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Abstract— In this paper we consider the use of periodic
controllers for simultaneous stabilization and performance,
with a focus on the case when there is an occasional, though
persistent, plant change. We consider the case of a compact
set of admissible models; we provide a design procedure
which yields a controller which stabilizes each such model and
provides near optimal LQR performance. We also demonstrate
that this control law has the facility to tolerate occasional (but
persistent) switches between these models. The controller is
periodic with a slight nonlinearity.

I. INTRODUCTION

A classical control problem is that of providing good

performance in the face of plant uncertainty, especially when

time-variations are involved. There are two standard ap-

proaches to the problem: robust control and adaptive control;

an implicit goal of the latter is to deal with (possibly rapidly)

changing parameters, while in the case of robust control,

the typical approach yields a linear time-invariant (LTI)

controller which deals with fixed (but unknown) parameters,

with changes restricted to the occasional, but infrequent,

jump, so that LTI theory can be applied. Here we consider an

open problem in which the set of uncertainty is very large

- larger than LTI robust control theory can tolerate - and

where we demand good transient performance - better than

what traditional adaptive control will provide. Furthermore,

we wish to do this in the context of an occasional, though

persistent, plant change.

Robust control approaches e.g. [1], [2], and [3] have been

used to prove that every finite set of models can always

be simultaneously stabilized using an LTV controller, but

the papers indicate that performance will be quite poor. For

larger classes of uncertainty such as compact sets of plant

parameters, previous results appear to be mostly restricted to

adaptive approaches including logic based switching e.g. [6],

[7], and [8]; however these approaches typically provide poor

transient behaviour and possibly large control signals. Recent

research by the second author provides some additional

related work, although the work on time-varying plants is

limited. Specifically, in [4] it is proven that good performance

can be provided for rapidly varying minimum-phase systems;

in [5] it is proven that near optimal LQR performance can

be obtained for a compact set of LTI models, but with no

time variations allowed; in [10] it is proven that the problem

considered here can be solved in the context of a finite

set of models, with the measure of performance being the

classical LQR setup. Here the goal is to extend the approach

of [10] to handle a compact set of models; we combine the

ideas of [10] with the techniques of [5]. Recent work by

Vu and Liberzon [11] uses completely different techniques

(it is based on supervisory control) to prove similar types

of results, although there the focus is more on stability and

disturbance rejection than it is on performance.

We use the Holder 2-norm for vectors and the correspond-

ing induced norm for matrices, and denote the norm of a

vector or matrix by ‖ ·‖. We measure the size of a piecewise

continuous signal x by ‖x‖2 := [
∫ ∞

0
‖x(τ)‖2dτ ]1/2.

II. PROBLEM FORMULATION

The first class of plant models are of the form

ẋ = Ax + Bu, x(t0) = x0

y = Cx,
(1)

with x(t) ∈ R
n representing the state, u(t) ∈ R the control

signal, and y(t) ∈ R the measured output. We associate

the plant with the triple (A,B,C). We let Γ denote the

subset of R
n×n×R

n×1×R
1×n which corresponds to triples

(A,B, C) for which (A,B) is controllable and (C,A) is

observable. In this paper an initial goal is to control the

plant when the model is uncertain: we assume that it lies

in a compact subset of Γ, which we label P .

Here we allow for persistent plant changes as well. To this

end, we consider a time-varying plant obtained by switching

between elements of P:

ẋ(t) = A(t) x(t) + B(t) u(t), x(0) = x0,
y(t) = C(t) x(t).

(2)

With Ts > 0, define the time varying uncertainty set by

PTs
:= {(A,B, C)(t) :

1)(A,B,C)(t) ∈ P, t ≥ 0,
2)(A,B,C)(t) is a piecewise constant function of t, and

3) There is at least Ts time units between discontinuities}.

Notice that P∞ = P .

Here our first goal is to design a controller which not only

provides closed loop stability but also provides near optimal

LQR performance for each possible model in P . We would

also like to maintain stability in the presence of persistent,

but sufficiently infrequent, plant changes; specifically, we
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would like to stabilize PTs
for sufficiently large Ts. To this

end, with r > 0, consider the classical performance index

∫ ∞

0

[y2(t) + ru2(t)] dt.

