategy, where the agents (subsystems)

communicate in order to achieve agreement upon a control

action by using a dynamic consensus methodology. The aim

of the paper is to propose several different novel control

structures derived from: a) the choice of the variables upon

which the agreement is made; b) basic local controller

structures derived from the decentralized control laws im-

plemented by the agents.

The paper is organized as follows. Section 2 deals with

the problem definition, including the subsystem models and

the distribution of control tasks among the agents. In Section

3 several new control structures are proposed based on the

agreement between the agents upon the control variables. In

the most general setting, it is assumed that each agent is able

to formulate its local feedback control law starting from the

local information structure constraints in the form a general

four-term dynamic output controller. The subsystem inputs

generated by the agents by means of the local controllers en-

ter the consensus process which generates the control signals

to be applied to the system by some a priori specified agents.

In the general case, the consensus scheme, determining, in

fact, the control law for the whole system, is constructed on

the basis of an aggregation of the local dynamic controllers.

It is shown how the proposed scheme can be adapted to

either static local output feedback controllers, or static local

state feedback controllers. In Section 4 an alternative to the

approach presented in Section 3 is proposed, based on the

introduction of a dynamic consensus at the level of state

estimation [17], [18], [19]. Namely, it is assumed that the

agents are able to generate local estimates of parts of the

overall state vector using their own subsystem models. The

dynamic consensus scheme is introduced to provide each

agent with a reliable estimate of the whole system state. The

control signal is obtained by applying the known global LQ

optimal state feedback gain to the locally available estimates.

A number of selected examples illustrate the applicability of

all the proposed consensus based control schemes.
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II. PROBLEM FORMULATION

Let a complex system be represented by a linear model

S : ẋ = Ax + Bu

y = Cx, (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rν are the state, input and

output vectors, respectively, while A, B and C are constant

matrices of appropriate dimensions.

Assume that N agents have to control the system S

according to their own resources. The agents have their local

models of parts of S

Si : ξ̇(i) = A(i)ξ(i) + B(i)v(i)

y(i) = C(i)ξ(i) (2)

where ξ(i) ∈ Rni , v(i) ∈ Rmi and y(i) ∈ Rνi are the

corresponding state, input and output vectors, and A(i), B(i)

and C(i) constant matrices, i = 1, . . . , N . Components of

the input vectors v(i) = (v
(i)
1 , . . . , v

(i)
mi)

T represent subsets

of the global input vector u of S, so that v
(i)
j = upi

j
, j =

1, . . . ,mi, and pi
j ∈ Vi, where Vi = {pi

1, . . . , p
i
mi

} is the

input index set defining v(i). Similarly, for the outputs y(i)

we have y
(i)
j = yqi

j
, j = 1, . . . , νi, and qi

j ∈ Yi, where

Yi = {qi
1, . . . , q

i
pi
} is the output index set; according to these

sets, it is possible to find such constant pi × n matrices Ci

that y(i) = Cix, i = 1, . . . , N . The state vectors ξ(i) do

not necessarily represent parts of the global state vector x.

They can be chosen, together with the matrices A(i), B(i)

and C(i), according to the local criteria for modelling the

input-output relation v(i) → y(i). In the particular case when

ξ(i) = x(i), x
(i)
j = xri

j
, j = 1, . . . , ni, ni ≤ n and ri

j ∈ X i,

where X i = {ri
1, . . . , r

i
ni
} is the state index set defining x(i).

In the last case, models Si, in general, represent overlapping

subsystems of S in a more strict sense; matrices A(i), B(i)

and C(i) can represent in this case submatrices of A, B and

C.

The task of the i-th agent is to generate the control

vector v(i) and to implement the control action u(i) ∈ Rµi ,

satisfying u
(i)
j = usi

j
, j = 1, . . . , µi, and si

j ∈ U i, where

U i = {si
1, . . . , s

i
µi
} is the control index set defining u(i).

It is assumed that U i ⊆ Vi and U i ∩ U j = ∅, so that
∑N

i=1 µi = m, that is, the control vector u(i) of the i-th

agent is a part of its input vector v(i), while one and only

one agent is responsible for generation of each component

of u within the considered control task. Consequently, all

agents include the entire vectors v(i) of Si in their control

design considerations, but they have to implement only those

components of v(i) for which they are responsible.

In the case when the inputs v(i) do not overlap, the

agents perform their task autonomously, without interactions

with each other; that is we have the case of decentralized

control of S, when the control design is based entirely on

the local models Si. However, in the case when the model

inputs v(i) overlap, more than one model Si can be used for

calculation of a particular component of the input vector u.

Obviously, it would be beneficial for the agent responsible

for implementation of that particular input component to use

different suggestions about the control action and to calculate

the numerical values of the control signal to be implemented

on the basis of an agreement between the agents. The agents

that do not implement any control action (U i = ∅) could, in

this context, represent “advisors” to the agents responsible

for control implementation. The aim of the paper is to

propose several overlapping decentralized feedback control

structures for S based on a consensus between multiple

agents.

We will classify different control structures which can be

used for solving the above problem in two main groups: (1)

the structures based on the consensus at the control input

level; (2) the structures based on the consensus at the state

estimation level.

III. STRUCTURES BASED ON CONSENSUS AT THE

CONTROL INPUT LEVEL

A. Algorithms derived from the local dynamic output feed-

back control laws

We assume that all the agents are able to design their own

local dynamic controllers which generate the input vectors

v(i) in Si according to

Ci : ẇ(i) = F (i)w(i) + G(i)y(i)

v(i) = K(i)w(i) + H(i)y(i) (3)

where w(i) ∈ Rρi represents the controller state, and matri-

ces F (i), G(i), K(i) and H(i) are constant, with appropriate

dimensions. Local controllers are designed according to

the local models and local design criteria, i = 1, . . . , N .

Assuming that the agents can communicate between each

other, the goal is to generate the control signal u for S based

on mutual agreement, starting from the inputs v(i) generated

by Ci. The idea about reaching an agreement upon the

components of u stems from the fact that the index sets V(i)

are, in general, overlapping, so that the agents responsible

for control implementation according to the index sets U (i)

can improve their local control laws by getting “suggestions”

from the other agents.

Algorithm A.1. The second relation in (3) gives rise to

v̇(i) = K(i)ẇ(i) + H(i)ẏ(i), wherefrom we get

v̇(i) = K(i)[F (i)w(i) + G(i)y(i)]+

H(i)C(i)[A(i)ξ(i) + B(i)v(i)] = K(i)F (i)w(i)+

+K(i)G(i)y(i) + H(i)C(i)A(i)ξ(i) + H(i)C(i)B(i)v(i).(4)

Since y(i) are the available signals, and v(i) vectors to be

locally generated for participation in the agreement process,

we will use the following approximation

v̇(i) ≈ [K(i)F (i)K(i)+ + H(i)C(i)B(i)]v(i)+

+[K(i)G(i) + H(i)C(i)A(i)C(i)+−

−K(i)F (i)K(i)+H(i)]y(i), (5)

where F
(i)
∗ = K(i)F (i)K(i)+ and A

(i)
∗ = C(i)A(i)C(i)+

are approximate solutions of the aggregation relations

K(i)F (i) = F
(i)
∗ K(i) and C(i)A(i) = A

(i)
∗ C(i), respectively,
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where A+ denotes the pseudoinverse of a given matrix A

[1], [20].