As is well-known, the optimal controller for (A,B, C) ∈ P
is state-feedback and of the form u = F (A,B, C)x. The

associated closed loop system is

ẋ = (A + BF (A,B, C))x =: Acl(A,B,C)x.

It is known how to solve our first objective using a

sampled-data linear periodic controller [5]. However, to

handle the time-switching we will use a mild nonlinearity;

we will also use a more complicated time-variation. To this

end, we consider sampled-data controllers of the form

z[k + 1] = G[k]z[k] + J [k]y(kh), z[0] = z0 ∈ R
l,

u(kh + τ) = K(k, z[k], y(kh), τ), τ ∈ [0, h).
(3)

It turns out that G, J , and K are periodic functions of k, of

period ℓ; the period of the controller is therefore T := ℓh.

Furthermore, we impose a natural boundedness condition on

K: there exists a c > 0 such that

‖K(k, z, y, τ)‖ ≤ c(‖z‖ + ‖y‖), k ∈ Z
+, τ ∈ (0, h).

We associate this system with the 5-tuple (G, J, K, h, ℓ).

Here our notion of closed loop stability is the usual one:

Definition 1: The sampled-data controller (3) stabilizes

(1) if, for every x0∈R
n and z0∈R

l, we have

lim
t→∞

x(t) = 0 and lim
k→∞

z[k] = 0.

Notice that stability ensures that limt→∞ u(t) = 0.

The first goal of this paper is to design (3) so that it

stabilizes every plant in P and so that it is near optimal

in the LQR sense. The second goal of this paper is to ensure

that the controller stabilizes PTs
if Ts is large enough.

At this point we provide a high level motivation of our

approach. It combines ideas from [5] and [10], with several

new twists. We divide the period [kT, (k + 1)T ) into two

phases: the Estimation Phase and the Control Phase. In [5],

in the Estimation Phase we estimate F (A,B,C)x[kT ], and

in the Control Phase we apply a suitably scaled estimate of

this quantity; for this to work we required the probing signals

used during the Estimation Phase to be modest in size, and

for T and T ′/T to be small. Here we proceed in a similar

but slightly modified fashion. In the Estimation Phase, we

estimate F (A,B, C)eAcl(A,B,C)(t−kT )x(kT ) by applying a

sequence of test signals, which are constructed on the fly.

In the Control Phase we apply a suitably weighted estimate

of F (A,B, C)eAcl(A,B,C)(t−kT )x(kT ). Hence, if T ′/T is

small (we no longer require T to be small!), then we would

expect that this controller should be close to the optimal

one. Figure 1 illustrates the differences between these two

approaches. As in [5], we would like to carry out each phase

in (almost) a linear fashion in order to end up with (almost)

a linear controller.

u(t)

t
kT (k + 1)T

. . .

Estimation Control

Phase Phase

T
T−T ′

× Estimate of
F (A, B, C)x(kT )

kT + T ′

F (A, B, C)eAcl(A,B,C)(t−kT )x(kT )
Estimate of

Fig. 1. Comparison of old and new methods.

III. THE APPROACH

Here (versus in [5]) we will let T be large, so that u(t) is

closer to the optimal signal, which is aesthetically pleasing.

The other major advantage over [5] is that here we will be

able to tolerate time variations.

As discussed above, the goal is to periodically estimate

the desired control signal and then to apply this estimate.

The first step is to choose a parameterization of the plant

model which is amenable to estimation.

A. A Special Canonical Form

Let (A,B,C) ∈ P and define

Oi(C,A) :=








C
CA

...

CAi








, i ∈ Z
+

as well as

w := On−1(C,A)x.

It is easy to see that our transformed system is

ẇ =








1
. . .

1
−a0 · · · · · · −an−1








︸ ︷︷ ︸

=:Ā

w +








CB
CAB

...

CAn−1B








︸ ︷︷ ︸

=:B̄

u

y =
[

1 0 0 0
]

︸ ︷︷ ︸

=C̄

w; (4)

the optimal control law is now written as

u = F̄ (Ā, B̄, C̄)w.