We will assume for the sake of presentation clarity that

all the agents can have their “suggestions” for all the com-

ponents of u; that is, we assume that the vector Ui ∈ Rm

is a “local version” of u proposed by the i-th agent to the

other agents. Furthermore, we introduce m× ρi and m× νi

constant matrices Ki and Hi, obtained by taking the rows of

K(i) and H(i) at the row indices defined by the index set V(i)

and leaving zeros elsewhere, and ni ×m matrix Bi obtained

from B(i) by taking its columns at the indices defined by

Vi. Let U = col{U1, . . . , UN}, Y = col{y(1), . . . , y(N)},

K̃ = diag{K1, . . . ,KN}, H̃ = diag{H1, . . . ,HN} Ã =
diag{A(1), . . . , A(N)}, B̃ = diag{B1, . . . , BN}, C̃ =
diag{C(1), . . . , C(N)}, F̃ = diag{F (1), . . . , F (N)}, and

G̃ = diag{G̃(1), . . . , G̃(N)}. Assume that the agents com-

municate between each other in such a way that they send

current values of Ui to each other. Accordingly, we define the

consensus matrix as Ξ̃ = [Ξij ], where Ξij , i, j = 1, . . . , N ,

i 6= j, are m×m diagonal matrices with positive entries and

Ξii = −
∑N

i=1,i 6=j Ξij , i = 1, . . . , N . Then, the algorithm

for generating U , i.e. the vector containing all the agent

input vectors Ui, i = 1, . . . , N , representing the result of

the overall consensus process, is given by

U̇i =
∑N

j=1,j 6=i Ξij(Uj − Ui) + [KiF
(i)K+

i +

+HiC
(i)B(i)]Ui + [KiG

(i) + HiC
(i)A(i)C(i)+−

−KiF
(i)K+

i ]y(i), (6)

i = 1, . . . , N , or

U̇ = [Ξ̃+K̃F̃ K̃++H̃C̃B̃]U+[K̃G̃+H̃C̃ÃC̃+−K̃F̃ K̃+H̃]Y.

(7)

The vector U generated by (7) is used for control imple-

mentation in such a way that the i-th agent picks up the

components of Ui selected by the index set U (i) and applies

them to the system S. If Q is an m×mN matrix with zeros

everywhere except one place in each row, where it contains

1; for the j-th row with j ∈ U (i), 1 is placed at the column

index (i− 1)m+ j. Then, we have u = QU , and system (1)

can be written as

ẋ = Ax + BQU. (8)

Also, according to the adopted notation, y(i) = Cix, so that

Y = C̄x, where C̄T =
[

CT
1 · · · CT

N

]

. Therefore, the whole

closed-loop system is represented by

[

U̇
ẋ

]

=







Ξ̃ + K̃F̃ K̃+ + H̃C̃B̃ (K̃G̃ + H̃C̃ÃC̃+−

−K̃F̃ K̃+H̃)C̄

BQ A







[

U
x

]

.

(9)

Obviously, the system is stabilized by the controller (7) if

the state matrix in (9) is asymptotically stable.

Algorithm A.2. One alternative for the above algorithm is

the algorithm depending explicitly on the regulator state w(i).

It has the disadvantage of being of higher order than A.1;

however, it does not utilize any approximation of w(i) with

v(i). Recalling (4), we obtain equation

v̇(i) ≈ K(i)F (i)w(i) + H(i)C(i)B(i)v(i)

+[K(i)G(i) + H(i)C(i)A(i)C(i)+]y(i),

since w(i) is generated by the first relation in (3). If W =
col{w(1), . . . , w(N)}, then the whole closed-loop system can

be represented as





U̇

Ẇ
ẋ



 =







Ξ̃ + H̃C̃B̃ K̃F̃ (K̃G̃ + H̃C̃ÃC̃+)C̄

0 F̃ G̃C̄
BQ 0 A







[

U
W
x

]

.

(10)

Both control algorithms A.1 and A.2 have the structure

which reduces to the local controllers when Ξ̃ = 0. In

the case of A.1, the local controllers are derived from

Ci after aggregating (3) to one vector-matrix differential

equation for v(i), while in the case of A.2 the differential

equation for v(i) contains explicitly the term w(i), generated

by the local observer in Ci. The form of these controllers

is motivated by the idea to introduce a first order dynamic

consensus scheme. Namely, without the local controllers,

relation U̇ = Ξ̃U provides asymptotically a weighted sum

of the initial conditions Ui(t0), if the graphs corresponding

to the particular components of Ui have a center node (see

e.g. [5], [19]). Combination of the two terms provides a

possibility to improve the overall performance by exploiting

potential advantages of each local controller. However, the

introduction of additional dynamics required by the consen-

sus scheme may deteriorate the performance, and makes the

choice of the local controller parameters dependable upon

the overall control scheme.