Observe, in particular, that B̄ is composed of Markov pa-

rameters while C̄ is constant; we can prove that Ā and F̄
are also nice functions of the plant Markov parameters.

Lemma 1: (Parametrization Lemma) [5] Ā(A,B, C) and

F̄ (Ā, B̄, C̄) are analytic functions of the first 2n
Markov parameters {CB,CAB, ..., CA2n−1B} for all

(A,B, C) ∈ Γ.
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Hence, at this point we adopt a more compact notation:

we define

M :=














p1

p2

...

pm








︸ ︷︷ ︸

=:p

:=








CB
CAB

...

CAm−1B








: (A,B, C) ∈ P







;

(5)

since P is compact, M is as well. The goal is to have the

plant be parameterized by p, so by Lemma 1 we know that

setting m = 2n in the definition of p (and M ) will always

work; of course, if there is a lot of structure in P (e.g. it is a

gain margin problem) then a smaller choice of m may do. In

any event, at this point we choose m ≤ 2n so that p uniquely

identifies the plant. Hence, in this new parameterization,

the optimal state feedback gain F̄ (Ā, B̄, C̄) is an analytic

function of p, which we label f(p), so the optimal control

law is

u = f(p)w = f(p)On−1(C,A)x. (6)

Now we turn to the estimation issue.

Define several matrices:

Sm =










1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...

1 m m2 · · · mm










,

Hm(h) = diag{1, h, h2/(2!), ..., hm/(m!)}.

We will be using a sequence of samples of y: we define

Ym(t) :=
[

y(t) y(t + h) · · · y(t + mh)
]T

.

Lemma 2: (Key Estimation Lemma) [5] Let h̄ ∈ (0, 1)
and m ∈ N. There exists a constant γ > 0 so that

for every t0 ∈ R, x0 ∈ R
n, h ∈ (0, h̄), ū ∈ R, and

(A,B,C) ∈ P , the solution of (1) with

u(t) = ū, t ∈ [t0, t0 + mh)

satisfies the following:
∥
∥
∥
∥
Hm(h)−1S−1

m Ym(t0) − Om(C,A)x(t0) −

[
0
p

]

ū

∥
∥
∥
∥

≤ γh(‖x(t0)‖ + ‖ū‖),

‖x(t)− x(t0)‖ ≤ γh(‖x(t0)‖+ ‖ū‖), t ∈ [t0, t0 + mh].

To see how the Key Estimation Lemma (KEL) can be

applied, suppose that we first set

u(t) = 0, t ∈ [t0, t0 + mh),

so a good estimate of Om(C,A)x(t0) is

Hm(h)−1S−1
m Ym(t0). Since we may very well have a

plant switch in [t0, t0 +mh), we must proceed with caution.

Hence, we adopt the trick of [10]: we set

u(t) = 0, t ∈ [t0 + mh, t0 + 2mh)

as well, so another good estimate of Om(C,A)x(t0) is

Hm(h)−1S−1
m Ym(t0 +mh). If we insist that 2mh < Ts (the

minimum time between switches), then at least one interval

will not contain a plant switch; so we will set

Est[Om(C,A)x(t0)] := argmin{‖Hm(h)−1S−1
m Ym(t0)‖,

‖Hm(h)−1S−1
m Ym(t0 + mh)‖};

if h is also small, then we will be guaranteed that the above

estimate will be accurate when there is no plant switch and

will be modest in size when there is one.

With g ∈ R
1×(m+1), suppose we define a test signal to

be a linear functional of our above estimate:

ū = gEst[Om(C,A)x(t0)].

If we now set

u(t) = ū, t ∈ [t0 + 2mh, t0 + 4mh),

then by the KEL we should define

Est[pū] :=
[

0 Im

]
×

argmin{‖Hm(h)−1S−1
m [Ym(t0 + 2mh) − Ym(t0)]‖,

‖Hm(h)−1S−1
m [Ym(t0 + 3mh) − Ym(t0 + mh)]‖}.

Of course, this can be repeated a number of times, for

different choices of g, so it should be possible to estimate

terms of the form φ(p)Om(C,A)x(t0) with φ : R 7−→
R

m+1 a polynomial in its arguments and m a positive

integer. Since f is an analytic function of its arguments, as

long as m ≥ n, we can always estimate (6) at a given point

in time as close as we wish by a sequence of experiments

(assuming, of course, that there is no plant change during

the experiments).

Henceforth, we assume that

m ∈ {n, n + 1, ..., 2n}

and we define

W :=
[

In 0
]
∈ R

n×(m+1);

the optimal control law has the form

u = f(p)w = f(p)WOm(C,A)x. (7)

IV. APPROXIMATION BY A SAMPLED-DATA

CONTROLLER

In closed loop, (7) yields a control signal of the form

u(t) = f(p)w(t) = f(p)e(Ā+B̄f(p))t

︸ ︷︷ ︸

=:H(p,t)

w(0).

Of course, since the proposed controller is periodic of period

T , this is equivalent to the sampled-data controller

u(t) = H(p, t − kT )w(kT ), t ∈ [kT, (k + 1)T );
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this could be implemented via a generalized sampler (to

generate w(kT )) and a generalized hold (to generate u(t)).
The problem is that p is unknown, so what we’d like to do

is estimate H(p, t − kT )w(kT ). To proceed, first observe

that H is an analytical function of its two arguments. Let’s

fix an upperbound on the period, say Tmax. By the Stone-

Weierstrass Approximation Theorem, for every ε > 0 there

exists a polynomial Hε satisfying

‖H(p, t) − Hε(p, t)‖ ≤ ε, p ∈ M, t ∈ [0, Tmax].

When the optimal control law is applied to the plant (1),

we label the corresponding state response by x0, output by

y0, and control signal by u0. Similarly, when the sampled-

data controller

u(t) = Hε(p, t − kT )w(kT ), t ∈ [kT, (k + 1)T ),

for k ∈ Z
+ is applied to the plant, we label the corresponding

responses by xε, yε, and uε. In both cases, we omit the

dependence of w, x, and u on the parameter p ∈ M . One

last piece of notation: when we apply the above sampled-data

controller to the plant we obtain

x(t) =

[

eA(t−kT ) +

∫ t−kT

0

eA(t−kT−τ)BHε(p, τ)×

WOm(C,A)dτ ]x(kT )

=: Φp
ε(t − kT, 0)x(kT ), t ∈ [kT, (k + 1)T ).

Proposition 1: There exists a ε̄ > 0, a constant γ0 > 0,

and a constant λ0 < 0 so that for every ε ∈ (0, ε̄), x0 ∈
R

n, T ∈ (0, Tmax) and p ∈ M , we have that

‖x0(t) − xε(t)‖ ≤ εγ0e
λ0t‖x0‖, (8)

‖u0(t) − uε(t)‖ ≤ εγ0e
λ0t‖x0‖, (9)

‖Φp
ε(T, 0)k‖ ≤ γ0e

λ0kT , k ≥ 0, (10)

and
∥
∥
∥
∥

[
yε

r1/2uε

]

−

[
y0

r1/2u0

]∥
∥
∥
∥

2

2

≤ ε2γ2
0‖x0‖

2. (11)

At this point we apply Proposition 1 and choose ε̄ > 0,

a constant γ0 > 0, and a constant λ0 < 0 which have the

required properties; we freeze ε ∈ (0, ε̄) and proceed.

A. Polynomial Notation

Here we adopt the notation of [5] and modify it to our

needs, which we now quickly summarize. The goal is to

parametrize our polynomial approximation in such a way

that we can estimate the various terms in a straight-forward

and systematic fashion. Following Rudin [9], we introduce

the notion of a multi-index, which is an ordered m+1-tuple

α = (α1, ..., αm+1), αi ∈ Z
+.

For such a multi-index, we can define

|α| := α1 + · · · + αm+1 and (p, t)α := pα1

1 · · · pαm

m tαm+1 ;

since we are dealing with integer exponents, we define 00 :=
limx→0 x0 = 1. Hence, given that Hε is a polynomial which

maps R
m+1 7−→ R

1×n, it follows that there exists a finite

index set I ⊂ (Z+)m+1 and constant matrices cα ∈ R
1×n,

α ∈ I , so that we can write Hε in the form

Hε(p, t) =
∑

α∈I

(p, t)αcα, (p, t) ∈ M × [0, Tmax].