Example 1. An insight into the possibilities of the pro-

posed algorithms can be obtained from a simple example

in which the system S is represented by (1), with A =
[

0.8 2 0
−2.5 −5 −0.3

0 10 −2

]

, B =

[

0
1
0

]

and C =

[

1 0 0
0 0 1

]

. Assume

that we have two agents characterized by S1 with A(1) =
[

0.8 2
−2.5 −5

]

, B(1) =

[

0
1

]

and C(1) = [ 1 0 ], and S2 with

A(2) =

[

−5 −0.3
10 −2

]

, B(2) =

[

1
0

]

and C(2) = [ 0 1 ].

Obviously, there is only one control signal u. Assume that

the second agent is responsible for control implementation,

so that u = u(2) = v(2), according to the adopted notation.

Assume that both agents have their own controllers C1 and

C2, obtained by the LQG methodology, assuming a low mea-

surement noise level, so that F (1) =

[

1.6502 2.0000
−2.4717 −2.8223

]

,

G(1) =

[

−0.8502
−0.26970

]

, K(1) = [ 0.7414 0.82231 ] and

H(1) = 0, and F (2) =

[

−2.2361 −24.3071
0.1000 1.1200

]

, G(2) =
[

24.2068
−3.1200

]

, K(2) = [ 0.2361 0.0003 ] and H(2) = 0. The

system S with the local controller C2 is unstable. Algorithm

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA17.4

4366



A.1 has been applied according to (7), after introducing

Q = [ 0 1 ] and Ξ12 = Ξ21 = 100I2. Fig. 1 presents the

impulse response for all three components of the state vector

x for S. Algorithm A.2 has then been applied according to

(10); the corresponding responses are presented in Fig. 2.

0 5 10 15 20 25 30
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time[s]

x
1

x
2

x
3

Fig. 1. Algorithm A.1
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Time[s]

x
1

x
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x
3

Fig. 2. Algorithm A.2

It is to be emphasized that the consensus scheme puts

together two local controllers, influencing in such a way

both performance and robustness. Here, the role of the first

controller is only to help the second controller in defining

the control signal. The importance of the consensus effects

can be seen from Fig. 3 in which the responses in the case

when Ξ̃ = 0 is presented for algorithm A.1. It is obvious

that the response is worse than in Fig. 1. In the case of A.2

the system without consensus is even unstable.

The problem of stabilizability of S by A.1 and A.2 is, in

general, very difficult having in mind the supposed diversity

of local models and dynamic controllers. Any analytic insight

0 5 10 15 20 25 30
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time[s]

x
1

x
2

x
3

Fig. 3. Algorithm A.1 local controllers without consensus

from this point of view into the system matrices in (9) and

(10) seems to be very complicated. It is, however, logical to

expect that the introduction of the consensus scheme can, in

general, contribute to the stabilization of S. Selection of the

elements of Ξ̃ can, obviously, be done in accordance with

the expected performance of the local controllers and the

confidence in their suggestions (see, for example, an anal-

ogous reasoning related to the estimation problem [19]). In

this sense, connectedness of the agents network contributes,

in general, to the overall control performance.

B. Algorithms derived from local static feedback control

laws

Algorithm A.3. Assume now that we have static local

output controllers, obtained from Ci in (3) by introducing

F (i) = 0, G(i) = 0 and K(i) = 0, so that we have

v(i) = H(i)y(i). Both algorithms A.1 and A.2 give in this

case

U̇ = Ξ̃U + H̃C̃[B̃U + ÃC̃+Y ]. (11)

The closed-loop system is now given by

[

U̇
ẋ

]

=

[

Ξ̃ + H̃C̃B̃ H̃C̃ÃC̃+C̄

BQ A

]

[

U
x

]