Now we turn to the realization problem. From Section III,

w(t) = WOm(C,A)x(t) ∈ R
n

can be easily estimated using the KEL as motivation. Now

consider the problem of estimating

∑

α∈I

(p, t)αcαw(t). (12)

We define q to be the largest multi-index of the first m
elements and q̄ to be the largest index of the m+1th element:

q := max
α∈I

m∑

i=1

|αi| and q̄ := max
α∈I

|αm+1|.

From the KEL we know that for each j ∈ {1, ..., n}, it

is possible to estimate pwj(t) by carrying out a simple

experiment. Indeed, by doing a succession of n experiments

we can estimate w(t)⊗ p ∈ R
nm. Using the same logic, we

can estimate (w(t) ⊗ p) ⊗ p ∈ R
nm2

using a succession of

nm experiments, and so on. To this end, we now define

w(t)⊗0p := w(t) and w(t)⊗i+1p := (w(t)⊗ip)⊗p, i ∈ N;

notice that w(t) ⊗i p ∈ R
nmi

. It is easy to see that the

vector w(t) ⊗i p contains all possible terms of the form

{(p, t)αwj(t) : |α| = i, αm+1 = 0, j = 1, ..., n}. Hence,

(12) can be rewritten: we can choose row vectors di,j of

length nmi so that

∑

α∈I

(p, t)αcαw(t) =

q̄
∑

j=0

tj
q

∑

i=0

di,j(w(t) ⊗i p).

In the next section we use the KEL to iteratively estimate

terms in the second summation on the RHS.

Remark 1: Perhaps the most problematic feature of this

approach is that of obtaining a closed form description of

H(p, t) and constructing the approximation Hε(p, t). As

discussed in [5], unless special structure is available, the best

approach is a numerical one: grid the M parameter space,

compute the optimal gain at each point on the grid, then fit a

good polynomial approximation to it; unfortunately this will

be difficult to do if m or the set of parameter uncertainty is

large.

V. THE CONTROLLER

Here we adopt the notation from Section IV and combine

it with the KEL to design an algorithm to implement the

proposed control law, the general operation of which was

briefly discussed at the end of Section II. This proposed

control law is periodic of period T ; we begin by describing
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its open loop behaviour on a period of the form [kT, (k +
1)T ). With p defined in (5) we have

uε(t) = Hε(p, t − kT )WOm(C,A)x(t) (13)

= Hε(p, t − kT )w(t)

=

q̄
∑

j=0

(t − kT )j

q
∑

i=0

di,j(w(t) ⊗i p). (14)

Following Section III.A, envision setting

u(t) = 0, t ∈ [kT, kT + 2mh),

so it follows from the KEL that a good estimate of w(kT )
is given by

ŵ(kT ) := Est[w(kT )] = Est[w(kT ) ⊗0 p]

:= argmin{‖WHm(h)−1S−1
m Ym(kT )‖,

‖WHm(h)−1S−1
m Ym(kT + mh)‖}

= w(kT ) + O(h)x(kT ),

with the last equality holding if there is no plant switch on

[kT, kT + 2mh). To estimate terms of the form w(kT ) ⊗i

p, i = 1, ..., q, recall that w(kT ) ⊗i p are column vectors

of height nmi =: ni. With ρ > 0 a scaling factor, set

u(t) =







ρŵ1(kT ) t ∈ [kT + 2mh, kT + 4mh),
...

...

ρŵn(kT ) t ∈ [kT + 2nmh, kT + 2(n + 1)mh).

It follows from the KEL and the discussion of Section III.A

that we should define

Est[pwi(kT )] = 1
ρ

[
0 Im

]
×

argmin{‖Hm(h)−1S−1
m [Ym(kT + 2mh) − Ym(kT )]‖,

‖Hm(h)−1S−1
m [Ym(kT + 3mh) − Ym(kT + mh)]‖}

= pwi(kT ) + O(h)x(kT )

for i = 1, ..., n, with the last equality holding if there is no

plant switch on [kT, kT +4mh). By stacking these estimates

we can obtain an estimate of w(kT ) ⊗ p, which we label

Est[w(kT )⊗p]. Of course, now we can estimate w(kT )⊗2p
in an analogous way, probing with successive elements of

Est[w(kT )⊗ p]; since w(kT )⊗p is of dimension n1 = nm,

this will take n1 experiments, each of length 2mh, yielding

a total of nm(2mh) = 2n2h units of time. This can be

repeated in the same fashion to yield estimates of w(kT )⊗ip,

i = 3, ..., q, with the ith term taking 2nih units of time. We

can now construct a good estimate of

q̄
∑

j=0

(t − kT )j

q
∑

i=0

di,j(w(t) ⊗i p)

to be applied during the Control Phase.