. (12)

Remark 1. The proposed multi-agent control schemes

can be compared to those overlapping decentralized control

schemes for complex systems that are derived by using the

expansion / contraction paradigm and the inclusion principle

(especially in the case of Algorithm A.3) e.g. [1], [20],

[21], [22], [23], [24], having in mind that both approaches

follow analogous lines of thought, starting from similar in-

formation structure constraints (the above presented approach

is, however, much more general). From this point of view,

formulation of the local controllers connected to the agents

corresponds to the controller design in the expanded space in

the case of inclusion based systems, and the application of a

dynamic consensus strategy to the contraction to the original
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space for control action implementation, see e.g. [1], [21],

[22]. The proposed methodology offers, evidently, much

more flexibility (local model structure, agreement strategy),

at the expense of additional closed loop dynamics introduced

by the consensus scheme itself. Moreover, it is interesting

to notice that numerous numerical simulations show a pro-

nounced advantage of the proposed scheme (smoother and

even faster responses). The reason could be found in the

advantage of the consensus strategy over the contraction

transformation, which seems to be overly simplified and un-

satisfactory for putting together locally designed overlapping

decentralized controllers.

IV. STRUCTURES BASED ON CONSENSUS AT THE STATE

ESTIMATION LEVEL

The previous section was devoted to general structures

with consensus at the input level in systems where multiple

agents with overlapping resources and different competences

participate in defining the global control law. The algorithms

start from the local models and the local controllers, and

the consensus scheme tends to make equal the overlapping

components of the local input vectors. The next section will

approach the problem in a different way, where the consensus

strategy is introduced at the level of state estimation. This

estimation scheme itself has been proposed and generally

discussed in [17], [19].

Algorithm A.4. Assume that the local models are such that

ξ(i) = x(i), so that the dynamic systems Si are overlapping

subsystems of S. Therefore, starting from the model Si

and the accessible measurements y(i), each agent is able to

generate autonomously the local estimate x̂(i) of the vector

x(i) using an estimator which can be defined in the following

Luenberger form:

Ēi : ˙̂x(i) = A(i)x̂(i) + B(i)v(i) + L(i)(y(i) − C(i)x̂(i))
(13)

where L(i) is a constant matrix, which can be taken to be

the steady state Kalman gain [25], and v(i) is supposed to

be known.

The overlapping decentralized estimators defined by (13)

provide a set of overlapping estimates x̂(i). If the final goal

is to get an estimate x̂ of the whole state vector x of S,

a consensus scheme can be introduced which would enable

all the agents to get reliable estimates of the whole state

vector x on the basis of: (1) the local estimates x̂(i), and (2)

communications between the nodes based on a decentralized

strategy uniform for all the nodes. If Xi is an estimate of x

generated by the i-th agent, we propose the following set of

estimators to be attached to all the agents in the network:

Ei : Ẋi = AiXi + B∗
i u + ΣN

j=1

j 6=i

Ξij(Xj − Xi)+

+Li(y
(i) − CiXi), (14)

i = 1, . . . , N , Ai is an n × n matrix with ni × ni nonzero

elements being equal to those of A(i), but being placed at

the indices defined by X i × X i, Li is an n × ρi matrix

obtained similarly as Ai in such a way that its nonzero

elements are those of L(i) placed row by row at row-indices

defined by X i, B∗
i is an n×m matrix obtained from Bi by

putting its rows at the indices defined by X i, and Ξij , i 6= j,

are constant n × n diagonal matrices with positive entries.

The algorithm is based on a combination of decentralized

overlapping estimators and a consensus scheme with matrix

gains Ξij , tending to make the local estimates Xi as close as

possible. If X = col{X1, . . . ,XN} is the vector composed

of all the state estimates in the agents network, the following

model describes its global behavior:

E : Ẋ = (Ξ̃ + Ã∗ − L̃∗C̃∗)X + B̃∗U∗ + L̃∗Y (15)

where Ξ̃ represents now an nN × nN matrix composed of

the blocks Ξij , i 6= j, with Ξii = −
∑N

i=1,i 6=j Ξij , i =

1, . . . , N , Ã∗ = diag{A1, . . . , AN}, L̃∗ = diag{L1, . . . ,

LN}, C̃∗ = diag{C1, . . . , CN}, B̃∗ = diag{B∗
1 , . . . , B∗

N}
and U∗ = col{u, . . . , u}.

Moreover, we shall assume that all the agents have the

a priori knowledge about the optimal state feedback for

S, expressed as u = Kox. Using this knowledge and

the estimation scheme (14), the agents can calculate the

corresponding inputs Ui = KoXi; implementation of the

control signals is done according to the index sets U i.

The decentralized overlapping estimation scheme with

consensus, providing state estimates of the whole state vector

x to all the agents, together with the globally optimal control

law, represents a control algorithm, denoted as A.4, which

provides a solution to the posed multi-agent control problem

of S.

Defining K̃o = diag{Ko, . . . ,Ko}, we have, according

to the above given notation, that u = QK̃oX , so that the

whole closed-loop system becomes

[

Ẋ
ẋ

]

=

[

Ξ̃ + Ã∗ − L̃∗C̃∗ + B̃∗K̄ L̄

BQK̃o A

]

[

X
x

]

, (16)

where K̄ = col{QKo, . . . , QKo} and L̄ = col{L1C1,

. . . , LNCN}. A simplified version of the above algorithm,

from the point of view of communications, is obtained by

replacing the actual input u by the local estimates of the

input vector Ui = KoXi in (14), having in mind the local

availability of Xi.

Example 2. In this example the performance of the above

algorithm is demonstrated on the same system as in Example

1. The local estimators are performing the local state esti-

mation using the gains L1 = [−4 9]T and L2 = [2 − 7]T .

The consensus gains in the matrix Ξ̃ are selected to be

Ξ12 = Ξ21 = 1000I2. The global LQ optimal control matrix

Ko is implemented by both agents. Since only the second

agent implements the input u, we assume that the first one

uses the estimate Ui = KoXi in the local state estimation

algorithm. The impulse response of the proposed control

algorithm, which is shown on Figure 4, is comparable to the

the impulse response of the globally LQ optimal controller

shown on the same figure.

Stability analysis of Algorithm A.4 represents in general

a very complex task. It is possible to apply the methodology
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Fig. 4. Algorithm A.4 and globally LQ optimal controller

of [26] under very simplifying assumptions, and to show that

the eigenvalues of (16) are composed of the eigenvalues of

Ã∗ − L̃∗C̃∗, Ã∗ + B̃∗K̄ and Ã∗ − L̃∗C̃∗ + B̃∗K̄ modified

by a term depending on the eigenvalues of the Laplacian

of the network and the consensus gain matrices. However,

the underlying assumptions include the one that all the

agents have the exact system model, as well as that the

control inputs are transmitted throughout the network; in the

overlapping decentralized case, which is in the focus of this

work, these assumptions are violated, making the stability

problem much more complex, dependent on the accuracy of

the local models and the related estimators.

V. CONCLUSION

In this paper several structures for multi-agent control

based on a dynamic consensus strategy have been proposed.

After formally defining the problem of multi-agent con-

trol with information structure constraints on the basis of

overlapping decomposition of a given complex system, two

novel classes of overlapping decentralized control algorithms

based on consensus are presented. In the first class, an

agreement between the agents is required at the level of

control inputs. Three distinct control schemes are described

and discussed: dynamic output feedback (Algorithms A.1

and A.2), static state feedback and static output feedback

(Algorithm A.3). In the second class, when the agreement

is required at the estimation level, a control scheme based

on state estimation with consensus, coupled with a globally

optimal state feedback, is presented and analyzed (Algorithm

A.4). The proposed control algorithms have been illustrated

by several examples which demonstrate their effectiveness.

Finally, according to some of our initial results, the pro-

posed methodology for multi-agent consensus based control

can be efficiently applied to formations of autonomous

vehicles.
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