To this end, we define certain important points in time:

T1 := 2mh = the time to estimate w(kT ),

Ti+1 = Ti + 2nih, i = 1, ..., q.

The idea is that on the interval [kT, kT + T1) we estimate

w(kT ), while on the interval [kT + Ti, kT + Ti+1) we

estimate w(kT ) ⊗i p. Last of all, with T > Tq+1 an integer

multiple of h, on the interval [kT + Tq+1, (k + 1)T ) we

implement the Control Phase. With this in mind, we can

now write down our proposed controller, presented in open

loop form. To make this more transparent, we partition each

interval [Ti, Ti+1), i = 1, ..., q, into ni−1 consecutive sub-

intervals of length 2mh on which probing takes place:

[Ti, Ti+1) = [Ti,1, Ti,2) ∪ · · · ∪ [Ti,ni−1
, Ti,ni−1+1).

Now introduce the ni × (ni + ni−1) matrix Vi(h), i ∈ N,

which consists of ni−1 copies of
[

O Im

]
Hm(h)−1S−1

m

arranged in a block diagonal form. The proposed sampled-

data controller is given in three phases - with ρ > 0 a scaling

factor and for each k ∈ Z
+:

State Estimation Phase: [kT, kT + T1)
Set

u(t) = 0, t ∈ [kT, kT + T1) = [kT, kT + 2mh), (15)

and define

Est[w(kT ) ⊗0 p] := argmin{‖WHm(h)−1S−1
m Ym(kT )‖,

‖WHm(h)−1S−1
m Ym(kT + mh)‖}.

Control Estimation Phase: [kT + T1, kT + Tq+1)
For i = 1, ..., q and j = 1, ..., ni−1, set

u(t) = ρEst[w(kT ) ⊗i−1 p]j ,

t ∈ [kT + Ti,j , kT + Ti,j + 2mh), (16)

and define

Est[w(kT ) ⊗i p] :=
1

ρ
argmin{

∥
∥
∥
∥
∥
∥
∥

Vi(h)






Ym(kT + Ti,1) − Ym(kT )
...

Ym(kT + Ti,ni−1
) − Ym(kT )






∥
∥
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥
∥

Vi(h)






Ym(kT + Ti,1 + mh) − Ym(kT + mh)
...

Ym(kT + Ti,ni−1
+ mh) − Ym(kT + mh)






∥
∥
∥
∥
∥
∥
∥







.

(17)

Control Phase: [kT + Tq+1, (k + 1)T )

u(t) =

q̄
∑

j=0

(t − kT )j

q
∑

i=0

di,jEst[w(kT ) ⊗i p(kT )],

t ∈ [kT +Tq+1, (k+1)T ). (18)

At this point we examine the behaviour of the closed loop

system over a single period [0, T ) with T ∈ (0, Tmax]. To

proceed, we let x̂ε, ŷε and ûε denote the closed loop state

response, output response, and control signal, respectively,

when the proposed controller is applied.
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Lemma 3: (One Period Lemma) There exist constants

γ > 0 and T̄q+1 ∈ (0, Tmax) so that for every T ∈
(0, Tmax), Tq+1 ∈ (0,min{T, T̄q+1}), P ∈ PTmax

, and

k ∈ Z
+:

(i) If P (t) is constant on [kT, (k + 1)T ) then

‖x̂ε(t) − Φp
ε(t − kT, 0)x̂ε[kT ]‖ ≤ γTq+1‖x̂

ε[kT ]‖,

t ∈ [kT, (k + 1)T ],

|ûε(t) − Hε(p, t − kT )WOm(C,A)x̂ε[kT ]| ≤

γTq+1‖x̂
ε[kT ]‖, t ∈ [kT + Tq+1, (k + 1)T ).

(ii) In all cases

‖x̂ε(t) − x̂ε(kT )‖ ≤ γT‖xε[kT ]‖,

|ûε(t)| ≤ γ‖x̂ε(kT )‖, t ∈ [kT, (k + 1)T ).

VI. PERFORMANCE AND STABILITY FOR P∞

Here we analyze the closed loop behaviour when there are

no plant changes. We first look at stability.

Theorem 1: For every T ∈ (0, Tmax) there exists a

T̄q+1 ∈ (0, T ) so that for all Tq+1 ∈ (0, T̄q+1), the

controller (15)-(18) stabilizes every plant in P .

For performance we also need to have to have ε > 0 small.

Theorem 2: For every δ > 0 and T ∈ [0, Tmax), there

exists a controller of the form (3) which stabilizes every

p ∈ M and which, for every x0 ∈ R
n and p ∈ M , yields

a closed loop system response which satisfies
∥
∥
∥
∥

[
y

r1/2u

]

−

[
y0

r1/2u0

]∥
∥
∥
∥

2

2

≤ δ‖x0‖
2.

VII. STABILITY IN THE FACE OF PLANT SWITCHES

Here we allow for persistent plant changes and show that

our controller is stabilising under the condition that switches

occur slowly enough. Let’s start with the special case in

which P = {P1, P2} and the time-varying plant simply

switches back and forth between P1 and P2, spending τ1

time units at P1 and τ2 time units at P2, and then repeating

- for each k ∈ Z
+:

P (t) =

{
P1 t ∈ [k(τ1 + τ2), k(τ1 + τ2) + τ1)
P2 t ∈ [k(τ1 + τ2) + τ1, (k + 1)(τ1 + τ2)).

We choose the LQR-optimal feedback law which corre-

sponds to the plant at those times:

u(t) =

{
F1x(t) t ∈ [k(τ1 + τ2), k(τ1 + τ2) + τ1)
F2x(t) t ∈ [k(τ1 + τ2) + τ1, (k + 1)(τ1 + τ2)).

In this case, stability is dictated by the eigenvalues of the

matrix

e(A2+B2F2)τ2e(A1+B1F1)τ1 (19)

with a sufficient condition being that

‖e(A2+B2F2)τ2e(A1+B1F1)τ1‖ < 1. (20)

Of course, if one knows in advance that the time-varying

plant is as indicated, then one can always stabilize the system

with a more cleverly designed controller even if (19) has

eigenvalues outside the open unit disk; unfortunately, in our

case no such a priori information is available.

This brings us to the general case. Using (20) as motiva-

tion, a sufficient condition for stability should be

sup
(Ai,Bi,Ci)∈P

sup
τi>Ts

‖eAcl(A1,B1,C1)τ1eAcl(A2,B2,C2)τ2‖ < 1.

To simplify this condition, observe that because of compact-

ness there exists a γ > 0 and λ < 0 so that

‖eAcl(A,B,C)t‖ ≤ γeλt, t ≥ 0, (A,B,C) ∈ P. (21)

Theorem 3: If γ > 0 and λ < 0 satisfy (21) and

Ts >
ln(γ)

−λ
,

then there exists a T̄ ∈ (0, Ts/2) so that for every T ∈
(0, T̄ ), there exists a T̄q+1 ∈ (0, T ) so that for every

Tq+1 ∈ (0, T̄q+1) the controller (15)-(18) stabilizes PTs
.

VIII. SUMMARY AND CONCLUDING REMARKS

In this paper we consider the problem of designing a

controller for a compact set of models which tolerates

occasional, but persistent, switches between these models.

Here we show how to construct a mildly nonlinear periodic

controller which stabilizes every admissible model, provides

near optimal LQR performance for every admissible model,

and provides stability in the presence of occasional, persis-

tent, switches between these models; we provide an easily

computable bound on how often a switch is allowed. Al-

though we have not discussed this here, it can be proven that

near optimality (between plant switches) can be maintained

if the proposed controller is designed properly.
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